Реферат: Пружні хвилі

РЕФЕРАТ

на тему:”Пружні хвилі”

План

Хвильові процеси. Подовжні і поперечні хвилі

Рівняння біжучої хвилі. Фазова швидкість. Сферична хвиля

Одномірне хвильове рівняння. Швидкість поширення хвиль

Енергія пружних хвиль. Потік і густина потоку енергії хвиль

Хвильові процеси. Подовжні і поперечні хвилі

Рівняння біжучої хвилі. Фазова швидкість. Сферична хвиля

Одномірне хвильове рівняння. Швидкість поширення хвиль

Енергія пружних хвиль. Потік і густина потоку енергії хвиль.

1. Хвильові процеси. Подовжні і поперечні хвилі

Коливання, які збуджуються в будь-якій точці пружного середовища (твердому, рідкому або газоподібному), передаються від однієї точки середовища до іншої з кінцевою швидкістю, яка залежить від властивостей цього середовища. Чим дальше розташовані частинки середовища від джерела коливань, тим пізніше вони почнуть коливатися. Інакше кажучи, фази коливань частинок середовища і джерела тим більше відрізняються одна від одної, чим більша ця відстань. При вивченні поширення коливань в середовищі не враховується дискретний (молекулярний) характер будови самого середовища. В цьому випадку вважають що частинки середовища мають неперервне заповнення навколишнього простору і проявляють пружні властивості.

Процес поширення коливань у суцільному пружному середовищі називається хвильовим процесом (або хвилею). При поширенні хвилі частинки середовища не рухаються разом із хвилею, а коливаються біля своїх положень рівноваги. Разом із хвилею від частинки до частинки середовища передається лише стан коливального руху і його енергія. Тому основною властивістю усіх хвильнезалежно від їхньої природи є перенос енергії без переносу речовини.

Серед різноманітних хвиль, які зустрічаються в природі й техніці, можна виділити такі їх типи: хвилі на поверхні рідини, пружні і електромагнітні хвилі. Пружні механічні хвилі виникають і поширюються лише в пружному середовищі. Пружні хвилі ще діляться на подовжні й поперечні. У подовжніх хвилях частинки середовища коливаються в напрямку поширення хвилі, у поперечних – у площинах, перпендикулярних до напрямку поширення хвилі.

Подовжні хвилі можуть поширюватися в середовищах, у яких виникають пружні сили при деформаціях стиску і розтягу. Це означає, що поздовжні хвилі поширюються у твердих, рідких і газоподібних середовищ.

Поперечні хвилі можуть поширюватися в середовищах, у яких виникають пружні сили при деформаціях зсуву, тобто фактично тільки у твердих тілах. У рідинах і газах виникають лише подовжні хвилі, а у твердих тілах — як подовжні, так і поперечні хвилі.

Пружна хвиля називається синусоїдальною (або гармонічною), якщо відповідні їй коливання частинок середовища є гармонічними. На рис. 21 показана синусоїдальна поперечна хвиля, яка поширюється зі швидкістю υ уздовж осі х, тобто показана залежність між зміщенням U(x,t) частинок середовища, у хвильовому процесі, і відстанню х цих частинок відджерела коливань для будь-якого фіксованого моменту часу t.

Приведений графік функції U(x,t) несхожий на графік гармонічного коливання. Графік хвилі (рис.1) показує залежність зміщення всіх частинок середовища від відстані до джерела коливань у даний момент часу, а графік гармонічних коливань — залежність зміщення даної частинки від часу.

Відстань між найближчими частинками, які коливаються в одній фазі, називається довжиною хвилі λ (рис. 1). Довжина хвилі дорівнює відстані, на яку поширюється фаза коливань за час в один період, тобто

/>(1)

/>

Рис. 1

Якщо розглянути хвильовий процес трохи докладніше, то стане ясно, що в хвильовому русі коливаються не лише частинки, розташовані уздовж осі х, а й сукупність частинок, розташованих у деякому об’ємі, тобто хвиля, поширюючись від джерела коливань, охоплює все нові і нові області простору. Геометричне місце точок, які коливаються в однаковій фазі, називається хвильовою поверхнею. Хвильових поверхонь можна провести безліч. Хвильова поверхня у будь який момент часу називається хвильовим фронтом. Для цього моменту часу хвильовий фронт може бути лише один.

Хвильові поверхні можуть мати довільну форму. В найпростішому випадку хвильові поверхні є сукупністю площин, або сукупністю концентричних сфер. Відповідно хвиля називається плоскою або сферичною.

2. Рівняння біжучої хвилі. Фазова швидкість. Сферична хвиля

Якщо хвилі, поширюючись в пружному середовищі з кінцевою швидкістю, переносять енергію, то вони називаються біжучими. Перенос енергії в хвильовому русі кількісно характеризується вектором густини потоку енергії. Вектор потоку енергії вперше для механічних пружних хвиль був введений російським фізиком Умовим і називається вектором Умова. Напрямок вектора Умова збігається з напрямком переносу енергії, а його модуль дорівнює енергії, яка переноситься хвилею через одиничну площадку, розташовану перпендикулярно до напрямку поширення хвилі, за одиницю часу.

Для одержання рівняння біжучої хвилі ─ залежності зміщення коливної точки пружного середовища від координати і часу ─ розглянемоплоску синусоїдальну хвилю,допустивши, що вісьх збігається з напрямком поширення хвилі (рис. 21). У даному випадку хвильові поверхні, тобто поверхні однакової фази, перпендикулярні до осі х, а тому всі точки пружного середовища на цих поверхнях коливаються однаково. Зміщення будь якої точки пружного середовища від положення рівноваги в цьому випадку залежить лише від координати хі часу t, а його величина буде дорівнювати />

Розглянемо деяку точку В, якаперебуває на відстані х від джерела коливань (рис. 1). Якщо коливання точок пружного середовища, які лежать у площині х = 0, описуються функцією U(0,t)= A cos/>, то точка Впружногосередовища теж буде коливатися за тим же законом, але її коливання будуть відставати за часом від коливань джерела на τ, тому що для проходження хвилею відстані х потрібен час τ= />, де />швидкість поширення хвилі. Тоді рівняння коливань частинок, які лежать у площині х, буде мати вигляд

/>(2)

де А –максимальне зміщення виділеної коливної точки В від положення рівноваги; ω– циклічна частота генератора коливань джерела.

Рівняння (2) є рівняння біжучої хвилі. Якщо плоска хвиля поширюється в протилежному напрямку, то

/>

--PAGE_BREAK--

В загальному випадку рівняння плоскої синусоїдальної хвилі, яка поширюється без поглинання енергії уздовж позитивного напрямку осі х, має вигляд

/>(3)

де А –амплітуда хвилі; ω– циклічна частота хвилі;/>–початкова фаза коливань, обумовлена вибором початкових значень х і t; [ω(tx/υ) + φ]– фаза плоскої хвилі.

В рівнянні (3) синусоїдальний характер хвилі характеризують хвильовим числом, яке дорівнює

/>(4)

З врахуванням (4) рівняння (3) матиме вигляд

/>(5)

Рівняння хвилі, яка поширюється в сторону менших значень осі х, відрізняється від (5) тільки знаком члена kх.

Розглянемо випадок, коли в процесі хвильового руху, фаза коливань не змінюється з часом, тобто

/>(4.6)

Диференціюємо вираз (6) за часом, одержимо

/>,

звідки

/>

Отже, швидкість υпоширення хвилі в рівнянні (6) є не що інше, як швидкість переміщення фази хвилі, а тому її називають фазовою швидкістю.

Сферичні хвилі утворюються в однорідному і ізотропному середовищі від точкових джерел коливань. Якщо повторити хід міркувань для плоскої хвилі, можна показати, що рівняння сферичної синусоїдальної хвилі – хвилі, хвильові поверхні якої мають вигляд концентричних сфер, записується так

/>(7)

деr–відстань від точкового джерела сферичних хвиль до виділеної точки пружного середовища.

У випадку сферичної хвилі навіть у середовищі, яке не поглинає енергії, амплітуда коливань не залишається постійною, а зменшується з відстанню за законом />Рівняння (7) має місце лише для великих r, які значно перевищуючі розміри джерела коливань (джерело коливань тут можна вважати точковим).

З рівняння (3) можна одержати, що

/>

тобто фазова швидкість синусоїдальних хвиль залежить від їхньої частоти. Це явище називають дисперсією хвиль, а середовище, у якому спостерігається дисперсія хвиль, називається дисперсним середовищем.

3. Одномірне хвильове рівняння. Швидкість поширення хвиль

Рівняння довільної хвилі є розв'язком рівняння, яке називається хвильовим.

Для виведення цього рівняння скористаємось рівняння плоскої хвилі, яка поширюється в напрямку осі х. Розглянемо ділянку пружного середовища, яке характеризується модулем пружності Е (рис. 2). З рисунка видно, що виділений елемент має переріз S і довжину Δх. Під дією зовнішньої сили F виділена ділянка пружного середовища деформується на величину ΔU.

/>

Рис. 2

Оскільки середовище є пружним, то для виділеної ділянки можна застосувати закон Гука

/>(8)

де Е─ модуль Юнга; />─ відносна деформація; F─ зовнішня сила; S─ площа виділеної ділянки пружного середовища в напрямі осі х.

В граничному випадку при />, рівняння (8) запишеться так

/>(9)

Якщо збуджувати поздовжню хвилю в деякому пружному середовищі, яким є наприклад стержень перерізом S з модулем Юнга Е, то на виділену ділянку будуть діяти дві сили (рис.3). Запишемо для цієї ділянки другий закон Ньютона

/>(10)

Сили в рівнянні (10) є пружними силами, а тому відповідно до рівняння (9) запишуться так

/>/>(11)

    продолжение
--PAGE_BREAK--

Якщо підставити ці сили (11) в другий закон Ньютона (10), то після деяких перетворень одержимо

/>(12)

де m─ маса виділеної ділянки пружного середовища.

Масу виділеної ділянки пружного середовища можна виразити через об’єм і густину речовини стержня так

m= ρSΔx. (13)

/>

Рис.3

З урахуванням значення маси (13) і нескладних перетворень рівняння (12) запишеться так

/>(14)

Розглянувши граничний випадок при якому/>, з рівняння (14) одержуємо рівняння, яке називається хвильовим рівнянням

/>(15)

Рівняння (15) є лінійним диференціальним рівнянням другого порядку в частинних змінних. Розв’язком такого рівняння є уже відоме рівняння плоскої хвилі

/>(16)

Знайдемо другі частинні похідні за часом tі координатою х від рівняння (16)

/>(17)

Після підстановки похідних (17) в рівняння (15) та необхідних скорочень одержимо

/>(18)

Але оскільки />, то хвильове рівняння (15) буде мати інший вигляд

/>(19)

Таким чином швидкість поширення механічних хвиль у пружному середовищі залежить від пружних властивостей цього середовища і його густини

/>(20)

Оскільки модуль Юнга характеризує стиснення або розтягування пружного середовища, то одержана швидкість (20) є фазовою швидкістю лише поздовжніх хвиль.

Фазова швидкість поперечних хвиль,які можуть існувати лише в твердому пружному середовищі, визначають заміною модуля Юнга в (20) на модуль зсуву G

/>(21)

Розрахунки показують, що в твердому середовищі модуль Юнга E майже на порядок перевищує модуль зсуву G, тому фазова швидкість поздовжньої хвилі тут більша за швидкість поперечної хвилі, тобто

/>(22)

Важливо відмітити, що для механічних хвиль, які мають велику довжину λрівняння (15) і (19) будуть нелінійними.

Якщо механічна хвиля поширюється в однорідному ізотропному середовищі, то хвильове рівнянням буде мати вигляд:

/>(23)

Для механічних хвиль властивий принцип суперпозиції. Це означає, що при накладанні механічних хвиль відсутнє їх спотворення.

4. Енергія пружних хвиль. Потік і густина потоку енергії хвиль

Нехай в деякому пружному середовищі в напрямі осі х поширюється плоска поздовжня хвиля

/>. (24)

Виділимо в цьому середовищі елементарний об’єм ΔV, настільки малий, щоб швидкість хвилі />і швидкість деформації />у всіх

його точках були однакові.

Повну механічну енергію, локалізовану у виділеному об’ємі розраховують за формулою

/>

де />— кінетична енергія виділеного об’єму; />— потенціальна енергія пружної деформації цього об’єму.

Кінетичну енергію, яку має виділений об’єм пружного середовища знаходимо за формулою

/>, (25)

де ρ— густина середовища виділеного об’єму.

    продолжение
--PAGE_BREAK--

Першу похідну за часом від (24) підставимо в (25), одержимо

/>(26)

де />─ хвильове число.

У відповідності з рис. 4 потенціальну енергію пружної деформації виділеного об’єму знаходимо так:

/>

Рис. 4

/>(27)

де k– коефіцієнт пружності середовища, який відповідно до закону Гука (8) дорівнює />; />─ величина деформації виділеного об’єму пружного середовища.

З урахуванням цих позначень (27) матиме вигляд

/>. (28)

Помножимо й поділимо (28) на Δх2, одержимо

/>(29)

В граничному випадку при Δх=0 одержуємо

/>(30)

Підставимо у формулу (30) значення модуля Юнга />, і швидкість деформації />, одержимо

/>(31)

Повну енергію, локалізовану у виділеному об’ємі пружного середо-вища, одержимо при додаванні кінетичної енергії (26) і потенціальної енергії (31)

/>(32)

Якщо врахувати, що середнє значення квадрата синуса за час в один період дорівнює />, то одержимо середнє значення повної енергії буде дорівнювати

/>(33)

де ΔV=SΔx─ елементарних об’єм пружного середовища.

Середнє значення густини енергії легко одержати, якщо (33) поділити її на величину виділеного об’єму пружного середовища

/>. (34)

Нехай через площадку S(рис.4), яка є перпендикулярною до напрямку поширення хвилі, за час Δtпереноситься енергія ΔW. Тоді вектор густини енергії буде дорівнювати

/>, (35)

де />─ вектор густини потоку енергії; />─ середня густина перенесеної хвилями енергії; />─ вектор швидкості, модуль якої дорівнює фазовій швидкості хвиль з напрямком поширення хвиль і відповідно переносу енергії.

5. Хвильові процеси. Подовжні і поперечні хвилі

Коливання, які збуджуються в будь-якій точці пружного середовища (твердому, рідкому або газоподібному), передаються від однієї точки середовища до іншої з кінцевою швидкістю, яка залежить від властивостей цього середовища. Чим дальше розташовані частинки середовища від джерела коливань, тим пізніше вони почнуть коливатися. Інакше кажучи, фази коливань частинок середовища і джерела тим більше відрізняються одна від одної, чим більша ця відстань. При вивченні поширення коливань в середовищі не враховується дискретний (молекулярний) характер будови самого середовища. В цьому випадку вважають що частинки середовища мають неперервне заповнення навколишнього простору і проявляють пружні властивості.

    продолжение
--PAGE_BREAK--

Процес поширення коливань у суцільному пружному середовищі називається хвильовим процесом (або хвилею). При поширенні хвилі частинки середовища не рухаються разом із хвилею, а коливаються біля своїх положень рівноваги. Разом із хвилею від частинки до частинки середовища передається лише стан коливального руху і його енергія. Тому основною властивістю усіх хвильнезалежно від їхньої природи є перенос енергії без переносу речовини.

Серед різноманітних хвиль, які зустрічаються в природі й техніці, можна виділити такі їх типи: хвилі на поверхні рідини, пружні і електромагнітні хвилі. Пружні механічні хвилі виникають і поширюються лише в пружному середовищі. Пружні хвилі ще діляться на подовжні й поперечні. У подовжніх хвилях частинки середовища коливаються в напрямку поширення хвилі, у поперечних – у площинах, перпендикулярних до напрямку поширення хвилі.

Подовжні хвилі можуть поширюватися в середовищах, у яких виникають пружні сили при деформаціях стиску і розтягу.Це означає, що поздовжні хвилі поширюються у твердих, рідких і газоподібних середовищ.

Поперечні хвилі можуть поширюватися в середовищах, у яких виникають пружні сили при деформаціях зсуву, тобто фактично тільки у твердих тілах. У рідинах і газах виникають лише подовжні хвилі, а у твердих тілах — як подовжні, так і поперечні хвилі.

Пружна хвиля називається синусоїдальною (або гармонічною), якщо відповідні їй коливання частинок середовища є гармонічними. На рис. 21 показана синусоїдальна поперечна хвиля, яка поширюється зі швидкістю υуздовж осі х, тобто показана залежність між зміщенням U(x,t)частинок середовища, у хвильовому процесі, і відстанню х цих частинок відджерела коливань для будь-якого фіксованого моменту часу t.

Приведений графік функції U(x,t)несхожий на графік гармонічного коливання. Графік хвилі (рис.1) показує залежність зміщення всіх частинок середовища від відстані до джерела коливань у даний момент часу, а графік гармонічних коливань — залежність зміщення даної частинки від часу.

Відстань між найближчими частинками, які коливаються в одній фазі, називається довжиною хвилі λ(рис. 1). Довжина хвилі дорівнює відстані, на яку поширюється фаза коливань за час в один період, тобто

/>(1)

/>

Рис. 1

Якщо розглянути хвильовий процес трохи докладніше, то стане ясно, що в хвильовому русі коливаються не лише частинки, розташовані уздовж осі х, а й сукупність частинок, розташованих у деякому об’ємі, тобто хвиля, поширюючись від джерела коливань, охоплює все нові і нові області простору. Геометричне місце точок, які коливаються в однаковій фазі, називається хвильовою поверхнею. Хвильових поверхонь можна провести безліч. Хвильова поверхня у будь який момент часу називається хвильовим фронтом. Для цього моменту часу хвильовий фронт може бути лише один.

Хвильові поверхні можуть мати довільну форму. В найпростішому випадку хвильові поверхні є сукупністю площин, або сукупністю концентричних сфер. Відповідно хвиля називається плоскою або сферичною.

6. Рівняння біжучої хвилі. Фазова швидкість. Сферична хвиля

Якщо хвилі, поширюючись в пружному середовищі з кінцевою швидкістю, переносять енергію, то вони називаються біжучими. Перенос енергії в хвильовому русі кількісно характеризується вектором густини потоку енергії. Вектор потоку енергії вперше для механічних пружних хвиль був введений російським фізиком Умовим і називається вектором Умова. Напрямок вектора Умова збігається з напрямком переносу енергії, а його модуль дорівнює енергії, яка переноситься хвилею через одиничну площадку, розташовану перпендикулярно до напрямку поширення хвилі, за одиницю часу.

Для одержання рівняння біжучої хвилі ─ залежності зміщення коливної точки пружного середовища від координати і часу ─ розглянемоплоску синусоїдальну хвилю,допустивши, що вісьх збігається з напрямком поширення хвилі (рис. 21). У даному випадку хвильові поверхні, тобто поверхні однакової фази, перпендикулярні до осі х, а тому всі точки пружного середовища на цих поверхнях коливаються однаково. Зміщення будь якої точки пружного середовища від положення рівноваги в цьому випадку залежить лише від координати хі часу t, а його величина буде дорівнювати />

Розглянемо деяку точку В, якаперебуває на відстані х від джерела коливань (рис. 1). Якщо коливання точок пружного середовища, які лежать у площині х = 0, описуються функцією U(0,t)= A cos/>, то точка Впружногосередовища теж буде коливатися за тим же законом, але її коливання будуть відставати за часом від коливань джерела на τ, тому що для проходження хвилею відстані х потрібен час τ= />, де />швидкість поширення хвилі. Тоді рівняння коливань частинок, які лежать у площині х, буде мати вигляд

/>(2)

де А –максимальне зміщення виділеної коливної точки В від положення рівноваги; ω– циклічна частота генератора коливань джерела.

Рівняння (2) є рівняння біжучої хвилі. Якщо плоска хвиля поширюється в протилежному напрямку, то

/>

В загальному випадку рівняння плоскої синусоїдальної хвилі, яка поширюється без поглинання енергії уздовж позитивного напрямку осі х, має вигляд

/>(3)

де А –амплітуда хвилі; ω– циклічна частота хвилі;/>–початкова фаза коливань, обумовлена вибором початкових значень х і t; [ω(tx/υ) + φ]– фаза плоскої хвилі.

    продолжение
--PAGE_BREAK--

В рівнянні (3) синусоїдальний характер хвилі характеризують хвильовим числом, яке дорівнює

/>(4)

З врахуванням (4) рівняння (3) матиме вигляд

/>(5)

Рівняння хвилі, яка поширюється в сторону менших значень осі х, відрізняється від (5) тільки знаком члена kх.

Розглянемо випадок, коли в процесі хвильового руху, фаза коливань не змінюється з часом, тобто

/>(4.6)

Диференціюємо вираз (6) за часом, одержимо

/>,

звідки

/>

Отже, швидкість υпоширення хвилі в рівнянні (6) є не що інше, як швидкість переміщення фази хвилі, а тому її називають фазовою швидкістю.

Сферичні хвилі утворюються в однорідному і ізотропному середовищі від точкових джерел коливань. Якщо повторити хід міркувань для плоскої хвилі, можна показати, що рівняння сферичної синусоїдальної хвилі – хвилі, хвильові поверхні якої мають вигляд концентричних сфер, записується так

/>(7)

деr–відстань від точкового джерела сферичних хвиль до виділеної точки пружного середовища.

У випадку сферичної хвилі навіть у середовищі, яке не поглинає енергії, амплітуда коливань не залишається постійною, а зменшується з відстанню за законом />Рівняння (7) має місце лише для великих r, які значно перевищуючі розміри джерела коливань (джерело коливань тут можна вважати точковим).

З рівняння (3) можна одержати, що

/>

тобто фазова швидкість синусоїдальних хвиль залежить від їхньої частоти. Це явище називають дисперсією хвиль, а середовище, у якому спостерігається дисперсія хвиль, називається дисперсним середовищем.

7. Одномірне хвильове рівняння. Швидкість поширення хвиль

Рівняння довільної хвилі є розв'язком рівняння, яке називається хвильовим.

Для виведення цього рівняння скористаємось рівняння плоскої хвилі, яка поширюється в напрямку осі х. Розглянемо ділянку пружного середовища, яке характеризується модулем пружності Е (рис. 2). З рисунка видно, що виділений елемент має переріз S і довжину Δх. Під дією зовнішньої сили F виділена ділянка пружного середовища деформується на величину ΔU.

/>

Рис. 2

Оскільки середовище є пружним, то для виділеної ділянки можна застосувати закон Гука

/>(8)

де Е─ модуль Юнга; />─ відносна деформація; F─ зовнішня сила; S─ площа виділеної ділянки пружного середовища в напрямі осі х.

В граничному випадку при />, рівняння (8) запишеться так

/>(9)

Якщо збуджувати поздовжню хвилю в деякому пружному середовищі, яким є наприклад стержень перерізом S з модулем Юнга Е, то на виділену ділянку будуть діяти дві сили (рис.3). Запишемо для цієї ділянки другий закон Ньютона

/>(10)

Сили в рівнянні (10) є пружними силами, а тому відповідно до рівняння (9) запишуться так

/>/>(11)

Якщо підставити ці сили (11) в другий закон Ньютона (10), то після деяких перетворень одержимо

/>(12)

де m─ маса виділеної ділянки пружного середовища.

Масу виділеної ділянки пружного середовища можна виразити через об’єм і густину речовини стержня так

m= ρSΔx. (13)

/>

Рис.3

З урахуванням значення маси (13) і нескладних перетворень рівняння (12) запишеться так

/>(14)

    продолжение
--PAGE_BREAK--

Розглянувши граничний випадок при якому/>, з рівняння (14) одержуємо рівняння, яке називається хвильовим рівнянням

/>(15)

Рівняння (15) є лінійним диференціальним рівнянням другого порядку в частинних змінних. Розв’язком такого рівняння є уже відоме рівняння плоскої хвилі

/>(16)

Знайдемо другі частинні похідні за часом tі координатою х від рівняння (16)

/>(17)

Після підстановки похідних (17) в рівняння (15) та необхідних скорочень одержимо

/>(18)

Але оскільки />, то хвильове рівняння (15) буде мати інший вигляд

/>(19)

Таким чином швидкість поширення механічних хвиль у пружному середовищі залежить від пружних властивостей цього середовища і його густини

/>(20)

Оскільки модуль Юнга характеризує стиснення або розтягування пружного середовища, то одержана швидкість (20) є фазовою швидкістю лише поздовжніх хвиль.

Фазова швидкість поперечних хвиль,які можуть існувати лише в твердому пружному середовищі, визначають заміною модуля Юнга в (20) на модуль зсуву G

/>(21)

Розрахунки показують, що в твердому середовищі модуль Юнга E майже на порядок перевищує модуль зсуву G, тому фазова швидкість поздовжньої хвилі тут більша за швидкість поперечної хвилі, тобто

/>(22)

Важливо відмітити, що для механічних хвиль, які мають велику довжину λрівняння (15) і (19) будуть нелінійними.

Якщо механічна хвиля поширюється в однорідному ізотропному середовищі, то хвильове рівнянням буде мати вигляд:

/>(23)

Для механічних хвиль властивий принцип суперпозиції. Це означає, що при накладанні механічних хвиль відсутнє їх спотворення.

8. Енергія пружних хвиль. Потік і густина потоку енергії хвиль

Нехай в деякому пружному середовищі в напрямі осі х поширюється плоска поздовжня хвиля

/>. (24)

Виділимо в цьому середовищі елементарний об’єм ΔV, настільки малий, щоб швидкість хвилі />і швидкість деформації />у всіх його точках були однакові.

Повну механічну енергію, локалізовану у виділеному об’ємі розраховують за формулою

/>

де />— кінетична енергія виділеного об’єму; />— потенціальна енергія пружної деформації цього об’єму.

Кінетичну енергію, яку має виділений об’єм пружного середовища знаходимо за формулою

/>, (25)

де ρ— густина середовища виділеного об’єму.

Першу похідну за часом від (24) підставимо в (25), одержимо

/>(26)

де />─ хвильове число.

У відповідності з рис. 4 потенціальну енергію пружної деформації виділеного об’єму знаходимо так:

/>

Рис. 4

/>(27)

де k– коефіцієнт пружності середовища, який відповідно до закону Гука (8) дорівнює />; />─ величина деформації виділеного об’єму пружного середовища.

    продолжение
--PAGE_BREAK--

З урахуванням цих позначень (27) матиме вигляд

/>. (28)

Помножимо й поділимо (28) на Δх2, одержимо

/>(29)

В граничному випадку при Δх=0 одержуємо

/>(30)

Підставимо у формулу (30) значення модуля Юнга />, і швидкість деформації />, одержимо

/>(31)

Повну енергію, локалізовану у виділеному об’ємі пружного середо-вища, одержимо при додаванні кінетичної енергії (26) і потенціальної енергії (31)

/>(32)

Якщо врахувати, що середнє значення квадрата синуса за час в один період дорівнює />, то одержимо середнє значення повної енергії буде дорівнювати

/>(33)

де ΔV=SΔx─ елементарних об’єм пружного середовища.

Середнє значення густини енергії легко одержати, якщо (33) поділити її на величину виділеного об’єму пружного середовища

/>. (34)

Нехай через площадку S(рис.4), яка є перпендикулярною до напрямку поширення хвилі, за час Δtпереноситься енергія ΔW. Тоді вектор густини енергії буде дорівнювати

/>, (35)

де />─ вектор густини потоку енергії; />─ середня густина перенесеної хвилями енергії; />─ вектор швидкості, модуль якої дорівнює фазовій швидкості хвиль з напрямком поширення хвиль і відповідно переносу енергії.

Вектор потоку енергії />вперше одержав і розглянув видатний російський фізик Умов. На честь цього фізика він був названий вектором Умова.


еще рефераты
Еще работы по физике