Реферат: Меры реабилитации агроценозов при радиационном воздействии

--PAGE_BREAK--Цезий, судя по коэффициентам накопления в почвах, по разным источникам, относится либо к сильно, либо к слабо накапливаемой группе элементов. В экспериментах и наблюдениях по миграции изотопа (почва–вода-растительность) выявлено его преимущественное накопление в неорганической фазе почв (коэффициент накопления 0,25), но при высоком содержании излучателя в биомассе (8000–9000). У Юдинцевой (1981) имеются данные по влиянию емкости обмена почв и величины поглощенного калия на поступление 137Cs в урожай растений (овес). На почвах различного типа (дерново-подзолистая, серая лесная и выщелоченный чернозем) установлена закономерность – при величине емкости обмена 4,5 и менее мг-экв на 100 г. 137Cs в наибольшей степени поступает в растения. При увеличении поглотительной способности почв до 20 мг-экв и более поступление радионуклида мало зависит от этого показателя.
Наименее исследована миграция и последующее накопление в теле человека плутония и сопутствующих ему нептуния, америция, кюрия. Эти элементы относятся к сильно дискриминированным метаболитам, не включающимся в активный экосистемный обмен. Первичная загрязненность почв радионуклидами этого ряда регистрируется в виде «горячих частиц» PuO2 диаметром порядка 10 мкм, активностью от 50 до 1000 мкБк. Включение в почвенную миграцию происходит медленно, после образования Fe-Pu-Al-комплексов с низкомолекулярными фульвокислотами. Скорость последующего вертикального движения в прикорневую систему зависит от сформировавшейся в почвах скорости движения нерадиоактивных носителей. До 9% от плутониевых выпадений мигрируют на глубину 10–90 см чернозема и до 20% на аналогичную глубину – серозема торфяников спустя 10 – 15 лет после загрязнения среды. Почвенные загрязнения плутонием, их долгосрочное содержание в поверхностных слоях ведут к аэрозольному проникновению α-излучателя в организм человека и накоплению радионуклида в легких (от 4 до 83 мБк). После чернобыльской аварии лучевые нагрузки от плутония возросли в среднем в 1,5 раза и достигли 2 мкЗв/год.
Период полуочищения корнеобитаемых слоев от радионуклидов цезия и стронция (совокупность функций экспоненты радиоактивного распада, минерализации, перехода в подкорневую систему и др.) представлен в таблице 1.3. для различных видов почв. Он минимален для чернозема и торфяных почв, а для почв, пострадавших от аварий, максимален, что позволяет прогнозировать радиационную «чистоту» таких территорий только через 600 – 1000 лет.
Таблица 1.3. Периоды полуочищения корнеобитаемых слоев почв от суммарной радиоактивности (по Михалеву, 2004)
Почвы
Дерново-подзолистые
Дерново-глеевые суглинные
Торфяные
Низменные торфяные
Болота
Черноземы
Периоды полуочищения, лет
129
78
28
13,9
12,4
30
1.3 Экосистемные реакции на радиоактивность
Экосистемные реакции на радиационную деформацию среды не систематизированы. Ряд исследований указывает на рост видового разнообразия растительности, средней продолжительности жизни, функциональной активности животных и человека, проживающих в зонах повышенного радиационного фона (см. таблицу 1.4). Аналогичная (новейшая) радиационная обстановка на территориях с мощным токсичным фоном ведет к крайне противоположным результатам (гибель лесов, повышенная частота генетических дефектов у новорожденных, повышенная заболеваемость, деградация интеллекта) (см. таблицу 1.5). Системные исследования, проведенные Н.В. Тимофеевым-Ресовским, указывают на расслоение симбиотической согласованности функциональной активности составляющих биоценозов: увеличение скорости роста и функциональной активности низших биологических видов на фоне угнетения пролиферации высших форм растений, животных. Такие реакции подтверждаются на территориях с загрязнением среды > 40 Ки/км2. К тому же они ведут к активации олиготрофной (пассивной в дорадиационный период) микрофлоры почв, снижению численности разрыхлителей почв, беспозвоночных, изменениям устоявшихся дорадиационных структур почвенных биоценозов, снижению плодородия почв. Реакции, тем не менее, будут развиваться по типу «экологического стресса» с последующей нормализацией экосистемных взаимодействий, на что указывает ряд прослеженных в динамике данных по состоянию биоценозов на территориях, радиоактивных от аварий и ядерных испытаний. Особенно при отсутствии антропогенных вмешательств в экологический метаболизм.
1.4. Радиационно-экологические принципы нормирования загрязненных территорий
Нормирование радиационного фактора с учетом реакций экосистем представляет серьезную и нерешенную проблему вследствие незначительного накопленного материала «радиационных стрессов», экосистем и отсутствия теоретических разработок такого ряда. Считается, что максимальным накопителем радионуклидов, загрязняющих среду, и максимально радиочувствительным (критическим) звеном биоценозов является человек. Ввиду этого (во многом оправданного положения), принятые нормы радиационной безопасности (НРБ), являются правомерными для переноса в экосистемы в целом. Вместе с тем в ряде ситуаций экосистемного метаболизма радионуклидов, критическим звеном могут быть труднопредсказуемые без специальных исследований виды и их совокупности. Так, скорость накопления радионуклидов елью, сосной в 20 раз превышает скорость накопления радиационного фактора человеком, что лежит, по всей вероятности, в болезненности хвойных лесов, прилегающих к АЭС (регистрируемой в промышленных центрах США, Европы). Чрезвычайно большие лучевые нагрузки, по сравнению с человеком, формируются на радиационных территориях у оленей, лосей, коров при свободном выпасе, что связано с максимальным накоплением радионуклидов в травах.
Сравнивая предельные радиационно-гигиенические дозы с радиационно-экологическими, следует иметь в виду, что при разработке антропогенных норм радиационных воздействий в них закладывается высокий коэффициент запаса: доза, вызывающая непосредственные соматические радиогенные реакции у человека, в 100 – 1000 раз выше принятых ПДД. Экологические разработки, указывающие на размеры «радиологической емкости» экосистем, отсутствуют. Поэтому основным ориентиром допустимых пределов радиоактивности среды должны оставаться НРБ с учетом регистрируемых и расчетных величин лучевых нагрузок при нахождении в составе биоценоза.

2. Профилактика последствий радиоактивного загрязнения среды
2.1 Организация мер по профилактике последствий в случае радиационных аварий
Эксплуатация источников ионизирующих излучений и особенно ядерно-энергетических установок, ведет к неизбежному риску аварий и последующего радиоактивного загрязнения среды. Особенно это касается радиохимических заводов и АЭС на первых этапах их работы из-за неотработанной технологии. Для принятия экстренных мер по профилактике последствий национальными организациями по радиационной защите (НКДАР, МАГАТЭ, ООН, МКРЗ, НКРЗ) разработаны организационные и методические аспекты предпринимаемых действий с учетом характера радиоактивных загрязнений, мощности выброса радионуклидов в окружающую среду, площади радиоактивных загрязнений
Разработка и совершенствование мероприятий по ликвидации последствий аварии является наиболее сложной проблемой. Решение ее основывается на многолетнем опыте по изучению закономерностей формирования лучевых нагрузок на население, экосистему и ее составляющие с учетом характера миграции радионуклидов, зависимостей доза-эффект.
На основании накопленного опыта с учетом рекомендаций МКРЗ, ВОЗ предполагается радиационно-экологическая подготовка населения, проживающего в непосредственной близости от АЭС, ядерных хранилищ. Население и администрация территорий должны знать схему простых и четких действий на случай аварии. Радиационно-защитные мероприятия подразделяются на три последовательных этапа:
§     начальный, в период угрозы и первые часы выброса радионуклидов в окружающую среду;
§     первичный, ликвидации последствий аварии, в условиях состоявшегося выброса и осаждения радионуклидов.
§     проведения и завершения работ по ликвидации аварии и ее последствий
Третий этап представляет наибольший интерес для экологов-прикладников, т. к. дает шанс проявить им свои многочисленные таланты. Он проводится после выпадений радиоактивных осадков и зонирования территорий и строится с учетом расчетных лучевых нагрузок на население. На территрории должны проводится плановые мероприятия по дезактивации местности.
2.2 Построение мер реабилитации агроценозов
Период естественного полуочищения почв, загрязненных радионуклидами ядерно-энергетического происхождения, составляет от 30 до 275 лет, что с учетом экспоненты процесса предполагает полное исключение фактора из состава среды через 1500–2000 лет, не менее. Поэтому при радиоактивной загрязненности среды, превышающей пределы допустимого радиационно-экологического риска, необходимо активное искусственное вмешательство в процесс – дезактивацию радиоактивных территорий.
Различают полную и частичную дезактивацию среды. Полная дезактивация – комплекс мероприятий, исключающих радиационный фактор из состава среды и его вторичное включение в экосистемный метаболизм. Частичная дезактивация – временное исключение либо подавление процесса поступления радиационного фактора в звенья экосистемного метаболизма, ведущее к снижению его накопления в организме жителей радиоактивных территорий, в конечной сельскохозяйственной продукции до допустимых величин.

2.2.1 Полная дезактивация
Полная дезактивация территорий предполагает снятие верхних слоев почв после радиационных осаждений до глубины 10 – 15 см с последующим захоронением срезов в могильниках для радиоактивных отходов. После аварии на ЧАЭС такая дезактивация была предпринята в 600 населенных пунктах на территории общей площадью 7000 км2. Около 50% загрязненных территорий дезактивировались тогда дважды, как правило, вследствие повторного загрязнения после выпадения осадков, смывов радиоактивности с загрязненных срезов либо недезактивированных территорий, располагавшихся в непосредственной близости и на более высоком уровне относительно объектов дезактивации – детских домов, школ, больниц, предприятий, общественных учреждений. Мощность дозы (контролировалась по γ-излучению) после таких чрезвычайно дорогостоящих мер снижалась в 3 – 4 раза. В качестве экранов, поглощающих потоки ионизирующих излучений от загрязненных почв (защита экранированием), дезактивированные поверхности застилались гравием, песком, наносился асфальт, что вело к 10-кратному снижению мощности дозы. Экранированием (гравием, асфальтом либо пластиковыми покрытиями) были защищены 25000 км дорог. В целом было дезактивировано около 7000 домов и учреждений, снято 200000 м3 почв. Эффект оказался тем не менее крайне незначительным вследствие отсутствия могильников для захоронения радиоактивных срезов, громадной площади недезактивированных территорий, отсутствия инженерных сооружений для сбора сточных вод и отведения радиоактивных дождевых смывов от дезактивированных территорий.
2.2.2 Частичная дезактивация биологическим методом
Частичная дезактивация с целью фиксации радиоактивного загрязнения в зонах отчуждения и предупреждения водной, воздушной (выветриванием) миграции радионуклидов на территории с допустимыми значениями фактора осуществляется биологическим методом. Высевание многолетних трав на загрязненные почвы ведет к эффективному «вытягиванию» радионуклидов мощной корневой системой растений из почв. Скашивание и в последующем сжигание таких трав, захоронение незначительных объемов радиоактивной золы оказалось наиболее эффективным методом как локализации (фиксации радиоактивности корневой системой трав), так и дезактивации наиболее массивных радиоактивных загрязнений среды. Установлены в частности ряды растений в отношении их способности аккумулировать 90Sr: гречиха>соевые бобы>люцерна>суданская трава>кукуруза. Например, овес в два раза больше накапливает 90Sr, чем просо. Изучение закономерностей поглощения растениями радиоактивных изотопов свидетельствует о зависимости этого процесса как от специфики почвенного покрова, так и от биологических особенностей культур. Л.И. Горина (1975) наибольшее накопление наблюдала в растениях, выращенных на дерново-подзолистых почвах, меньше – на серых лесных и каштановых почвах, затем на сероземах и меньше всего – на черноземах.
2.2.3 Механический метод частичной дезактивации
Не менее эффективным оказался механический метод частичной дезактивации – глубокое вспахивание загрязненных полей с целью захоронения основной доли радионуклидов механическим перемещением из активного гумусового горизонта трав, сельскохозяйственных культур (картофеля, зерновых) в более глубокие нерадиоактивные слои и прерыванием тем самым активной экосистемной миграции радионуклидов. Методика «обмена» радиоактивных слоев почв на нерадиоактивные отрабатывались в центрах НИИ «Агрохимрадиология», на радиоактивных территориях Брянской, Калужской, Орловской, Тульской областей. Полученные результаты указывают на эффективность метода (радиоактивность гумусового горизонта снижена в 20 – 40 раз), его простоту и приемлемость в сельскохозяйственной практике (см. таблицу 2.1)

Таблица 2.1. Перераспределение радиоактивности почвенных слоев после глубокого вспахивания полей (плугом ПНС-4–40)
h пробы, см
0–5
5–10
10–15
15–20
20–30
30–40
40–60
Загрязненность по 137Cs
до
25,5
2,1
0,8
0,3
0,3
0,2
0,1
после вспахивания
0,3
0,6
0,6
0,1
0,8
14,8
27,6
Дезактивация дополняется эффективной конкурентной защитой – блокадой миграции радионуклидов введением в почву аналогов их метаболизма, калия, кальция. Наибольший эффект снижения уровня радиоактивной загрязненности урожая оказался при избыточном совместном внесении в почву извести, калийных удобрений (200–300 кг/га раз в 3–4 года) – в сочетании с органическими удобрениями и навозом. Раздельное внесение протекторов-конкурентов в тех же количествах не приводит к аналогичным реакциям блокады транспорта радионуклидов в экосистемах. Комплексная обработка почв по конкурентному принципу снижает радиоактивность сельскохозяйственной продукции в 5 – 1 раз. Помимо конкурентной блокады миграции радионуклидов, такая обработка положительно меняет агрохимические свойства почв. Потенциал плодородия по трем минимизирующим свойствам – почвенной кислотности, содержанию обменного калия, фосфора возрастает в 1,6 – 1,4 раза. обработка ведет и к образованию сложных нерастворимых соединений со стронцием, резко снижая его поступление в продукты питания, организм.
Немалое значение имеет и связанное с обработкой изменение pH обрабатываемых угодий, утрачивающее характерную для среднерусской полосы повышенную кислотность. Сдвиг ее в щелочную сторону ведет к резкому снижению захвата 137Cs экологическими цепочками, продуктами питания (таблица 2.2)

Таблица 2.2. Влияние измененной кислотности на накопление 137Cs сельскохозяйственной продукции
pH почвы
Накопление радионуклидов
Молоко
Мясо
Пшеница
Трава
4,5 -5,5
3,2
1,8
15 – 20
0,5
5,6 – 6,5
0,5
0,6
5 – 7
0,2
6,1 – 7,5
0,2
0,3
2
0,05
Практика показывает (Г.Т. Воробьев, 1999), что почва является важнейшей барьерной системой защиты экосистем, выступая основным депо и чутким индикатором опасности радионуклидных и токсических загрязнений среды. Комплексная обработка почв, захоронение в них радионуклидов методом глубокой перепашки, внесение обменного калия, фосфора, кальция, органических удобрений, а затем посев трав переводят в местность из радиоактивного в экологически безопасное состояние, перераспределяя и направляя радиоактивность по естественным почвенным каналам. Радиоактивность продуктов питания, выращенного на радиоактивных территориях, после обработки такого типа снижается в 15 – 20 раз, приближая радиоактивность почв к фоновым значениям фактора.
Ограничения поступления радионуклидов в организм сельскохозяйственных животных во многом дополняется сменой мест выпаса перед забоем с ориентацией на снижение активности 137Cs в теле животного вдвое. С учетом экспоненты процесса срок выпас на нерадиоактивных лугах либо в стойлах на привозном нерадиоактивном корме должен составлять не менее 3 месяцев. Критерием эффективности таких мер служат установленные в радиоактивных районах величины допустимой активности пищевых продуктов ВДУ.
    продолжение
--PAGE_BREAK--
еще рефераты
Еще работы по экологии