Реферат: Планета Юпитер

--PAGE_BREAK--На основе исследования в конце <metricconverter productid=«2000 г» w:st=«on»>2000 г зондом «Cassini» выяснено, что светлые полосы и Большое Красное Пятно (гигантский шторм с размером большой оси около 35 тыс. км, а малой оси – 14 тыс. км) связаны с нисходящими потоками (вертикальная циркуляция атмосферных масс); облака здесь выше, а температура ниже, чем в остальных областях. Цвет облаков коррелирует с высотой: синие структуры – самые верхние, под ними лежат коричневые, затем белые. Красные структуры – самые низкие. Красноватый оттенок планеты приписывают главным образом присутствию в атмосфере красного фосфора и, возможно, органике, возникающей благодаря электрическим разрядам. В области, где давление порядка 100 кПа, температура составляет около 160 К. В атмосфере Юпитера замечены грозы. Температура верхних облаков составляет -130°С. Юпитер выделяет на 60% больше энергии, чем получает от Солнца. Атмосфера отражает 45% падающего солнечного света. Установлено также наличие ионосферы, протяженность которой по высоте – порядка <metricconverter productid=«3000 км» w:st=«on»>3000 км.
Кроме того, орбитальным телескопом «Чандра» обнаружен источник пульсирующего рентгеновского излучения (названный Большим рентгеновским пятном), причины которого представляют пока загадку.
2.1. БОЛЬШОЕ РЕНТГЕНОВСКОЕ ПЯТНО НА ЮПИТЕРЕ
Самая большая планета солнечной системы, газовый гигант Юпитер, знаменит своим похожим на водоворот Большим Красным Пятном. Справа показано оптическое изображение знакомой всем гигантской планеты с циклоническими системами и полосами облаков, полученное пролетавшим около нее космическим аппаратом Кассини. Слева показано в искусственных цветах соответствующее изображение Юпитера в рентгеновских лучах, полученное орбитальной обсерваторией Чандра. На
 <shape id="_x0000_i1028" type="#_x0000_t75" alt=«Большое рентгеновское пятно на Юпитере» wrapcoords="-72 0 -72 21469 22723 21242 22507 166 -72 0" o:allowoverlap=«f»><imagedata src=«40132.files/image006.jpg» o:><img border=«0» width=«360» height=«207» src=«dopb192157.zip» hspace=«2» vspace=«2» alt=«Большое рентгеновское пятно на Юпитере» v:shapes="_x0000_i1028">
изображении, полученном Чандрой, впервые были обнаружены рентгеновские пятна и авроральное рентгеновское излучение от полюсов. Рентгеновское пятно, доминирующее в излучении от северного полюса Юпитера (вверху) возможно, так же удивительно для современных астрономов, как когда-то было Большое Красное Пятно. Противореча ранее предложенным теориям, рентгеновское пятно находится слишком далеко на севере, чтобы быть связанным с тяжелыми заряженными частицами из окрестностей вулканического спутника Ио. Данные Обсерватории Чандра также показывают, что рентгеновское излучение пятна таинственным образом пульсирует с периодом около 45 минут.
2.2. БОЛЬШОЕ КРАСНОЕ ПЯТНО
Большое красное пятно (БКП) — атмосферное образование на Юпитере, самая заметная особенность на диске планеты, наблюдаемая уже почти 350 лет.
БКП было открыто Джованни Кассини в 1665 году. Деталь, отмеченная в записях Роберта Гука 1664 года, также может быть идентифицирована как БКП. До полёта «Вояджеров» многие астрономы полагали, что пятно имеет твёрдую природу.
<imagedata src=«40132.files/image008.jpg» o:><img border=«0» width=«264» height=«223» src=«dopb192158.zip» v:shapes="_x0000_i1029">
БКП представляет собой гигантский ураган-антициклон, размерами 24-40 тыс. км в длину и 12-14 тыс. км в ширину (существенно больше Земли). Размеры пятна постоянно меняются, общая тенденция — к уменьшению; 100 лет назад БКП было примерно в 2 раза больше. По его длине могли бы разместиться 3 планеты размером с Землю.
Пятно расположено примерно на 22° южной широты и перемещается параллельно экватору планеты. Кроме того, газ в БКП вращается против часовой стрелки с периодом оборота около 6 земных суток. Скорость ветра внутри пятна превышает <metricconverter productid=«500 км/ч» w:st=«on»>500 км/ч.
Верхний слой облаков БКП находится примерно на <metricconverter productid=«8 км» w:st=«on»>8 км выше верхней кромки окружающих облаков. Температура пятна несколько ниже прилегающих участков.
Красный цвет БКП пока ещё не нашёл однозначного объяснения. Возможно, такой цвет придают пятну химические соединения, включающие фосфор.
Помимо БКП на Юпитере имеются и другие «пятна-ураганы», меньшие по размерам. Они могут иметь белый, коричневый и красный цвет и существовать десятки лет (возможно и дольше). Пятна в атмосфере Юпитера зафиксированы как в южном, так и в северном полушарии, но устойчивые, существующие длительное время имеются почему-то только в южном полушарии.
Ввиду разницы скоростей течений атмосферы Юпитера иногда происходят столкновения ураганов. Одно из них имело место в 1975 году, в результате чего красный цвет БКП поблек на несколько лет. В 2002 произошло аналогичное столкновение БКП и Большого Белого Овала. Белый Овал является частью пояса облаков, с периодом обращения меньшим, чем у Большого Красного Пятна. Овал начал тормозиться Большим Красным Пятном в конце февраля 2002 года, и столкновение продолжалось целый месяц. Красный цвет Большого Красного Пятна – загадка для ученых, возможной причиной его могут служить химикалии, включающие фосфор. Фактически цвета и механизмы, создающие вид всей юпитерианской атмосферы, до сих пор еще плохо поняты и могут быть объяснены только при прямых измерениях ее параметров.
Oval BA сформировался между 1998 и 2000 годами после слияния трёх меньших белых овалов, которые наблюдались до этого в течение 60 лет. Новое атмосферное образование поначалу было белым в видимом диапазоне, но в феврале 2006 года приобрело красно-коричневый цвет. По одной из гипотез, пока ураган находится на одинаковой высоте с общей поверхностью верхнего края атмосферы, он имеет белый цвет. Но когда его мощность увеличивается, вихрь поднимается несколько выше общего слоя облаков, где ультрафиолетовое излучение Солнца химически изменяет цвет, придавая ему красноту.

3. КОСМИЧЕСКИЕ ХАРАКТЕРИСТИКИ
3.1. МАГНИТОСФЕРА
Магнитное поле Юпитера огромно, даже в пропорции с величиной самой планеты – оно простирается на 650 миллионов километров (за орбиту Сатурна!). Если магнитосфера его была бы видна, она бы с Земли имела угловой размер, равный размеру Луны. Магнитное поле Юпитера значительно более сильное, чем земное, но в направлении Солнца оно почти в 40 раз меньше. Форма магнитосферы Юпитера, как и других планет, далека от сферической. Компас на Юпитере укажет юг, а не север, как это было бы на Земле, так как магнитное поле Юпитера имеет противоположное направление по сравнению с земным. Магнитосфера Юпитера, формируемая солнечным ветром, выглядит в виде слезы. Электроны и протоны высоких энергий, захваченные магнитным полем Юпитера, образуют радиационные пояса, похожие на земные, но сильно превышающие их по размеру.
Радиоизлучение Юпитера, обнаруженное в <metricconverter productid=«1955 г» w:st=«on»>1955 г, послужило первым признаком наличия у него сильного магнитного поля, которое в 4000 раз сильнее земного. Его магнитный дипольный момент почти в 12000 раз превосходит дипольный момент Земли, но так как напряженность магнитного поля обратно пропорциональна кубу радиуса, а он у Юпитера на два порядка больше, чем у Земли, то напряженность у поверхности Юпитера выше, по сравнению с Землей, только в 5-6 раз. Магнитная ось наклонена к оси вращения на (10,2 ± 0,6)°. Дипольная структура магнитного поля доминирует до расстояний порядка 15 радиусов планеты. Юпитер обладает обширной магнитосферой, которая подобна земной, но увеличена примерно в 100 раз. Закручивание электронов вокруг силовых линий порождает радиоизлучение, причем задержанные около планеты электроны дают синхротронное излучение в диапазоне дециметровых волн. Декаметровое излучение, наблюдаемое только от некоторых областей планеты, связано с взаимодействием ионосферы Юпитера со спутником Ио, орбита которого проходит внутри огромного плазменного тора. Это взаимодействие порождает также полярные сияния. Обнаруженное «Вояджерами» излучение в километровых длинах волн возникает в высоких широтах планеты и в плазменном торе. Наблюдая 18 декабря 2000 года в течение 10 часов, удалось обнаружить пульсирующий источник рентгеновского излучения в полярных районах верхних слоев атмосферы Юпитера с помощью оборудования орбитального телескопа «Chandra». Вспыхивает наподобие маяка каждый 45 минут. Никакие из существующих ныне теорий не могут объяснить ни природу возникновения излучения, ни его пульсирующий характер.
Радиационные пояса:
<imagedata src=«dopb192159.zip» o:><img border=«0» width=«300» height=«177» src=«dopb192159.zip» v:shapes="_x0000_i1030">
Эти два изображения показывают радиационные пояса Юпитера в течение 10 часов. Они контролируются магнитным полем планеты, поэтому изменяются при ее вращении. Изображение планеты дано для того, чтобы показать относительный размер этих поясов. При облете Юпитера основная антенна «Кассини» была все время направлена в сторону планеты, что позволило записать данные об интенсивности радиоизлучения в полосе, охватывающей почти четверть оборота Юпитера. Впервые был записан спектр высокоэнергетичных электронов в окружающем пространстве Юпитера. Оказалось, что плотность этих электронов меньше, чем предполагалось ранее, а это означает, что гораздо больше электронов, чем ожидалось, обладают меньшей энергией, а именно они и представляют основную опасность для электронного оборудования космических аппаратов. Результаты наблюдений показали, что район Юпитера представляет зону самого жесткого радиационного окружения во всей Солнечной системе, а максимально жесткое излучение наблюдается на расстоянии до 300 тыс. км от его поверхности.
3.2. ПОЛЯРНЫЕ СИЯНИЯ
Наблюдения космического телескопа «Хаббл» показали, что полярное сияние имеет ту же природу, что и земное: быстрые электроны, дрейфующие в магнитосфере планеты вдоль силовых линий между полюсами, попадают у полюсов в верхние слои атмосферы и вызывают свечение газа.
Полярное сияние Юпитера интенсивнее всего проявляется в ультрафиолетовом диапазоне, поскольку основные спектральные линии водорода, доминирующего в атмосфере Юпитера, лежат в жестком ультрафиолете.
Свой вклад в исследование Юпитера внесла и орбитальная обсерватория «Чандра», получившая изображение планеты в рентгеновских лучах. На нем впервые были обнаружены рентгеновские пятна и полярное рентгеновское излучение.
<imagedata src=«dopb192160.zip» o:><img border=«0» width=«300» height=«208» src=«dopb192160.zip» v:shapes="_x0000_i1031">
На недавно опубликованной фотографии с Космического телескопа имени Хаббла, сделанной в ультрафиолетовых лучах, полярные сияния выглядят как кольцеобразные пояса вокруг полюсов планеты. Полярные сияния на Юпитере отличаются от земных наличием ряда ярких полос и пятен, порождаемых трубками магнитного поля, что соединяют Юпитер с его крупнейшими спутниками. В данном конкретном случае яркая черточка у самого левого края и два ярких пятнышка – одно чуть пониже центра и другое справа от него – представляют собой ни что иное как следы Ио, Ганимеда и Европы, соответственно. Следует заметить, что снята дневная сторона Юпитера (с Земли можно снять только узкую ночную полоску) и в ультрафиолете сияние ярче отраженных солнечных лучей.
3.3. МОЛНИИ НА ЮПИТЕРЕ
Почему на Юпитере сверкают молнии? Молния представляет собой мгновенный перенос электрически заряженных частиц с одного места на другое. Чтобы сверкнула молния, необходимо, чтобы заряды были разделены внутри облака. На Земле разделение заряда образуется из-за столкновения ледяных и водяных капель. Однако, что происходит на Юпитере? Астрономы полагают, что молнии на Юпитере образуются также в облаках, содержащих лед. Этот вывод был сделан после того, как была сделана эта фотография в октябре космическим аппаратом Галилео, который летает вокруг Юпитера. Облака слабо освещаются солнечным светом, отраженным от спутника Юпитера Ио. Яркие вспышки происходят в активных областях на уровне, где пролегают водяные облака, и освещают более низкие облака, содержащие аммиак. Молнии на Юпитере намного ярче молний на Земле.

3.4. КОМЕТА ШУМЕЙКЕР-ЛЕВИ 9
<imagedata src=«dopb192161.zip» o:><img border=«0» width=«300» height=«215» src=«dopb192161.zip» v:shapes="_x0000_i1032">
В 1993 году около Юпитера была открыта необычная цепочка кусочков кометы, которая распалась под действием гравитационных сил планеты – гиганта. Было просчитано, что они вскоре столкнутся с Юпитером и ученые стали с нетерпением ожидать этого невероятного события (ведь раньше ни кто подобного не наблюдал). И вот в июле 1994 года куски кометы Шумейкера-Леви 9, известной также под названием «нить жемчуга», столкнулись с Юпитером. Что происходит, когда комета сталкивается с планетой? Если планета имеет каменную поверхность, то на ней образуется огромный ударный кратер. Однако планеты типа Юпитера не имеют твердой поверхности, а состоят преимущественно из газа. Когда комета Шумейкера-Леви-9 сталкивалась с Юпитером в 1994 году, каждый кусочек кометы поглощался обширной атмосферой Юпитера. На картинке изображена последовательность снимков, на которых показано столкновение с Юпитером двух фрагментов кометы. По мере того, как фрагменты погружались в атмосферу, образовывались темные следы, которые постепенно исчезали. Под верхними облаками Юпитера находится газ с высокой температурой, поэтому фрагменты кометы быстро расплавлялись, не успев нырнуть глубоко в атмосферу Юпитера. Так как Юпитер намного массивнее любой кометы, орбита этой планеты вокруг Солнца не может заметно измениться от такого соударения.
Редчайшее астрономическое явление – столкновение кометы Шумейкеров-Леви 9 с Юпитером – вызвало необычайный интерес широкой общественности в связи с разнообразием проблем, связанных с этим явлением. Традиционные научные проблемы – это, во-первых, новое о самой комете, например о химическом составе ее ядра, особенностях пылевой компоненты, вспышечной активности и т. д.; во-вторых, это уникальная возможность прямого изучения химического состава поверхностных слоев Юпитера. Здесь были получены неожиданные результаты: наблюдатели зарегистрировали сильное излучение линий металлов, которых никак не предполагалось найти в поверхностных слоях Юпитера в таком количестве; также было обнаружено значительное количество серы как в виде самой молекулы S2, так и в виде других серосодержащих молекул. Третья научная проблема – это исследование эффектов, связанных непосредственно со взрывами при падении осколков на Юпитер. К ним относятся энерговыделение самих взрывов, распространение ударных волн, а также исследование фотохимических реакций, протекающих в процессе взрыва и распространения ударной волны. Ученые зарегистрировали многократное превышение концентрации ряда веществ в местах падения осколков кометы по сравнению с тем, что ожидалось найти в поверхностных слоях Юпитера, например серы, окиси углерода СО, а также молекул CS2 и CS. В каждом месте падения самых крупных кометных осколков ученые обнаружили 100 млн. т окиси углерода, 3 млн. т сульфида углерода CS2 и 300 тыс. т моносульфида углерода CS, что во много тысяч раз больше нормального содержания этих веществ.
3.5. КОЛЬЦА ЮПИТЕРА
Юпитер преподносит много сюрпризов: он генерирует мощные полярные сияния, сильные радиошумы; возле него межпланетные аппараты наблюдают пылевые бури – потоки мелких твердых частиц, выброшенных в результате электромагнитных процессов в магнитосфере Юпитера. Мелкие частицы, которые получают электрический разряд при облучении солнечным ветром, обладают очень интересной динамикой: являясь промежуточным случаем между макро- и микро-телами, они примерно одинаково реагируют и на гравитационные, и на электромагнитные поля.
<imagedata src=«dopb192162.zip» o:><img border=«0» width=«300» height=«176» src=«dopb192162.zip» v:shapes="_x0000_i1033">
Именно из таких мелких каменных частиц в основном состоит кольцо Юпитера, открытое в марте <metricconverter productid=«1979 г» w:st=«on»>1979 г. (косвенное обнаружение кольца в <metricconverter productid=«1974 г» w:st=«on»>1974 г. По данным «Пионера» осталось непризнанным). Его главная часть имеет радиус 123-129 тыс. километров. Это плоское кольцо около <metricconverter productid=«30 км» w:st=«on»>30 км толщиной и очень разреженное – оно отражает лишь несколько тысячных долей процента падающего света. Более слабые пылевые структуры тянутся от главного кольца к поверхности Юпитера и образуют над кольцом толстое гало, простирающееся до ближайших спутников. Увидеть кольцо Юпитера с Земли практически невозможно: оно очень тонкое и постоянно повернуто к наблюдателю ребром из-за малого наклона оси вращения Юпитера к плоскости его орбиты.
Схематическое изображение кольцевой системы Юпитера показывает соотношение между различными кольцами и его мелкими внутренними спутниками, которые являются источником пыли, формирующей кольца. Самое внушительное кольцо, показанное серым оттенком, — это гало. Тонкое узкое основное кольцо показано красным цветом, на его границе расположены спутники Адрастея и Метис. Кольцо состоит из частиц, выбиваемых из этих двух спутников. Феб и Амальтея более удалены от Юпитера и формируют тонкие паутинообразные кольца, которые обозначены желтым и зеленым цветами.
Шесть картинок, которые Вы видите, получены в инфракрасном свете с помощью гавайского
 <shape id="_x0000_i1034" type="#_x0000_t75" alt=«Красные кольца вокруг Юпитера» o:allowoverlap=«f»><imagedata src=«dopb192163.zip» o:><img border=«0» width=«300» height=«130» src=«dopb192163.zip» hspace=«2» alt=«Красные кольца вокруг Юпитера» v:shapes="_x0000_i1034">
инфракрасного телескопа в 1994 году и покрывают промежуток времени, равный двум часам. Отчетливо видны кольца Юпитера, полосы и пятна во внешней атмосфере Юпитера. На фотографиях видны также два небольших спутника Юпитера. Метида диаметром только <metricconverter productid=«40 км» w:st=«on»>40 км видна на втором снимке в виде слабого пятнышка на кольцах справа от Юпитера. Амальтея намного больше и ярче. Этот спутник виден на третьем снимке с краю слева, а также проходящим по диску планеты на четвертом и пятом снимках. Происхождение колец Юпитера остается неизвестным, хотя ученые предполагают, что они образовались из рассеянного вещества от столкновений метеоритов со спутниками Юпитера.
    продолжение
--PAGE_BREAK--
еще рефераты
Еще работы по астрономии