Лекция: Билет № 4

1. Дискретное представление информации: кодирование цветного изображения в компьютере (растровый подход). Понятие мультимедиа.

2. Работа с файловой системой, с графическим интерфейсом (выполнение стандартных операций с файлами: создание, копирование, переименование, удаление, использование архиватора).

 

 

Растровая графика.

 

Графическая информация может быть представлена дискретно. Для этого изображение разбивают на отдельные маленькие фрагменты (пиксели), затем каждому пикселю присваивается код цвета (считаем, что весь пиксель целиком одноцветный, а изображение в целом — мозаика мелких цветных точек). Этот процесс называют пространственной дискретизацией изображения.

 

Качество такого изображения зависит от двух параметров. Качество выше при меньшем размере пикселя и большем количестве используемых цветов (или оттенков серого, для монохромного изображения). Полный набор цветов, которые можно использовать для создания изображения называется палитрой. Изображение, сформированное таким способом, называют растровым. Формула для определения количества информации в нём имеет вид:

 

V = k * i, где V — количество информации в изображении; k — количество пикселей, а i — глубина цвета (т.е. количество бит, выделенных на кодирование цвета), определяемая по формуле: 2i ≥ N, где N — количество цветов в палитре. Цвет пикселя формируется как комбинация трех основных цветов ( обычно красного — Red, зеленого — Green и синего — Blue). Ниже приведена таблица кодирования шестнадцатицветной (глубина цвета — 4 бита) палитры:

Номер   Цвет Яркость Красный   Зеленый Синий  
Черный
Синий
Зеленый
Голубой
Красный
Фиолетовый
Коричневый
Белый
Серый
Светло-синий
Светло-зеленый
Светло-голубой
Светло-красный
Светло-фиолетовый
Желтый
Ярко-белый

 

Такая палитра используется например при создании программ на Qbasic. Она не дает возможности получить качественную графику, поэтому сейчас используют палитры с глубиной цвета 16 или 32 бита (см. настройки параметров экрана). В последнем случае, на каждую составляющую (R, G, B) и яркость отводится по восемь бит (что составляет диапазон десятичных значений от 0 до 255), а общее количество цветов в палитре 224, что соответствует примерно 16-ти миллионам. Если учесть еще и градации яркости, то получим 232. Такое количество цветов намного превышает возможности восприятия цветовой гаммы глазом человека. 32 битная глубина цвета способна обеспечить самое высокое качество графики. Выше отмечалось, что качество растровой графики зависит также от размера пикселя. Количество пикселей на экране дисплея (растр) указывают соотношением количества пикселей в строке по горизонтали к их количеству в столбце по вертикали (800*600, 1024*768 и т.д.). Максимально возможное количество пикселей на экране называют разрешающей способностью дисплея. Качество растровых изображений может быть очень высоким, но размер файла также весьма велик (изучите свойства нескольких Точечных рисунков *.BMP, созданных с помощью Paint). При уменьшении размера изображения и последующим сохранением рисунка (например, с целью экономии места на диске) качество безвозвратно ухудшается. Для уменьшения размера файлов часто используют другие форматы файлов такие как *.JPG,*.GIF и др.

 

Векторная графика.

 

Отметим также, что рассмотренный выше способ представления изображений не единственный. Можно представить изображение совокупностью простых геометрических фигур (прямых линий, окружностей, эллипсов, дуг, прямоугольников и т.д.) — графических примитивов и записать информацию о координатах и параметрах каждого их них. При этом координатная сетка должна совпадать с сеткой пикселей на экране. Такой способ представления изображений называют векторной графикой. На рисунке показаны примеры графических примитивов:

 

Такой способ представления изображения дает возможность получить файл малого размера. Качество изображения не изменяется с изменением размера рисунка, но даже профессиональные векторные графические редакторы не могут обеспечить качество графики, сравнимое с растровыми изображениями.

 

Видеоинформация.

 

Если рассматривать видеоинформацию как последовательность изображений, появляющихся на экране с определенной частотой (частотой кадров), то можно понять, что видео может быть закодировано подобно тому, как кодируются растровые изображения (с той разницей, что этих изображений много). Такой способ используется в формате *.AVI (несжатое видео) — высокое качество и огромные размеры файлов. Существуют способы сжатия видеоинформации путем преобразования файла в другие форматы.

Кодирование звуковой информации.

 

Из курса физики Вам должно быть известно, что звук представляет собой волну с непрерывно меняющейся амплитудой и частотой. Чем больше амплитуда, тем звук громче. Чем выше частота колебаний, тем выше тон (частота колебаний измеряется в герцах (штук в секунду). Человеческое ухо способно улавливать колебания от 20 Гц до 20 кГц. На рисунке ниже в виде зависимости амплитуды от времени показан фрагмент звуковой волны:

 

 

Чтобы компьютер мог работать со звуком, непрерывный звуковой сигнал должен быть представлен в двоичной форме, для этого выполняют временную дискретизацию звука:

Весь интервал изменения амплитуды разбивают на уровни громкости, а всё время звучания на одинаковые временные интервалы. Количество возможных уровней громкости можно рассматривать, как набор вероятных состояний в каждый временной интервал.

 

Определить количество информации в звуке можно по формуле: V = k * i, где V — количество информации в звуке; k — количество временных интервалов, а i — глубина звука (т.е. количество бит — 16, 32 или 64, выделенных на кодирование уровня громкости на одном интервале), определяемая по формуле: 2i ≥ N, где N — количество уровней громкости. Таким образом, любой звук может быть представлен последовательностью нулей и единиц. т.е. двоичным кодом. Качество звука тем выше, чем больше глубина звука и частота дискретизации (т.е. количество ступеней в секунду). Исходная формула может быть преобразована следующим образом:

 

V = t * ν * I, где V — количество информации в звуке; t — время звучания, ν — частота дискретизации, а i — глубина звука.

 

Преобразование звука в двоичный код выполняет специальное устройство — аналого-цифровой преобразователь. Частота дискретизации варьируется от 8 кГц до 48 кГц (нижний предел соответствует качеству радиотрансляции, верхний — качеству звучания музыкальных носителей). В виде двоичного кода записанный звук хранится в памяти компьютера. Для воспроизведения звука потребуется его обратное преобразование из двоичного кода в звуковую волну с помощью цифро-аналогового преобразователя.

 

еще рефераты
Еще работы по информатике