Реферат: Гальванические элементы

--PAGE_BREAK--Мембранаобеспечивает проводимость протонов, но не электронов. Она может быть полимерной (Нафион, полиацетилен и др.) или керамической (оксидной и др.).

Типы топливных элементов

Метанольный топливный элемент в Mercedes Benz Necar 2

Твердооксидный топливный элемент (англ. Solid-oxide fuel cells — SOFC);

Топливный элемент с протонообменной мембраной (англ. Proton-exchange membrane fuel cell — PEMFC);

Обратимый топливный элемент (англ. Reversible Fuel Cell);

Прямой метанольный топливный элемент (англ. Direct-methanol fuel cell — DMFC);

Расплавной карбонатный топливный элемент (англ. Molten-carbonate fuel cells — MCFC);

Фосфорнокислыйтопливныйэлемент(англ. Phosphoric-acid fuel cells — PAFC);

Щелочнойтопливныйэлемент(англ. Alkaline fuel cells — AFC).
Г) История исследований в России

В СССР первые публикации о топливных элементах появились в 1941 году.

Первые исследования начались в 60-х годах. РКК «Энергия» (с 1966 года) разрабатывала PAFC элементы для советской лунной программы. С 1987 года по 2005 «Энергия» произвела около 100 топливных элементов, которые наработали суммарно около 80000 часов.

Во время работ над программой «Буран», исследовались щелочные AFC элементы. На «Буране» были установлены 10 кВт. топливные элементы.

В 70-80 годы «Квант» совместно с рижским автобусным заводом «РАФ» разрабатывали щелочные элементы для автобусов. Прототип автобуса на топливных элементах был изготовлен в 1982 году.

В 1989 году «Институт высокотемпературной электрохимии» (Екатеринбург) произвёл первую SOFC установку мощностью 1 кВт.

В 1999 году АвтоВАЗ начал работы с топливными элементами. К 2003 году на базе автомобиля ВАЗ-2131 было создано несколько опытных экземпляров. В моторном отсеке автомобиля располагались батареи топливных элементов, а баки со сжатым водородом в багажном отделении, то есть была применена классическая схема расположения силового агрегата и топливных баков-баллонов. Разработками водородного автомобиля руководил к.т. н. Мирзоев Г. К.

В 2003 году было подписано Генеральное соглашение о сотрудничестве между Российской академией наук и компанией «Норильский никель» в области водородной энергетики и топливных элементов. Это привело к учреждению в 2005 году Национальной инновационной компании «Новые энергетические проекты», которая в 2006 году произвела резервную энергетическую установку на основе ТЭ с твердым полимерным электролитом мощностью 1 кВт.

Над созданием образцов электростанций на топливных элементах работают Газпром и федеральные ядерные центры РФ. Твердооксидные топливные элементы, разработка которых сейчас активно ведется, появятся, видимо, в 2010—2015 годах.
Д) Применение топливных элементов

Стационарные приложения: производство электрической энергии (на электрических станциях), аварийные источники энергии, автономное электроснабжение,

Транспорт: автомобильные топливные элементы Honda, см Honda FCX, электромобили, автотранспорт, морской транспорт, железнодорожный транспорт, горная и шахтная техника, вспомогательный транспорт (складские погрузчики, аэродромная техника и т.д.)

Бортовое питание: авиация, космос, подводные лодки, морской транспорт,

Мобильные устройства: портативная электроника, питание сотовых телефонов, зарядные устройства для армии.

Преимущества водородных топливных элементов

Топливные элементы обладают рядом ценных качеств.

Это: высокий КПД, экологичность, компактные размеры

Топливные элементы легче и занимают меньший размер, чем традиционные источники питания. Топливные элементы производят меньше шума, меньше нагреваются, более эффективны с точки зрения потребления топлива. Это становится особенно актуальным в военных приложениях. Например, солдат армии США носит 22 различных типа аккумуляторных батарей. Средняя мощность батареи 20 ватт. Применение топливных элементов позволит сократить затраты на логистику, снизить вес, повысить время действия приборов и оборудования.
Е) Проблемы топливных элементов

Большинство элементов при работе выделяют то или иное количество тепла. Это требует создания сложных технических устройств для утилизации тепла (паровые турбины и пр.), а также организации потоков топлива и окислителя, систем управления отбираемой мощностью, долговечности мембран, отравления катализаторов некоторыми побочными продуктами окисления топлива и других задач. Но при этом же высокая температура процесса позволяет производить тепловую энергию, что существенно увеличивает КПД энергетической установки.

Также существует проблема получения водорода и хранения водорода. Во-первых, он должен быть достаточно чистый, чтобы не произошло быстрого отравления катализатора, во-вторых, достаточно дешёвый, чтобы его стоимость была рентабельна для конечного потребителя.

Существует множество способов производства водорода, но в настоящее время около 50% водорода, производимого во всём мире, получают из природного газа. Все остальные способы пока дорогостоящи… Существует мнение, что с ростом цен на энергоносители стоимость водорода также растёт, т.к. он является вторичным энергоносителем. Но себестоимость энергии, производимой из возобновляемых источников, постоянно снижается (см. Ветроэнергетика, Производство водорода). Например, средняя цена электроэнергии в США выросла в 2007 г. до $0,09 за кВт., тогда как себестоимость электроэнергии, произведённой из ветра, составляет $0,04- $0,07 (см. статью Ветроэнергетика, или AWEA). В Японии киловатт электроэнергии стоит около $0,2, что сопоставимо со стоимостью электроэнергии, произведённой фотоэлектрическими элементами. Т.е. с ростом цен на энергоносители производство водорода электролизом воды становится более конкурентоспособным.

К сожалению, в водороде, произведённом из природного газа, будет присутствовать СО, отравляющий катализатор. Поэтому для уменьшения отравления катализатора необходимо повысить температуру топливного элемента. Уже при температуре 160°С в топливе может присутствовать 1%СО.

Цена некоторых водородных топливных элементов пока остаётся высокой. Но в будущем цена будет снижаться при организации массового производства топливных элементов.

Внедрению топливных элементов на транспорте мешает отсутствие водородной инфраструктуры и более высокая себестоимость энергии. Возникает проблема «курицы и яйца» — зачем производить водородные автомобили, если нет инфраструктуры? Зачем строить водородную инфраструктуру, если нет водородного транспорта?

Появились и новые накопители энергии – электрохимические конденсаторы. Они состоят из двух электродов с высокоразвитой поверхностью и проводника II рода между ними.

Виды химических источников тока

Тип    Катод Электролит Анод Напряжение, В

Марганцево-цинковый элемент MnO2 KOH     Zn    1.56

Марганцево-оловянный элемент    MnO2 KOH Sn     1.65

Марганцево-магниевый элемент     MnO2 MgBr         Mg   2.00

Свинцово-цинковый элемент                   PbO2H2SO4       Zn    2.55

Свинцово-кадмиевый элемент        PbO2H2SO4       Cd    2.42

Свинцово-хлорный элемент           PbO2HClO4       Pb    1.92

Ртутно-цинковый элемент              HgO2          KOHZn    1.36

Ртутно-кадмиевый элемент             HgO2          KOHCd    1.92

Окисно-ртутно-оловянный

Элемент                                           HgO2          KOHSn 1.30

Хром-цинковый элемент       K2Cr2O7 H2SO4 Zn     1.8—1.9

Аккумуляторы

Лантан-фторидный аккумулятор

Литий-ионный аккумулятор

Литий-полимерный аккумулятор

Марганцево-оловянный элемент

Никель-цинковый аккумулятор

Никель-кадмиевый аккумулятор

Никель-металл-гидридный аккумулятор

Свинцово-кислотный аккумулятор

Свинцово-оловянный аккумулятор

Серебряно-цинковый аккумулятор

Серебряно-кадмиевый аккумулятор

железо-никелевый аккумулятор

железо-воздушный аккумулятор

цинк-воздушный аккумулятор

цинк-хлорный аккумулятор

натрий-серный аккумулятор

литий-хлорный аккумулятор

свинцово-водородный аккумулятор

Цинк-бромный аккумулятор

Натрий-Никель-Хлоридный аккумулятор

Литий-железо-сульфидный аккумулятор

Литий-фторный аккумулятор

Топливные элементы

Прямой метанольный топливный элемент

Твердооксидный топливный элемент

Щелочной топливный элемент


IV. Эксплуатация элементов и батарей
Напряжение, отдаваемое батареей, нужно измерять вольтметром, обязательно подключив к батарее нагрузку с сопротивлением того же порядка, что и будущая реальная нагрузка, например для батареи фонаря это может быть лампочка от того же фонаря. Снижение напряжения меньше, чем 1 Вольт на элемент, как правило, нужно считать признаком разряда батареи. Разряжаются элементы по-разному, например, солевые снижают напряжение постепенно, а литиевые — «держат напряжение» весь срок эксплуатации, а потом почти сразу «садятся».

Смешивать в одной батарее элементы разных типов, разной степени разряженности, разных производителей и даже разных партий одного и того же производителя не рекомендуется. (Даже если питаемый батареей прибор будет действовать, элементы в батарее будут разряжаться по-разному, что в конце концов приведёт к протеканию одного из элементов и порче прибора и/или остальных элементов). Если же одинаковых элементов нет, то подобное смешивание можно допустить, но только на короткое время и под постоянным контролем состояния элементов. Однако применение подобной «смеси» в приборах с кратковременным высоким или малым длительным расходом энергии (например, в фотоаппаратах или часах) очень нежелательно.

По мере исчерпания химической энергии напряжение и ток падают, элемент перестаёт действовать. Некоторые типы элементов допускают обратимость химической реакции: их можно подзаряжать.

Литиевые элементы заряжать категорически нельзя! Металлический литий очень химически активен, в элементах применяется легковоспламеняемый электролит. Возможен взрыв.

Щелочные (алкалиновые) элементы подзаряжаются довольно хорошо, однако производители элементов, как правило, помещают на корпусе предупредительную надпись «не перезаряжать, не нагревать», иногда даже помещают в корпусе элемента (или батареи) диод, препятствующий перезаряду.

Специально нагревать выше, чем «чуть тёплая» действительно бессмысленно, а вот, например, элементы типа AA (щелочные, солевые — хуже), если они не до конца разряжены и не имеют повреждений корпуса (протечек), можно заряжать током 20—50 mA.

Если элемент при этом нагревается, ток заряда нужно уменьшить. Если появляются протечки электролита или посторонние запахи, элемент лучше выбросить. Заряд нужно проводить в проветриваемом неогнеопасном помещении под постоянным присмотром. Время заряда — несколько часов. Щелочные элементы можно подзаряжать раз десять, после этого они приходят в негодность (при подключении нагрузки разряжаются за несколько минут).

В безвыходном положении элемент можно попробовать смять (камнем, молотком). Наверняка после этого его придётся выбросить, однако после такой процедуры элемент вполне может проработать ещё около десяти-двадцати процентов номинального времени работы.

Далее в работе я опишу самые распространённые гальванические элементы и аккумуляторы.


V
. Регенерация гальванических элементов и батарей

Идея восстановления разряженных гальванических элементов подобно аккумуляторным батареям не нова. Восстанавливают элементы с помощью специальных зарядных устройств. Практически установлено, что лучше других поддаются регенерации наиболее распространенные стаканчиковые марганцево-цинковые элементы и батареи, такие, как 3336Л (КБС-Л-0,5), 3336Х (КБС-Х-0,7), 373, 336. Хуже восстанавливаются галетные марганцево-цинковые батареи «Крона ВЦ», БАСГ и другие.

Наилучший способ регенерации химических источников питания — пропускание через них асимметричного переменного тока, имеющего положительную постоянную составляющую. Простейшим источником асимметричного тока является однополупериодный выпрямитель на диоде, шунтированном резистором. Выпрямитель подключают к вторичной низковольтной (5-10 в) обмотке понижающего трансформатора, питающегося от сети переменного тока. Однако такое зарядное устройство имеет невысокий к. п. д.- около 10% и, кроме этого, заряжаемая батарея при Случайном отключении напряжения, питающего трансформатор, может разряжаться.

Лучших результатов можно достигнуть, если применять зарядное устройство, выполненное по схеме, представленной на рис. 1. В этом устройстве вторичная обмотка II питает два отдельных выпрямителя на диодах Д1 и Д2, к выходам которых подключены две заряжаемые батареи Б1 и Б2.
<img border=«0» width=«110» height=«121» src=«ref-1_853063326-4349.coolpic» v:shapes="_x0000_i1028">

рис. 1


VI
. Особенности некоторых видов гальванических элементов и их краткие характеристики

Висмутисто — магниевый элемент

Анодом служит магний, катодом — оксид висмута, а электролитом — водный раствор бромида магния. Обладает очень высокой энергоемкостью, и повышенным напряжением (1,97—2,1 Вольт).

Параметры

Теоретическая энергоемкость:

Удельная энергоемкость: около 103—160 Вт·ч/кг.

Удельная энергоплотность: около 205—248 Вт·ч/дм3.

ЭДС: 2,1 Вольта.

Рабочая температура: -20 +55 С°.

Диоксисульфатно — ртутный элемент

Диоксисульфатно-ртутный элемент — это первичный химический источник тока, в котором анодом является цинк, анодом — смесь окиси ртути и сульфата ртути с графитом (5%), а электролитом — водный раствор сульфата цинка. Отличается высокой мощностью и энергоплотностью.

Характеристики

Теоретическая энергоемкость:

Удельная энергоемкость:110-140 Вт/час/кг.

Удельная энергоплотность: 623-645 Вт/час/дм3.

ЭДС:1,358Вольта.

Рабочая температура: -14 + 60°С.

Утилизация

Этот элемент утилизируется согласно общим правилам утилизации оборудования, препаратов, сплавов и соединений содержащих ртуть.

Литий ионный аккумулятор (Li-ion)

Тип электрического аккумулятора, широко распространённый в современной бытовой электронной технике. В настоящее время это самый популярный тип аккумуляторов в таких устройствах как сотовые телефоны, ноутбуки, цифровые фотоаппараты.

Более совершенная конструкция литий-ионного аккумулятора называется литий-полимерным аккумулятором.

Первый литий-ионный аккумулятор разработала корпорация Sony в 1991 году.

Характеристики

Энергетическая плотность: 110… 160 Вт*ч/кг

Внутреннее сопротивление: 150… 250 мОм (для батареи 7,2 В)

Число циклов заряд/разряд до потери ёмкости на 80%: 500-1000

Время быстрого заряда: 2-4 часа

Допустимый перезаряд: очень низкий

Саморазряд при комнатной температуре: 10% в месяц

Напряжение в элементе: 3,6 В

Ток нагрузки относительно ёмкости:

— пиковый: больше 2С

— наиболее приемлемый: до 1С

Диапазон рабочих температур: -20 — +60 °С

Устройство

В начале в качестве отрицательных пластин применялся кокс (продукт переработки угля), в дальнейшем применяется графит. В качестве положительных пластин применяют сплавы лития с кобальтом или марганцем. Литий-кобальтовые пластины служат дольше, а литий-марганцевые значительно безопасней и обычно имеют встроенные термопредохранитель и термодатчик.

При заряде литий-ионных аккумуляторов протекают следующие реакции:

на положительных пластинах: LiCoO2 → Li1-xCoO2 + xLi+ + xe-

на отрицательных пластинах: С + xLi+ + xe- → CLix

При разряде протекают обратные реакции.

Преимущество

Высокая энергетическая плотность.

Низкий саморазряд.

Отсутствует эффект памяти.

Простота обслуживания.

Недостатки

Li-ion аккумуляторы могут быть опасны при разрушении корпуса аккумулятора, и при неаккуратном обращении могут иметь более короткий жизненный цикл в сравнении с другими типами аккумуляторов. Глубокий разряд полностью выводит из строя литий-ионный аккумулятор. Попытки заряда таких аккумуляторов могут повлечь за собой взрыв. Оптимальные условия хранения Li-ion-аккумуляторов достигаются при 70%-ом заряде от ёмкости аккумулятора. Кроме того, Li-ion аккумулятор подвержен старению, даже если он не используется: уже через два года аккумулятор теряет большую часть своей ёмкости.

Литий полимерный аккумулятор(Li-pol или Li-polymer)

Это более совершенная конструкция литий-ионного аккумулятора. Используется в мобильных телефонах, цифровой технике.

Обычные, бытовые литий-полимерные аккумуляторы не способны отдавать большой ток, но существуют специальные силовые литий-полимерные аккумуляторы, способные отдавать ток в 10 и даже 20 раз превышающий численное значение емкости (10-20С). Они широко применяются в портативном электроинструменте, в радиоуправляемых моделях

Преимущества: низкая цена за единицу емкости; большая плотность энергии на единицу объема и массы; низкий саморазряд; толщина элементов до 1 мм; возможность получать очень гибкие формы; экологически безопасные; незначительный перепад напряжения по мере разряда.

Недостаток: диапазон рабочих температур ограничен: элементы плохо работают на холоде и могут взрываться при перегреве выше 70 градусов Цельсия. Требуют специальных алгоритмов зарядки (зарядных устройств), представляют повышенную пожароопасность при неправильном обращении.

Магний-м-ДНБ элемент

Это первичный химический источник тока, в котором анодом является магний, катодом — мета-Динитробензол, а электролитом — водный раствор перхлората магния.

Параметры

Теоретическая энергоемкость:1915Вт/час/кг.

Удельная энергоемкость:121Вт/час/кг.

Удельная энергоплотность:137-154Вт/час/дм3.

ЭДС:2Вольта.

Производители

Лидером в производстве данного элемента и усовершенствовании его конструкции является фирма Marathon.

Магний перхлоратный элемент

Это первичный резервный химический источник тока, в котором анодом служит магний, катодом — двуокись марганца в смеси с графитом (до 12%), а электролитом — водный раствор перхлората магния.

Параметры

Теоретическая энергоемкость:242Вт/час/кг.

Удельная энергоемкость:118Вт/час/кг.

Удельная энергоплотность:130-150Вт/час/дм3.

ЭДС:2Вольта.

Марганцево-цинковый элемент

Это первичный химический источник тока, в котором анодом является цинк Zn, электролитом — водный раствор гидроксида калия КОН, катодом — оксид марганца MnO2 (пиролюзит) в смеси графитом (около 9,5 %).

Параметры

Теоретическая энергоемкость:

Удельная энергоемкость: 67-99 Вт/час/кг

Удельная энергоплотность: 122—263 Вт/час/дмі.

ЭДС: 1,51Вольта.

Рабочая температура: −40 +55 °C.

Медно — окисный гальванический элемент

Химический источник тока в котором анодом является цинк (реже олово), электролитом гидроксид калия, катодом оксид меди (иногда с добавлением оксида бария для увеличения емкости или оксида висмута).

История изобретения

История изобретения медно-окисного гальванического элемента ведет свое начало с 1882 года.

Изобретателем этого элемента является Лаланд. Иногда медно-окисный элемент называют так же элементом Эдисона и Ведекинда, но именно Лаланду принадлежит честь изобретения.

Параметры

Теоретическая энергоемкость: около 323,2Вт/час/кг

Удельная энергоемкость(Вт/час/кг): около — 84-127Вт/час/кг

Удельная энергоплотность(Вт/час/дм3): около — 550 Вт/час/дм3)

ЭДС: 1,15 Вольта.

Рабочая температура: -30 +45 С.

    продолжение
--PAGE_BREAK--
еще рефераты
Еще работы по физике