Реферат: Тепловой расчёт промышленного парогенератора ГМ-50-1

Пояснительная записка к курсовому проекту

по курсу “Котельные установки промышленных предприятий”

Тема: Тепловой расчёт промышленного парогенератора ГМ-50-1

РЕФЕРАТ

Пояснительная записка к курсовому проекту: 46 с., 5 рис., 23 табл.Графическая часть содержит 1 лист формата А0 и А1.

Объектом исследования является парогенератор К-50-40-1. Тепловой расчет парового котла может быть конструктивным и поверочным. Задача конструктивного теплового расчета котла заключается в выборе компоновки поверхностей нагрева в газоходах котла, определении размеров радиационных и конвективных поверхностей нагрева, обеспечивающих номинальную паропроизводительность котла при заданных номинальных параметрах пара, надежность и экономичность его работы. При этом обеспечение надежности работы поверхностей нагрева предполагает получение расчетных тепловых характеристик, исключающих увеличение максимальной температуры стенки сверх допустимого значения по условиям прочности, а на экономичность работы котла определяющее влияние оказывают температура уходящих газов и присосы холодного воздуха в газовый тракт.

Выполнение конструктивного теплового расчета производится на основании исходных данных: тип парового котла (барабанный или прямоточный, его заводская маркировка), номинальную паропроизводительность и параметры перегретого пара, месторождение и марку энергетического топлива, способ сжигания твердого топлива (с твердым или жидким удалением шлаков), температуру питательной воды, поступающей в котел после регенеративного подогрева. Кроме указанных могут быть заданы и другие характеристики, например непрерывная продувка, доля рециркуляции газов в топку, работа котла под наддувом или при разряжении в газовом тракте и др.

Задание не поверочный расчет включает в себя практически те же исходные данные, что и при конструктивном расчете, и дополнительно – конструктивные данные поверхностей котла. Поэтому расчету предшествует определение по чертежам геометрических характеристик поверхностей (диаметров и шагов труб, числа рядов труб, размеров проходных сечений для газов и рабочей среды, габаритных размеров газоходов и поверхностей нагрева и т.д.).

При поверочном расчете котла, так же как при конструктивном, вначале определяют объемы и энтальпии воздуха и продуктов сгорания, КПД и расход топлива, а затем выполняют расчет теплообмена в топочной камере и других поверхностях в последовательности, соответствующей их расположению по ходу газов.

КОТЕЛ, ПАР, ТОПЛИВО, ТЕПЛОТА, КПД, ПАРОПЕРЕГРЕВАТЕЛЬ, ЭКОНОМАЙЗЕР, ВОЗДУХОПОДОГРЕВАТЕЛЬ.

СОДЕРЖАНИЕ

Введение

1. Общее описание котлоагрегата и вспомогательного оборудования

2. Расчет топлива

2.1 Характеристики топлива

2.2 Теплота сгорания смеси топлив.

2.3 Объёмы воздуха и продуктов сгорания

2.4 Энтальпии воздуха и продуктов сгорания.

3. Расчет теплового баланса парогенератора и расход топлива

4. Расчет теплообмена в топке

5. Расчет фестона

6. Расчет пароперегревателя

7. Расчет хвостовых поверхностей нагрева

8. Расчет невязки теплового баланса парогенератора

Выводы

Список литературы

ВВЕДЕНИЕ

Паровой котел – это основной агрегат тепловой электростанции (ТЭС). Рабочим телом в нем для получения пара является вода, а теплоносителем служат продукты горения различных органических топлив. Необходимая тепловая мощность парового котла определяется его паропроизводительностью при обеспечении установленных температуры и рабочего давления перегретого пара. При этом в топке котла сжигается расчетное количество топлива.

Номинальной паропроизводительностью называется наибольшая производительность по пару, которую котел должен обеспечить в длительной эксплуатации при номинальных параметрах пара и питательной воды с допускаемыми по ГОСТ отклонениями от этих величин.

Номинальное давление пара – наибольшее давление пара, которое должно обеспечиваться непосредственно за пароперегревателем котла.

Номинальные температуры пара высокого давления (свежего пара) и пара промежуточного перегрева (вторично-перегретого пара) – температуры пара, которые должны обеспечиваться непосредственно за пароперегревателем с допускаемыми по ГОСТ отклонениями при поддержании номинальных давлений пара, температуры питательной воды и паропроизводительности.

Номинальная температура питательной воды – температура воды перед входом в экономайзер, принятая при проектировании котла для обеспечения номинальной паропроизводительности.

При изменении нагрузки котла номинальные температуры пара (свежего и вторично перегретого) и, как правило, давление должны сохраняться (в заданном диапазоне нагрузок), а остальные параметры будут изменяться.

Оборудование котельной установки условно разделяют на основное (собственно котел) и вспомогательное. Вспомогательными называют оборудование и устройства для подачи топлива, питательной воды и воздуха, для удаления продуктов сгорания, очистки дымовых газов, удаления золы и шлака, паропроводы, водопроводы и др.

Современный котел оснащается системами автоматизации, обеспечивающими надежность и безопасность его работы, рациональное использование топлива, поддержание требуемой производительности и параметров пара, повышение производительности труда персонала и улучшение условий его работы, защиту окружающей среды от вредных выбросов.

1. Общее описание котлоагрегата и вспомогательного оборудования

Парогенератор ГМ-50-1.

Топочная камера обьемом 144 м />полностью экранирована трубами 60´3мм, расположенными с шагом 70 мм. Трубы фронтового и заднего экранов образуют под топки. Экраны разделены на восемь самостоятельных циркуляционных контуров.

На боковых стенах топочной камеры размещены по три основные газомазутные горелки, с фронта – две дополнительные. В барабане находится чистый отсек первой ступени испарения с внутрибарабанными циклонами. Вторая ступень вынесена в выносные циклоны Ш 377 мм.

Пароперегреватель – конвективный, горизонтального типа, змеевиковый, двухступенчатый, с шахматным расположением труб Æ 32´3 мм и поперечным шагом 75 мм.

Экономайзер – стальной, гладкотрубный, змеевиковый, кипящего типа, двухблочный, с шахматным расположением труб Æ 28´3 мм. Продольный шаг – 50 мм, поперечный – 70 мм.

Воздухоподогреватель — стальной, трубчатый, одноступенчатый, трехходовый, с шахматным расположением труб 40´1,5мм. Поперечный шаг труб — 60 мм, продольный – 42 мм.

Технические и основные конструктивные характеристики парогенератора приведены в аннотации.

Исходные данные представлены в таблице 1и 1.1

Таблица 1. Исходные данные.

№варианта

Тип парогенератора

Топливо №1(мазут)

Топливо № 2(газ)

20

ГМ 50-1

97

26

Таблица 1.1

q1%

D т/ч

Pп.п бар

tп.п С

r%

tп.в С

36

49

40

450

3,5

145

2. Расчёт топлива

2.1 Характеристики топлива

Расчётные характеристики для заданных видов топлива предоставлены в таблицах 2.1 и 2.2

Таблица 2.1 Характеристики твёрдого топлива.

Ср

%

Wp %

--PAGE_BREAK--

Ap

%

Spk

%

TSpop

%

Hp

%

Np

%

Op

%

Qрн КДж/кг

t1

С

t2

С

t3

84,8

3

0,1

1.4

11.2

0.5

0.5

9490 * 4.187

50

1450

>1500

-

Таблица 2.2 Характеристики газа.

CH4

%

C2H6

%

C3H8

%

C4H10

%

C5H12

%

N2

%

CO2

%

H2S %

O2

%

CO%

H2

%

Qсн

КДж/м3

rсг

кг/м3

93.9

3.1

1.1

0.3

0.1

1.3

0.2

-

-

-

-

8860*4.187

0.766

2.2 Теплота сгорания смеси топлив

При сжигании смеси жидкого и газообразного топлив расчёт с целью упрощения условно ведется на 1 кг жидкого топлива с учётом количества газа (м3), приходящегося на 1 кг жидкого топлива. Поскольку доля жидкого топлива в смеси задана по теплу, то теплота сгорания жидкого топлива и является этой долей.

Следовательно, удельная теплота сгорания смеси определиться как

/>

где />– теплота сгорания твёрдого топлива, кДж/кг;

/>– доля твёрдого топлива по теплу, %;

Количество теплоты, вносимое в топку с газом:

/>

Тогда расход газа (в м3) на 1 кг твёрдого топлива будет равен:

/>

где />– теплота сгорания газа, кДж/м.

Проверка:

/>

2.3 Объёмы воздуха и продуктов сгорания

Необходимое для полного сгорания топлива количество кислорода, объёмы и массовые количества продуктов сгорания определяются из нижеследующих стехиометрических уравнений:

Для твёрдого топлива:

/>

/>

/>

/>

Для газообразного топлива:

V°вII=0.0476∙[0.5∙СО+0.5∙Н2+1.5∙Н2S+∑(m+0.25∙n)∙СmНn–О2]=

=0.0476∙(0+(1+0,25*4)*93,9+(2+0,25*6)*3,1+(3+0,25*8)*1,1+(4+0,25*10)*0,3+(5+0,25*12)*0,1)=9,84844 м/м;

V°N2II=0.79∙V°вII+0.01∙N2=0.79∙9.84844+0.01∙1,3=7.8 м/м;

V°RO2II=0.01∙(СО2+СО+Н2S+∑m∙СmНn)=0.01∙(0.2+1∙93.2+2∙3,1+3∙1.1+4∙0.3+5Ч0,1)=1.053 м/м;

V°Н2OII=0.01∙(Н2S+Н2+∑0.5∙n∙СmНn+0.124∙dr)+0.0161∙V°в=0.01∙(0.5∙4∙93.9+6·3,1·0,5+0.5∙8∙1.1+0.5∙10∙0.3+0.5∙12·0,1+0,124·)+0.0161∙9.84844=2.2 м/м;

Для смеси топлив:

V°в=V°вI+Х∙V°вII=10,6+1,9∙9,84844=29,22 м/кг;

V°N2=V°N2I+Х∙V°N2II=8,378+1,9∙7.8=23,198 м/кг;

VRO2=V°RO2I+Х∙V°RO2II=1,6+1,9∙1.053=3,6 м/кг;

V°Н2O=V°Н2OI+Х∙V°Н2OII=1,45+1,9∙2,2=5,63м/кг;

Расчёт действительных объёмов.

VN2=V°N2+(a–1)∙V°в=23,198+(1.1–1)∙29,22=26,12 м/кг;

VН2O=V°Н2O+0.0161∙(a–1)∙V°в=5,63+0.0161∙(1.1–1)∙29,22=5,68м/кг;

    продолжение
--PAGE_BREAK--

Vr=VRO2+VN2+VН2O=3,6+26,12+5,68=35,4 м/кг;

Объёмные доли трёхатомных газов.

rRO2=VRO2/Vr=3,6/35,4=0.102

rН2O=VН2O/Vr=5,68/35,4=0.16

rn=rRO2+rН2O=0.102+0.16=0.3

Концентрациязолыв продуктах сгорания

m=А∙aун/(100·Gr)=0,1∙0.95/(100·42,98)=0,000022 кг/кг;

Gr=1-A/100+1.306∙a·V°в=1-0,1/100+1.306·1.1·29,22=42,98кг/кг;

2.4 Энтальпиивоздухаипродуктовсгорания.

I°в=V°в∙(сt)в=29.22∙1436=41959,92кДж/кг;

I°r=VRO2∙(сJ)RO2+V°N2∙(сJ)N2+V°Н2О∙(сJ)Н2О=3,6∙2202+23,198∙1394+5,63∙1725=49826,41кДж/кг;

Ir=I°r+(a–1)∙I°в+Iзл;

т.к. (А ∙aун/Qн)∙10=(0,1∙0.95/110368,7)∙10=0,0008<1.5,

то Iзл – не учитывается;

Ir=I°r+(a–1)∙I°в=49826,41+(1.1–1)∙41959,92=54023,34 кДж/кг.

Полученные результаты после проверки на компьютере и уточнения офор- мим в виде даблицы 2.3

Таблица 2.3Результаты расчёта топлива.

Для твёрдого топлива

Для газообразноготоплива

Для смеси топлив

Энтальпии приt=1000 °С

V°вI=10,6

V°N2I=8,378

V°RO2I=1,6

V°Н2OI=1,45

V°вII=9.84844

V°N2II=7.8

V°RO2II=1.053

V°Н2OII=2,2

V°вII=29,22

V°N2II=23,09

V°RO2II=3,6

V°Н2OII=5,63

    продолжение
--PAGE_BREAK----PAGE_BREAK----PAGE_BREAK----PAGE_BREAK----PAGE_BREAK----PAGE_BREAK----PAGE_BREAK----PAGE_BREAK----PAGE_BREAK----PAGE_BREAK----PAGE_BREAK--

То же

кДж/кг

21290.66

Температура воздуха на выходе из ступени

/>

По выбору

єС

250

Энтальпия воздуха на выходе из ступени

/>

По IJ–таблицы

кДж/кг

9774.09

Отношение количества воздуха на выходе из ступени к теоретически необходимому

/>

/>

/>

Температура воздуха на входе в ступень

/>

По выбору

єС

30

Энтальпия воздуха на входе в ступень

/>

По IJ–таблицы

кДж/кг

1139,58

Тепловосприятие ступени

/>

/>

кДж/кг

8893,545

Средняя температура воздуха

/>

/>

єС

/>

Энтальпия воздуха при средней температуре

/>

По IJ–таблицы

кДж/кг

5049,2

Энтальпия газов на выходе из ступени

/>

По IJ–таблицы

кДж/кг

7849

Температура газов на выходе из ступени

/>

По заданию

єС

140

Средняя температура газов

/>

/>

єС

/>

Средняя скорость газов

/>

/>

м/с

/>

Коэффициент теплоотдачи с газовой стороны

/>

По рис. 6–7

/>

Вт/(м2·К)

36

Средняя скорость воздуха

/>

/>

м/с

/>

Коэффициент теплоотдачи с воздушной стороны

/>

По рис. 6–5

/>

Вт/(м2·К)

53

Коэффициент использования поверхности нагрева

/>

По табл. 6–3

0,7

Коэффициент теплоотдачи


/>

/>


Вт/(м2·К)

/>

Разность температур между средами:

наибольшая

наименьшая



/>



/>



єС

єС



/>

Средний температурный напор при противотоке

/>

/>

єС

/>

Перепад температур:

наибольший

наименьший


/>


/>


єС

єС


/>

Параметр

/>

/>

/>

То же

/>

/>

/>

Коэффициент

/>

По рис. 6–16

0,95

Температурный напор

/>

/>

єС

/>

Площадь поверхности нагрева ступени

/>

/>

м2

/>

Т.к. невязка составляет более 2% то вносим конструктивные ихменения. Добавляем к воздухоподогревателю дополнительно 498 м2

8 Расчёт невязки теплового баланса парогенератора

Расчёт невязки теплового баланса представлен в таблице 8

ТАБЛИЦА 8

Величина

Величина

Расчёт

Наименование

Обозначение

Расчётная формула или способ определения



Расчётная температура горячего воздуха

/>

Из расчёта воздухоподогревателя

єС

250

Энтальпия горячего воздуха при расчётной температуре

/>

То же

кДж/кг

9774

Лучистое тепловосприятие топки

/>

Из расчёта топки

кДж/кг

56657,7

Расчётная невязка теплового баланса

/>

/>

кДж/кг

/>

Невязка

/>

%

/>

ВЫВОДЫ

В ходе выполнения курсового проекта был проведен тепловой расчет промышленного парогенератора ГМ-50-1 при совестном сжигании жидкого и газообразного топлива.

Расчет проводился по жидкому топливу, с учетом тепла, вносимого в топку, за счет сжигания газообразного топлива.

Последовательно был проведен поверочный расчет всех поверхностей нагрева котла: экранов топки, фестона, пароперегревателя, водяного экономайзера, воздухоподогревателя. С учетом того, что парогенератор спроектирован на сжигание другого вида топлива, возникла необходимость в проведении поверочно-конструктивного расчета.

При поверочном расчете поверхности нагрева приходится задаваться изменением температуры одной из теплообменивающихся сред (разностью температур на входе и выходе). Этим определяется тепловосприятие поверхности в первом приближении. Далее можно вычислить температуры другой среды на концах поверхности нагрева, температурный напор, скорости газового потока и рабочей среды и все другие величины, необходимые для вычисления тепловосприятия во втором приближении. При расхождении принятого и расчетного тепловосприятий выше допустимого повторяют расчет для нового принятого тепловосприятия. Таким образом, поверочный расчет поверхности нагрева выполняется методом последовательных приближений.

Тепловой расчет парогенератора заканчивается определением невязки теплового баланса. В курсовом проекте величина невязки составляет 0,95 %.

СПИСОК ЛИТЕРАТУРЫ

1. Тепловой расчет промышленных парогенераторов. / Под ред. В.И. Частухина. – Киев: Вища шк., 1980. – 184 с.

2. Сидельковский Л.Н., Юренев В.Н. Котельные установки промышленных предприятий: Учебник для вузов. – М.: Энергоатомиздат, 1988. – 528 с.

3. Компоновка и тепловой расчет парового котла: Учеб. пособие для вузов/ Ю.М. Липов, Ю.Ф. Самойлов, Т.В. Виленский. – М.: Энергоатомиздат, 1988. – 208 с.

4. Расчет паровых котлов в примерах и задачах: Учеб. пособие для вузов/ А.Н. Безгрешнов, Ю.М. Липов, Б.М. Шлейфер; Под общ. ред. Ю.М. Липова. – М.: Энергоатомиздат, 1991. – 240 с.

5. Методические указания «Расчет объемов и энтальпий воздуха и продуктов сгорания для смеси топлив с применением ЭВМ» по курсу «Котельные установки промышленных предприятий». / Сост.: А.А. Соловьев, В.Н. Евченко. – Мариуполь: ММИ, 1991. – 17 с.

6. Методические указания к выполнению курсового проекта по курсу «Котельные установки промышленных предприятий» для студентов специальности (7.090510)/ Сост.: А.А. Соловьев, В.М. Житаренко – Мариуполь: ПГТУ, 1998. – 40 с.


еще рефераты
Еще работы по физике