Лабораторная работа: Единая геометрическая теория классических полей

..

(dimstein@list.ru)

,.

, 2007.

.

,

. -

!!

! !. "

! !,

# $$#

!. %

&,

!, ! & .

1.

!

" # #. $ # —

, – #.

%, # # & & –

’. ( ( # &# & & ) #. )

#, ’ #.

& # #

, ’ # &. * ’

’ # #,

— ,

. *

& #&# # # & & –

& & – # !" # "

(# ). +# # #

& #, #

’ # # #.

( #

(’ # — , # ). ( & # & #

# & & – ’. ,#, &, ’ # #. ) #, #

’,

# #.

* # #

(! ( ’ # ), #

’. $ ’

# & #

.

2.

# &#

(!, & ’. )

– — -%

"& — [14]. * ’

&# # # & & & &, # &:

# #, # # (, #).

, — -%

, 24.

# # &#

, # #. * # #

&. % (! #

— (

).

"

. #,

#

, ’,

(−,+,+,+).

, # #

% # &!

#.

# #

A) * — ’

.

B) / # —

’ #.

#

C) * # -

# #.

#, #

* A ’

-

, &

, B

# ’. )

, $

(!,

!

#, — -%. ( #",

# ’. *. # #,

#.

. 0 — ,

’,, & , # # #

(Ωα⋅µν=Ωα⋅[µν]):

(1) Ωα⋅ µν=∆αµ ν−∆αν µ

# ∆αµ ν –. * ’..

∆αµ ν #:

(2)

# K –, # #

(K α µν= K [ αµ] ν), Γµαν – % (,. 1-3).

$ # #

" $. # & ( ) ’ ( ’ # ) #:

(3) dds 2x 2µ µ dxds α dxds β= 0

+∆(αβ)

d 2x µ

(4) ds 2 +Γαµβ dxds α dxds β= 0

(3) #, (4) ’.

. $ (3) (4) # #, #,

#:

(5) ∆µ(αβ) =Γαµβ

$ (2) ’ # !:

(6) ∆µ[ αβ] = K µ⋅ αβ

, # #

#., # (K α µν= K [ αµν] ).. (1) (6) ’

!

(7)

, #,

(Ωαµν=Ω[αµν] ). 1

,

$ #

.

%, #

(7)

.

* ’.

3. !" " !"# !- " $ %! && #

, & —

— -%, #, ( ),

’ #,,

#.

1) . ( # —

#:

(8) ds 2 = g µνdx µdx ν

g µ ν # ∇αg µ ν= 0,

# ∇α – # # x α (,

. 4-5).

2) . . 0,

, ",

# &.,

A , # # (2)

#:

(9) ∆αµ ν=Γµαν + iA α⋅ µν

# A α µν=−A µ αν=−A α νµ=−A ν µα= A [ αµν] .. % #

:

(10)

$ # A

# #:

(11) A αµν=−εαµνσA σ

# A µ – #, εα βµν – 2 3.

A µ # #:

(12) A µ=−εµαβγA αβγ

( # ’, # # ’ a µ:

(13) a µ = q ˆA µ

# q ˆ – ’ #..! (13)

’. % q ˆ #

#! #,, &

( A ~ A µ ~ 1/q ˆ ).

1 " (9) #:

(14) Ωα⋅ µν= 2∆α[ µν] = 2iA α⋅ µν

$ # "

. * #,

#

∆αµ ν #

#, # Γµαν (,. 6).

3) % . 1 — #

# (,. 7):

(15) R α⋅µβν=∂β∆αµν−∂ν∆αµβ+∆ατβ∆τµν−∆ατν∆τµβ

∆αµ ν

1 — &# " — R :

(16) R µν=∂σ∆σµν−∂ν∆σµσ+∆στσ∆τµν−∆στν∆τµσ

. " (9) — #

(,. 8):

(17) R µν= R ~µν+ R ˆµν

~

(18) R µν=∂σΓµσν−∂νΓµσσ+ΓτσσΓµτν−ΓτσνΓµτσ

(19) R ˆµ ν= i ∇~ σA σ⋅ µν− A τ⋅ σµA σ⋅ τν

# #

~

4# R µ ν – — ; R ˆµ ν –

— ,

( ). .

∇~α

# (# Γµαν ).

(11),

(20) A τ⋅σµA σ⋅τν=−2(A µA ν− g µνA αA α)

!

. (17), (18), (19) (20) -

, #:

~

(21) R (µν) = R µν+ 2(A µA ν− g µνA αA α)

(22) R [ µν] = i ∇~ σA σ⋅ µν

% # (21) (22), —

#,

.

, — F µ ν, # —

#:

(23) R µ ν= R ( µν) + iF µ ν

(24) F µ ν=∇~ σA σ⋅ µν

1 F µ ν, #

F µν:

(25) F µ ν= 1 εµ ναβF αβ

2

* (24) (11), & &#, # — (25):

(26) F µν =∂µA ν −∂νA µ

, # " ’.

. (13) (26) " ’ f µ ν

# # #

— :

(27) f µν =∂µa ν −∂νa µ = q ˆF µν

. — (21)

#:

(28) R = g µνR (µν) = R ~ − 6 A αA α

# R ~ = R ~µ⋅µ –.

1, # ’, # #

& ’. * ’ ’

( ), "

’ – — .

A µ # —

F µ ν & ’ a µ

" f µ ν, & & ’.

4. ’ $ !"( %’ #$"# #

4, # —

,,

:

(29) δ LG g d 4 x = 0

# LG – #. 2, — , #,

(29). 2 LG , (!,

— .

* & ’- (,. 9-10)

— :

(30.1) Rc

(30.2) Rc R µνR αβ

(30.3) Rc

(30.4) Rc (4) ≡δα⋅β⋅γ⋅λ⋅µνστR µνR αβR στR γλ

* " & — #

#,, " & #

. & "& & — (30) # #. * Rc (1) (30.1) # R . (28) (13)

:

(31) Rc (1) = R = R ~ −6A αA α= R ~ − q ˆ62 a αa α

$ Rc (2) (30.2) δα⋅β⋅ µν &

# — ,

(22)

(24)

’!

R [ µν] = iF µν.

!, (25) (27), &#:


(32) Rc (2) f αβf α β q ˆ

& (31) (32) #,

Rc (1)

Rc (2) # &#

#

#

. $

R ~ , #

&#

(!, #

" f αβf α β,

. 1

# & # & & — Rc (1)Rc (2) , "!

#.

3 LG

. (§ 2).. ’ #

# L 2 (R ), #:

(33) L 2 = (R R 0 )2 = R 2 − 2R 0R + R 02

# R 0–. 2 LG L 2

&

— :

(34) L G = L 2 (R n Rc (n ) )=Rc (2) −2R 0Rc (1) + R 02

$ (34) # # & " #

(33). * R 0 , &# LG ,

#,

.. " (31) (32) #

#:

(35) L G =− R 01q ˆ2 f αβf αβ+ R ~ − q ˆ62 a αa α− R 20

. ’,

&#:

(36) q ˆ = 8π

κR 0

(37) Λ= R 0

4

# Λ – (Λ ~ 10−56 −2 ), κ – (!..

"! (36) # LG! #:

(38) LG =−(f αβf αβ + 6R 0 a αa α )+ R ~ − 1 R 0

2


, # # ’

R 0 . ,#

,! (37), R 0

#

(38).

5. )"#

(29)

(34)

,

#

,

’,

&

&

.

. " (38)

(29) #:

( # #


(39) δ −(f αβf αβ + 6R 0 a αa α)+ R ~ − 1 R 0 − g d 4 x = 0

2


~ = g

# R

(40)

(41)

#

(42)

(43)

G µ ν –

.

1

# µνR ~ µν. $ g µν, Γµανa α ( ) ( (10)):

G µ

∇~σf µσ+3R 0a µ= 0

#:

R ~µ ν − 1 g µ νR ~

G µ ν

2

T ˆµν ≡ 41π f a µa a αa α

(!, T ˆµ ν – " ’ — ’. (40) (41), &, # #

’ #.

#

’ # (41)

— ’ (43), (40) # (!, #

. ’ (41) — ,

&.

,

,

,

’. *

. $

R 0

&

(40)

(41)

&,

&

&

.

(41)

#

a µ "

f µν

. $

, #

a µ,

, # f µ ν,


.

-

T ˆµν (43),

&#

(40)

’ -

:

. %

#

(44) µa µ

. * #

(41)

(41)

&

#

&#,

.

~

∇µa µ = 0.

1 T ˆµ ν # # ’ #

&, ’ — :

(45) ∇µT ˆµν = ∇~µT ˆµν = 0

$ & (45) (40) #

" # 5, &.

#

R 0 .. (40):

(46) − R ~ + R 0 = − 3κ4πR 0 a αa α = −6A αA α

, # " (28) &#,

(47) R 0 = R ~ −6A αA α = R

1, R 0. *

(40)! (47)!..

(40) (41) #,

, & ( ),

& #. 3,

,. $:

(48) G µ

(49) ∇~σf µσ +3R 0a µ =ξj µ

# T µ ν = T ˆµ ν +T ~ µν, T ~ µν – ’ — , T µ ν – ’ — , j µ –, ξ – (ξ= 4π/ ).

& & #

, & #:

(50) ∇µ πµ = ∇~µ πµ = 0

(51) ∇µj µ = ∇~µj µ = 0

# πµ = µu µ ( ), j µ = ρu µ ( #), µ –

, ρ – #, u µ –

# (dx µd τ ). $ µ ρ #,

". $ & µ, ρ u µ, #.

— #

. * # (49) #

& # (51) 2 #

’:

(52) ∇µa µ = ∇~µa µ = 0

(

. ( ’ (49), # a µ #.

* # # (48)

& # ’ — :

(53) ∇µT µν = ∇~µT µν = 0

. ’ ’ —

:

(54) ∇~µT ~µν = −∇~µT ˆµν

. " (44) (49) (52) T ~µν (54)

! #:

(55) j µ

(55) #

&.

1 #, #

#. 1 ’ — #! #,

~ = µu µu ν =πµu ν,

# & # &, T µ ν

# µ – #, u µ – #

# #. # (55) # ’ #

" & (50) #:

(56) j µ

+ # # #, # #

# ’-. $ ’ πµ =µu µ = m δ(x x 0 )u µj µ =ρu µ = q δ(x x 0 )u µ, # m q – #. $

(56) ", u β ∇~βu ν = du νd τ+ Γανβu αu β,:

du ν

(57) +Γα νβu αu β= q f u β

d τ mc

( # #., #, (57)

& #. $

# # 2, &

& # &.

1, #! # ( ) #

# #

, # #.

6. *++%!

,

.! &!

# & # &. $

# # #

’.

(48)

# (55) (57) #

,

&

&

#

.,

& ’

(49),

’ — (43).

,#, #

R 0’,

(49), #

. (49)

&

&

. 1, ’ #

#,.

# (49) #

$ —

# #

( g 00 = −1, g 11 = g 22 = g 33 =1) ’

(58) ∂2a µ −3R 0 a µ = 0

(49) #:

# ∂2 =∆− −2 ∂t 2 ( ’0 ). (

# #

# -

, # &

# #.

(58) # !, & # &. $

# & # & ’! # #:

(59) a µ = a 0µ sin(kx −ωt )

# x – # # # &. *

’ ω k !:

(60) ω2 = 2 (k 2 +3R 0 )

# c – # # &

#..! (60) ’ &! # #,

, # ’ ’,

# #:

(61) v =ω k = c 1+ 3k R 20 > c

(62) v = d dk ω = c 1− 3R 0 ωc 22 < c

1, ’ #, & (58), ’ # #! # c (62). % # (61) (62)

( # ). &

# c., c

# &, ’! #.

$ — ! (58)

#.. (58) ’

’ & # & #:

(64) ϕ = q e −αr

r

# ϕ= a 0(’ ), q – ’ #, α= 3R 0 = m γc /, r – # # #. — α

(64) « » ’.

., &

’ (58),,

! ’ &, m γ:

3R 0

(63) m γ =

c

* ’ # # (62)..

(63)

. (63) ’.

*! (37), &

’:

(64) 3R 0 ~10−55 −2

(65) m γ ~ 10−65

* # # #

’.. ’

# # # #:

(66) m γ < 3⋅10−60

1 (65) # ’. (,

# ’, # " # # ’, # ’.

7. ,#%-(

. &

’, ’ ’ & #. *

#&#,

# ’. $ — -% ( ). * ’ —

.

. # #

, ’ – ( ),

# & -

. / # ’ # & & ’

. ( #

, " ’ –

# — . * ’ #

# &

’.

$ & & & (

) # & & # # &

# #, # #.

, # ’

, #"

. 3 ’ &

#, ( ’ — ). ) &

’ #, "

’ # ’ — ’. $ & &

. *, # " & &

’, #!

2. $ &, #,, (! ( ).

. ’, " ’,

. * ’

,. * # &#

’.

$, #

, # & &

&!.

_____________________

"

1. 0 — -%:

∆αµν = Γµαν + K α⋅µν

K αµν = −K µαν

2. ." %:

σ =∂µg , # g = det g µ ν

Γµσ

2g

3. $ #:

Ωαµν = ∆αµν − ∆ανµ = K αµν − K ανµ

K αµν = 1 (Ωαµν − Ωµαν − Ωναµ)

2

4.:

δu µ = −∆µαβu αdx β, δu µ = ∆αµβu αdx β

5. % #:

∇µu ν = ∂µu ν + ∆νσµu σ, ∇~µu ν = ∂µu ν + Γσνµu σ

∇µu ν = ∂µu ν − ∆σνµu σ, ∇~µu ν = ∂µu ν − Γνσµu σ

6. % # # ∆αµ ν = Γµαν + iA α⋅ µν:

A α⋅µα = A α⋅(µν) = 0, ∆αµα = Γµαα, ∆α(µν) = Γµαν

∇µu µ = ∂µu µ+ ∆µσµu σ = ∂µu µ+ Γσµµu σ

∇µT (µν) = ∂µT (µν) +∆µσµT (σν) + ∆ν(σµ)T (µσ) = ∂µT µν + Γσ µµT (σν) + Γσ νµT (µσ)

7. 1 — :

(∇µ∇ν −∇ν∇µ)u λ = R λ⋅σµνu σ + Ωσ⋅µν∇σu λ

R α⋅βµν = ∂µ∆αβν − ∂ν∆αβµ+ ∆ατµ∆τβν − ∆ατν∆τβµ

Ωα⋅ µν = ∆αµ ν − ∆αν µ

8. — -:

R

+∇~ α −∇~νK α⋅βµ+ K α⋅τµK τ⋅βν− K α⋅τνK τ⋅βµ

µK ⋅βν

9. 1 2 3:

εαβγλ = g [αβγλ], εαβγλ =− 1 [αβγλ]

+1, αβγλ — " 0123

[αβγλ ]= −1, αβγλ — " 0123

0, αβγλ #

10. * ’-:

δα⋅β⋅γ⋅ λ⋅µνστ ≡ −εαβγλεµνστ δα⋅β⋅γ⋅µνσ ≡ −εαβγτεµνστ

!"#!&"#

1. Einstein A., The Meaning of Relativity, Princeton Univ. Press, Princeton, N.Y, 1950

(* #: (!&! ).,., 2, ., 1955).

2. ). (!&! , . & #, 1. 1-2, #- «) », ., 1966.

3. E. Schrodinger, Space-Time Structure, Cambridge University Press, 1960 (* #:

(. 6#, * — ,, )7,

2000).

4. * *. "., * & +. ,., 1, #- «) », ., 1973.

5. C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation, Freeman, San Francisco,

1973 (* #: -. , ,. . , " . / , /, #- « », .,

1977).

6. 0. ). " $ , . 1. % , ). .. 2 ,.: #

, #- «) », ., 1986.

7. E. Cartan, Lecons sur la Geometrie des Espaces de Riemann, Gauthier-Villars, Paris, 1928 and 1946 (* #: % (., —

, #- /, ., 1960).

8. +. Cartan, On Manifolds with an Affine Connection and the Theory of General Relativity, translated by A. Magnon and A. Ashtekar (Bibliopolis, Naples, 1986).

9. %. %. 1 , ) # —

, #- «+# -..», 2002.

10. 3.. — $ , 0 & #, 7),

1 119.. 3, 1976.

11. Alberto Saa, Einstein-Cartan theory of gravity revisited, gr-qc/9309027 (1993).

12. Hong-jun Xie and Takeshi Shirafuji, Dynamical torsion and torsion potential, gr-qc/9603006 (1996).

13. V.C. de Andrade and J.G. Pereira, Torsion and the Electromagnetic Field, gr-qc/9708051 (1999).

14. Yuyiu Lam, Totally Asymmetric Torsion on Riemann-Cartan Manifold, gr-qc/0211009 (2002).

еще рефераты
Еще работы по физике