Реферат: Загрязнения электровакуумных приборов

Введение

При эксплуатации электровакуумных приборов оказалось, что в них происходит непрерывное перемещение материалов с одних деталей на другие, причем направление этого перемещения бывает иногда неожиданным: с холодных деталей на горячие.

Так, в катодах длительно проработавших электровакуумных приборов всегда обнаруживаются многие элементы, ранее в них не находившиеся, но входящие в состав материалов, из которых изготовлены другие детали. При исследовании процессов перемещения (миграции) элементов методом меченых атомов обнаружено, что в катод каким-то образом попадают материалы со всех окружающих его деталей, включая стекло и слюду, при чем интенсивность миграции возрастает при форсировании режима откачки и тренировки.


Восприимчивость электровакуумных приборов к загрязнениям

Возможность попадания в активное покрытие различных веществ, ухудшающих эмиссионные свойства катодов, часто вызывает у многих специалистов предчувствие неизбежного брака приборов из-за малой эмиссии. Такое «суеверие» утвердилось в электровакуумной технике, например, по отношению к галогенам из-за их химической активности, и в первую очередь к хлору и фтору, поскольку вероятность попадания этих элементов в электровакуумные приборы реально существует.

Однако произойдет ли отравление оксидного катода или нет, определяется не присутствием на деталях электровакуумных приборов галогенов или любых других аналогичных веществ-ядов, а интенсивностью механизма переноса их с загрязненных деталей в катод. Если интенсивность такого механизма весьма мала или его вовсе не существует, то яды, содержащиеся на деталях, не причинят вреда электровакуумным приборам. Вот примеры.

1.Синтетическая слюда содержит вместо кристаллизационной воды приблизительно 9% (вес.) фтора. Несмотря на это, использование такой слюды в приемно-усилительных сверхминиатюрных лампах вместо природной (мусковита), не содержащей фтора вообще (или содержащей его в ничтожных количествах), не только не опасно, но даже желательно, так как эмиссионные свойства катодов при этом улучшаются.

2. В люминофорах остается в небольших количествах «технологический» хлор, используемый при их изготовлении. Более того, как фтор, так и хлор непосредственно входят в состав некоторых люминофоров. Однако даже прямой обстрел таких люминофоров быстрыми электронами, при котором неизбежно разложение хлорных соединений и выделении ионов хлора, не вызывает катастрофического отравления оксидных катодов в электроннолучевых трубках.

3. Ножки приемно-усилительных ламп загрязняются при сборке потом пальцев монтажниц. В одну приемно-усилительную лампу попадает при этом несколько десятков микрограммов ионов хлора. Если пересчитать это количество на газообразный хлор, который мог бы выделиться в объем лампы, то его парциальное давление составило несколько десятых тор. Однако по данным работы, металлическая лампа типа 6Ж4 благополучно «терпит» загрязнение деталей хлором в количестве до 26 мкг, и миниатюрная лампа типа 6Ж5П – в количествах до 2 мкг. Объясняя различную восприимчивость ламп к загрязнению деталей хлором, автор работы приходит к выводу, что эта восприимчивость определяется конструкцией и технологией откачки ламп, т.е., иными словами, она зависит от интенсивности переноса хлора в катод.

В приведенных примерах мы имеем прямую аналогию с кислородом, из которого почти на половину состоят такие используемые в электровакуумных приборах материалы, как стекло и керамика. Отрицательное влияние кислорода этих материалах проявляется лишь тогда, когда возникают условия для его переноса в катод, например, если стеклянные или керамические детали подвергнуться электронной бомбардировки или возникнет электролиз стекла. Выделившийся свободный кислород уменьшит эмиссию катода, и прибор быстро выйдет из строя.

Следовательно, пока в приборах отсутствуют процессы, способствующие миграции загрязнения с различных деталей в катод, у технологов не должно быть причин для суеверного страха перед этими загрязнениям. Но, тем не менее, не следует отказываться от доступных методов очистки деталей.

Когда технология дешева и проста, ее нужно применять, несмотря на то, что техническая обоснованность этого твердо и не доказана. Наряду с этим было бы безрассудным стремиться полностью выделить воду из стеклянных деталей или кислород из никелевых, хотя мы знаем, что вода и кислород в незначительных количествах выделяется из этих деталей при работе приборов; для стекла это потребовало бы слишком много времени, а для никеля — вообще не осуществимо, так как мы распылили бы его раньше, нежели освободили от кислорода.

Все приведенные примеры должны предостерегать технологов от поспешных выводов при анализе причин плохой работоспособности приборов: обнаружение на их деталях веществ, отравляющих катод еще не означает, что ухудшение работоспособности вызвано именно этими, а не какими-либо другими веществами.

Виды загрязнений

электровакуумный прибор загрязнение катод

Загрязнение деталей механическими частицами

Вредное влияние различного рода механических частиц на качество и надежность электровакуумных приборов было осознано только 53 года назад. В гражданской и военной аппаратуре того времени стали в массовых количествах использовать электровакуумные приборы, причем выходы из строя единичных приборов приводили к отказам дорогостоящей и ответственной аппаратуры. Так возникла проблема надежности электровакуумных приборов, объявившая «тотальную войну» со всякого рода свободными частицами в приборах.

Опасность свободных частиц, в первую очередь пыли, раньше всего стала угрожать приемно-усилительным лампам с малыми расстояниями между электродами. Ворсинки при этом обычно не перегорают, так как в цепях электродов ламп имеются высокоомные нагрузки, ограничивающие токи электродов. Поэтому замыкания между электродами бывают длительными. В таких случаях внутри ламп можно заметить раскаленные ворсинки, застрявшие чаще всего между сетками.

Поведение обугленных пылинок в лампе может быть весьма загадочным. Вот один из таких примеров, полученный из опыта использования миниатюрных ламп в импульсной аппаратуре. В оксидном покрытии катода оказалась обуглившаяся ворсинка (рис. а).

2 1 250 в

Оксид

Рис. а. Положение ворсинки в оксидном слое при отсутствии (1) и наличии (2) напряжения на сетке.

Она вела себя подобно лепесткам электроскопа: при приложении к сетке напряжения кончики ворсинки соединялись с сеткой, а при уменьшении или отключении возвращались в исходное положение. Разгадать причину неустойчивого короткого замыкания в лампе удалось только при тщательном обследовании ее под микроскопом, включая и выключая рабочие напряжения.

Опытным путем установлено, что обуглившиеся ворсинки и другие частицы, застрявшие между электродами, имеют самое различное сопротивление (от десятков до тысяч килоом). Поэтому влияние таких частиц на работу радиотехнической аппаратуры может быть двояким: при коротком замыкании возможен либо полный отказ в работе, либо ухудшении параметров радиоаппаратуры.

Свободные частицы не допустимы не только в приборах с малым расстоянием между электродами, но и в таких приборах, где эти расстояния намного превышают размеры частиц, ибо независимо от того, являются ли эти частицы проводящими или изоляционными, при вибрации они ухудшают вакуум и разрушают катод. Попадая на катод (или на другие разогретые электроды), частицы вызывают вспышку газа, что приводит к нестабильности работы приборов и даже к появлению в них пробоев и искрений. В.И. Новоселец установил, что если лампы обратной волны или клистроны содержат свободные частицы, то при их работе возникают флюктуации частоты генерируемых колебаний.

Перемещающиеся свободные частицы обладают своеобразным «абразивным действием в результате трения о внутреннюю поверхность оболочки они как бы «стряхивают» с нее адсорбированный газ.

Пыль и частицы, прилипшие к волноведущим системам СВЧ приборов с электронным лучом, повышают шумы при работе таких приборов, поскольку пылинки перехватывают электроны луча и меняют его интенсивность. Запыленность замедляющих систем проявляются особенно сильно, когда их размеры малы.

Загрязнения углеводородами

В условиях работающих электровакуумных приборов жировые и масляные загрязнения могут разлагаться на более простые газы как СН4, СО, СО2, Н2 О, Н2. Влияние на оксидный катод этих газов хорошо известно из литературы, и здесь мы не будем останавливаться на этом вопросе. Данных о прямом неблагоприятном воздействии на катод молекул углеводородов в литературе нет. Наоборот, в некоторых работах отмечается, что ионизированный метан при давлениях 10-6 – 10-8 тор играет роль активатора оксидных катодов, а пары бензола (С6 Н6 ) при давлении около 10-5 тор активирует бариево-никелевые матричные катоды после их отравления кислородом.

Наряду с этим существует мнение, подтвержденное несколькими неопубликованными работами, что откачка электровакуумных приборов безмасляными насосами улучшает их параметры и долговечность. Это противоречие можно, по-видимому, объяснить следующими причинами.

Во-первых, одним из конечных продуктов разложения углеводородов в условиях работающих электровакуумных приборов может быть углерод. Поскольку катод – самый нагретый элемент прибора, реакция разложения углеводородов происходит именно на нем, вызывая отложение углерода и, как следствие, снижение температуры катода. В результате резко снижается эмиссия катода и восстановить ее уже не удается. Темные катоды – наиболее частый дефект электровакуумных приборов, вызванный присутствующими в них углеводородами.

Во-вторых, жиры и углеводороды обладают большой упругостью пара, что препятствует достижению в электровакуумных приборах высокого вакуума. Сложные молекулы этих веществ, кроме того, не устойчивы: они распадаются при бомбардировке заряженными частицами даже с малыми энергиями. Эффективность десорбции газа поверхностями при бомбардировке их электронами с энергией 20-100 эв возрастает, по данным работы, примерно в 5000 раз, когда откачка прибора ведется масляными диффузными насосами (вместо электроразрядных), т.е. когда поверхности электронов загрязнены углеводородами.

При электронной бомбардировке углеводородных пленок, так же как и при пиролизе, образуются элементарные газы СН4, СО, СО2 и Н2. Таким образом, из одной молекулы углеводорода образуется сразу несколько молекул других газов, что создает благоприятные условия для интенсивной бомбардировки ионами как катода, так и других электродов с низкими потенциалами; в результате этого ускоряются процессы переноса различных веществ в катод.

В-третьих, при прокаливании деталей в углеводородной среде они насыщаются углеродом. Это явление хорошо известно из опыта плавки металлов в вакуумных печах, откачиваемых масляными диффузными насосами, при которой содержание углерода в металлах постепенно возрастает. Накапливаясь в приповерхностном слое детали, углерод восстанавливает окислы как самого метала, так и его примесей, причем в вакууме реакция восстановления протекает при значительно меньших температурах, чем в обычных условиях. А это снова приводит к повышению газовыделения деталями, главным образом СО и СО2 .

В-четвертых, осаждаясь на деталях, углеводороды образуют на деталях пленку с высоким электрическим сопротивлением. На таких пленках в зависимости от условий вакуума создаются положительные и отрицательные заряды, изменяющие у поверхности электродов электрические поля, что, в свою очередь, приводит к помехам в работе многих типов вакуумных приборов. Например, по этой причине масс-спектрометрические датчики омегатроны, быстро выходят из строя, теряя чувствительность и разрешающую способность; углеводородные пленки изменяют коэффициент вторичной эмиссии поверхностей, а это мешает нормальной работе приборов, в которых используется вторичная эмиссия.

Прочность сорбции углеводородных загрязнений зависит от их химического состава и состояния поверхности абсорбента. Например, для моноатомных слоев стеариновой кислоты на поверхности кварца и золота давление пара уже при 20 0С составляет приблизительно (1¸2)10-9 тор. Когда образуются стеораты (соединения стеариновой кислоты с металлом), давление пара резко возрастает. Например, для Ва-Сu стеарата оно при той же температуре 20 0С приблизительно равно 6×10-2 тор. Таким образом, если углеводородные загрязнения образуют с металлами химические соединения, имеющие слабые сорбционные связи с поверхностями, то при этом резко возрастает интенсивность переноса металлов внутри электровакуумных приборов.


Список литературы

1. Коршак Е.В., Ляшенко А.И., Савченко В.Ф. Физика 10 класс: учебник для общеобразовательных учебных заведений. Издательство ВТФ «Перун». Ирпинь. 2004.

2. Кабардин О.Ф. Физика: Справочные материалы: Учебное пособие для учащихся — 2-е издание. Издательство «Просвещение». Москва. 1988.

3. Говорякин Р.Г., Шепель В.В. Курс общей физики. Издательство «Высшая школа». Москва. 1972.

еще рефераты
Еще работы по физике