Лекция: Две архитектуры.

 

Еще на заре компьютерной эры были намечены два принципиально разных подхода к обработке информации: последовательная обработка символов и параллельное распознавание образов. И символы и образы — это «слова», которые обрабатывают компьютеры, а основное различие между ними заключается лишь в размерности. При этом размер образа может быть на много порядков больше размера символа. Казалось бы, разница не очень значительна и приводит лишь к несколько большему времени обработки длинных слов, но на самом деле различия в размерах данных имеют принципиальное значение, так как сложность работы с образами возрастает нелинейно при увеличении их разрядности.

Если для относительно коротких символов можно описать все возможные над ними операции и создать процессор, который предсказуемым образом обрабатывает все входящие символы, исполняющие роль команд или данных, то реализовать то же самое для образов невозможно, поскольку подобное описание будет расти экспоненциально А значит, любой процессор, предназначенный для обработки образов, содержит лишь -часть возможных входных образцов и соответствующих им действий и должен «додумывать свое поведение и обобщать известные ему примеры, чтобы его реакция была аналогичной и приемлемой с точки зрения решения задачи, для которой он предназначен. Таким образом различие между последовательными и параллельными вычислениями заключается б принципиально разных методах постанови и решения задач, связанных с обработкой информации.

На принципе последовательных вычислений на ограниченных по длине символах основаны компьютеры, реализованные по традиционной архитектуре фон Неймана с алгоритмическими программами, а параллельные вычисления и распознавание образов лежат в основе нейрокомпьютеров, организованных по принципам, схожим с устройством и работой мозга. Современные электронно-вычислительные машины значительно превосходят людей по способности производить численные расчеты, однако человек может с легкостью и буквально за секунду узнать человека, лицо которого промелькнуло в толпе и с которым он не виделся много лет.

В чем же причина столь существенного различия между возможностями двух этих вычислительных моделей? Попытаемся разобраться в этом вопросе с помощью таблицы, в которой собраны основные различия современных компьютеров, прообразом которых послужила машина фон Неймана, и биологических нейронных сетей, лежащих в основе искусственных нейронных сетей.

Как уже было сказано, основная задача нейрокомпьютеров — обработка образов. При этом у них. как и в мозгу, отсутствуют общие шины, нет разделения на активный процессор и пассивную память, а вычисления и обучение распределены по всем элементарным процессорам — нейронам, которые функционируют параллельно. За счет этого нейрокомпьютеры позволяют добиться фантастической производительности, которая может в миллионы раз превышать производительность традиционных компьютеров с последовательной архитектурой.

Преимущества нейросетевого подхода заключаются в следующем:

— • параллелизм обработки информации;

— • единый и эффективный принцип обучения;

— • надежность функционирования;

— • способность решать неформализованные задачи.

Биологическая эволюция, которая привела к столь эффективным решениям, шла по пути от образов к логике. Так и человек после рождения сначала учится распознавать образы, а только потом приобретает умение рассуждать логически и строить алгоритмы. Компьютеры же, напротив, начав с логики, лишь спустя несколько десятилетий осваивают распознавание образов за счет создания специальных программ для компьютеров традиционной архитектуры или благодаря созданию специализированных аппаратных нейропроцессоров.

Искусственные нейронные сети, подобно биологическим, являются вычислительной системой с огромным числом параллельно функционирующих простых процессоров с множеством связей. Несмотря на то что при построении таких сетей обычно делается ряд допущений и значительных упрощений, отличающих их от биологических аналогов, искусственные нейронные сети демонстрируют удивительное число свойств, присущих мозгу, — это обучение на основе опыта, обобщение, извлечение существенных данных из избыточной информации.

Нейронные сети могут менять свое поведение в зависимости от состояния окружающей их среды. После анализа входных сигналов (возможно, вместе с требуемыми выходными сигналами) они самонастраиваются и обучаются, чтобы обеспечить правильную реакцию. Обученная сеть может быть устойчивой к некоторым отклонениям входных данных, что позволяет ей правильно «видеть» образ, содержащий различные помехи и искажения.

 

  Компьютер с архитектурой фон Неймана Биологическая нейронная система
Процессор Сложный Простой
Высокоскоростной Низкоскоростной
Один или несколько Большое число
Память Отделена oт процессора Интегрирована в процессор
Локализована Распределенная
Адресация не по содержанию Адресация по содержанию
вычисления Централизованные Распределенные
Последовательные Параллельные
Хранимые программы Самообучение
Специализация Символьные и численные операции Восприятие и обработка образов
Среда функционирования Строго определенная Плохо определенная
Строго ограниченная Без ограничений
Надежность Высокая уязвимость Большая живучесть

В 50-х годах прошлого века группа исследователей объединила биологические и физиологические подходы и создала первые искусственные нейронные сети. Тогда казалось, что ключ к искусственному интеллекту найден. Но, хотя эти сети эффективно решали некоторые задачи из области искусственного зрения — предсказания погоды и анализа данных, иллюзии вскоре рассеялись. Сети были не в состоянии решать другие задачи, внешне похожие на те, с которыми они успешно справлялись. С этого времени начался период интенсивного анализа. Были построены теории, доказан ряд теорем. Но уже тогда стало понятно, что без привлечения серьезной математики рассчитывать на значительные успехи не следует.

С 70-х годов в научных журналах стали появляться публикации, касающиеся искусственных нейронных сетей. Постепенно был сформирован хороший теоретический фундамент, на основе которого сегодня создается большинство сетей. В последние два десятилетия разработанная теория стала активно применяться для решения прикладных задач. Появились и фирмы, занимающиеся разработкой прикладного программного обеспечения для конструирования искусственных нейронных сетей. К тому же 90-е годы ознаменовались приходом искусственных нейронных сетей в бизнес, где они показали свою реальную эффективность при решении многих задач — от предсказания спроса на продукцию до анализа платежеспособности клиентов банка.

Сегодня существует большое число различных конфигураций нейронных сетей с различными принципами функционирования, которые ориентированы на решение самых разных задач. В качестве примера рассмотрим многослойную полносвязанную нейронную сеть прямого распространения (рис. 1). которая широко используется для поиска закономерностей и классификации образов. Полносвязанной нейронной сетью называется многослойная структура, в которой каждый нейрон произвольного слоя связан со всеми нейронами предыдущего слоя, а в случае первого слоя — со всеми входами нейронной сети. Прямое распространение сигнала означает, что такая нейронная сеть не содержит петель.

 

еще рефераты
Еще работы по информатике