Лекция: D-постановка

Построение аппроксимирующей задачи основано так же на кусочно-линейном приближении, но меняется уравнение сетки. По узлам сетки вычисляются расстояния между смежными узлами (длины интервалов)

djk = Xjk+1 – Xjk

и уравнение сетки записывается в виде

xj = dj + ; (8.25)

0 £yjk£ 1, (8.26)

где yjk – новые переменные.

Из представления переменной в виде (8.25), (8.26) следует:

· xj = dj, когда "yjk =0;

· xj находится в первом интервале, когда yj1 Î (0, 1), остальные yjk=0;

· xj находится во втором интервале, когдаyj1=1,yj2 Î (0, 1), остальные yjk=0;

· xj находится в k-ом интервале, когда yj1 = yj2 =… = yjk-1 = 1, 0 £ yjk £ 1,

остальные yjk=0.

Таким образом, для правильной аппроксимации должно выполняться установленное соответствие между значениями переменной xj и yjk. Это требование аналогично правилу смежных весов. При ином представлении значения xj будет нарушена кусочно-линейная аппроксимация функции.

Для аппроксимации нелинейной составляющей функции критерия вычисляются разности ее значений в смежных узлах

Djk = fj (Xjk+1) – fj (Xjk),

с помощью которых записывается аппрокимирующая функция

(8.27)

Тогда функция, аппроксимирующая критерий, имеет вид

Аналогично аппроксимируются ограничения jij(xj):

Как и в l-постановке, если имеет место задача выпуклого программирования, то требования к переменным yjk выполняются автоматически и полученное решение будет приближенным глобальным решением исходной задачи. В противном случае, необходимо придерживаться правила ограниченного ввода относительно переменных yjk: если первые k переменных равны единице, вводить можно только yjk+1.

При практическом решении сепарабельных задач сначала можно взять малое число узлов и получить приближенное оптимальное решение. Затем в качестве исходных принять интервалы, на которых лежат оптимальные xj, и выполнить аппроксимацию функций только на этих интервалах с малыми расстояниями между узлами. Такой способ снижает размерность решаемых задач и повышает точность получаемого решения.

Следует заметить, что в ряде случаев несепарабельная функция может быть преобразована к сепарабельной. Способ преобразования зависит от структуры функции. Например, произведение двух сепарабельных функций S(X)×T(X) можно привести к сепарабельному виду, заменив его перменной v с дополнительными равенствами

S(X) = zy; T(X) = z + y.

Тогда v = (zy)(z + y) = z2 – y2 – сепарабельная функция. Так функция

f = x1+ x2×x32 заменяется на сепарабельную f = x1 + v с дополнительными сепарабельными ограничениями

Пример 8.4. Покажем, что некоторые стохастические задачи могут сводиться к сепарабельным. Стохастические модели описывают ситуации выбора решения в условиях риска, обусловленного влиянием случайных факторов. Предполагается, что закон распределения случайных величин известен.

Пусть зависимости от искомых переменных линейны, но коэффициенты критерия и ограничений зависят от случайной величины w (состояния среды). В этом случае в качестве критерия берется обычно математическое ожидание линейной формы M(L)=M[CT(w)X]= а запись ограничений зависит от требований к их выполнению. При допустимости некоторых нарушений условий задачи ограничения записываются в вероятностной форме:

где pi — заданное значение вероятности. выполнения i-го условия. Такое ограничение заменяется эквивалентным детерминированным условием

(*)

где — математические ожидания, — дисперсия, — дисперсия, =t(pi) – значение функции, обратной функции распределения (например, нормального).

В результате детерминированная модель стохастической задачи включает линейный критерий и существенно нелинейные ограничения (*). Очевидно, что она не является сепарабельной. Сделаем простое преобразование. Обозначим

.

Тогда каждое ограничение (*) заменяется двумя условиями:

Первое из них – линейное, а второе – сепарабельное. Таким образом, стохастическая задача приведена к сепарабельной.

Примечание. Если случайным является только вектор ограничений, то, как следует из (*), стохастическая задача сводится к линейной.

 

еще рефераты
Еще работы по информатике