Реферат: Внешние запоминающие устройства ПК

Федеральное агентство по образованию

Нижегородский государственный университет им. Н.И. Лобачевского

Финансовый факультет

Дневное отделение

Специальность «Системы налогообложения»

Курсовая работа

по дисциплине Информатика

на тему: «Внешние Запоминающие Устройства»

Выполнила:

студент гр. 13103н

Фролова Александра Дмитриевна

Руководитель:

Бурова М.С.

Нижний Новгород

2009

Содержание

Введение. 3

Глава 1 Основы развития ВЗУ.5

1.1. Теоретические. 5

1.2. Исторические.7

Глава 2. Виды ВЗУ… 9

2.1. Жестки диски (винчестеры)9

2.2 Магнитные носители. 11

2.3 Гибкие диски. 13

2.4 Оптические диски.17

2.4.1 CD… 17

2.4.2 DVD… 19

2.5 Магнитно-Оптический носитель.23

2.6 Флэш-память. 24

Глава 3. Современное состояние и пути совершенствования ВЗУ… 25

3.1. Новейшие запоминающие устройства. 25

3.2. Разрабатываемые технологии. 28

Заключение. 32

Список литературы… 33


Введение

Тема моей курсовой работы «Внешние запоминающие устройства ПК».

Я выбрала именно эту тему, потому что для МЕНЯ она является наиболее интересной с точки зрения изучения. А при изучении СФЕРЫ информационных технологий это одна из самых разрабатываемых и актуальных проблем нашего поколения. Так как различные способы хранения и записи информации служат для разных целей, на сегодняшний день не существует универсального внешнего запоминающего устройства, которое может быть использовано как постоянное и переносное одновременно, и при этом быть доступным рядовым пользователям. Информацию необходимо сохранять на носителях, не зависящих от наличия напряжения, и таких размеров, которые превышают возможности всех современных видов первичной памяти.

Мы живем в веке, в котором все страны мира стремятся к постиндустриальному обществу, как известно, это век, в котором главными производственными ресурсами становятся информация и знания. Научные разработки становятся главной движущей силой, а именно — исследования в сфере хранения, обработке и передаче информации.

С развитием общества количество, объемы информации постоянно растут в геометрической прогрессии. И только недавно изобретенных накопителей/устройств быстро становится недостаточно, так как в них уже не вмещаются нужные объемы данных. Прогресс в информационной сфере идет быстрее прогресса в технологической сфере.

В наш век человек стремится использовать каждую минуту максимально эффективно, следовательно, он более требователен к технике, которой он пользуется. Она должна отвечать требованиям современного человека, то есть записывающие устройства должны иметь высокую скорость обработки и записи данных, а с увеличением количества информации это становится все труднее. К тому же они должны иметь компактный вид, чтобы не обременять своего владельца и для того, чтобы важные документы и записи всегда были при нем. Значит, ученые должны обращать внимание не только на размеры памяти, но и на скорость обработки и на портативность устройств.

В этом и заключается главная проблема изобретаемых запоминающих устройств ПК.

В своей работе я предполагаю изучить разные виды ВЗУ: как уже имеющиеся, вышедшие из использования или использующиеся в данный момент устройства, так и новые разработки, новые технологии данной сферы.


Глава 1 Основы развития ВЗУ.

1.1. Теоретические

В оперативной памяти данные хранятся до выключения питания. Однако существует информация, которую следует хранить долгое время. Для этого компьютеру необходима дополнительная память. Такого рода устройства называются периферийными или внешними запоминающими устройствами (ВЗУ). Таковыми являются накопители на магнитной ленте (стримеры), накопители на дискетах, винчестеры, CD-ROM, магнитооптические диски.

В отличие от оперативной памяти, внешняя память не имеет прямой связи с процессором. Информация от ВЗУ к процессору и наоборот циркулирует примерно по следующей цепочке:

Они могут быть встроены в системный блок или выполнены в виде самостоятельных блоков, связанных с системным через его порты. Важной характеристикой внешней памяти служит ее объем. Объем внешней памяти можно увеличивать, добавляя новые накопители. Не менее важными характеристиками внешней памяти являются время доступа к информации и скорость обмена информацией. Эти параметры зависят от устройства считывания информации и организации типа доступа к ней.

По типу доступа к информации устройства внешней памяти делятся на два класса: устройства прямого (произвольного) доступа и устройства последовательного доступа. При прямом (произвольном) доступе время доступа к информации не зависит от ее места расположения на носителе. При последовательном доступе время доступа зависит от местоположения информации.

Скорость обмена информацией зависит от скорости ее считывания или записи на носитель, что определяется, в свою очередь, скоростью вращения или перемещения этого носителя в устройстве.

Внешняя (долговременная) память — это место хранения данных, не используемых в данный момент в памяти компьютера.

Устройства внешней памяти — это, прежде всего, магнитные устройства для хранения информации.

По способу записи и чтения информации запоминающие устройства можно подразделить на:

— накопители на жёстких магнитных дисках;

— накопители на гибких магнитных дисках;

— накопители на компакт-дисках;

— накопители на магнито-оптических компакт-дисках;

— виртуальные диски .

Раньше в вычислительной технике к внешним устройствам (ВЗУ) относили устройства хранения дискретной информации, главным образом, на магнитных лентах, барабанах, дисках.

Аналогично всем известному магнитофону действует устройство внешней памяти ЭВМ — накопитель на магнитной ленте(стриммер). На дорожки ленты записывается все тот же двоичный код: намагниченный участок — единица, не намагниченный — нуль. При чтении с ленты запись превращается в нули и единицы в битах внутренней памяти.

Они служат для запомина­ния больших массивов информации — наборов данных, программ пользователей и операционных систем. В про­цессе работы вычислительной системы по мере необхо­димости производится оперативный обмен информацион­ными массивами между ВЗУ и основной памятью.

Для того, чтобы полностью оценить новейшие разработки в области внешних запоминающих устройств необходимо знать, с чего все начиналось.

1.2. Исторические.

ВЗУ относят к устрой­ствам ввода-вывода (по отношению к процессору). ВЗУ со сменными носителями информации могут использо­ваться для ввода информации в ЭВМ или для вывода результатов вычислений из ЭВМ так же, например, как перфоленточные и перфокарточные устройства ввода — вывода. Однако по сравнению с этими устройствами ВЗУ считывают и записывают информацию с очень вы­сокой скоростью, а также допускают многократную пе­резапись информации на одном и том же носителе. Ука­занные достоинства ВЗУ обусловили их широкое при­менение в вычислительной технике. Особое значение ВЗУ получили в ЭВМ третьего поколения.

Машины третьего поколения, в частности все модели Единой системы ЭВМ (ЕС ЭВМ), работают практически полностью под управлением той или иной операционной системы. Они имеют развитое математическое обеспечение, для хранения которого требуются сотни тысяч и миллионы запоминающих ячеек. Основная часть математического обеспечения хранится в ВЗУ. Поэтому в минимальный комплект каждой модели ЕС ЭВМ входят, как правило, запоминающие устройства на магнитных дисках и лентах.

Разработка автоматизированных систем (АСУ) предусматривает создание очень больших ин­формационных массивов, банков данных, пакетов при­кладных программ. Для их хранения лучше всего под­ходят ВЗУ. Более того, создание и эксплуатация АСУ на базе ЭВМ без использования ВЗУ не представляется возможным.

Несмотря на то, что ВЗУ применяют с начала раз­вития вычислительной техники, в научно-технической литературе описаны они сравнительно мало.

Я бы хотела в качестве исторической справки изложить основные принципы построения и функционирования ВЗУ первой ЕС ЭВМ, созданной совместными усилиями специалистами по вычислительной технике стран — членов СЭВ. Здесь приводятся основные технические характеристики ВЗУ на магнитных лентах, сменных и постоянных магнитных дисках и магнитных барабанах. Наибольшее внимание рассмотрению способов размещения информа­ции (поскольку они унифицированы для типов носителей) и команд, с помощью которых процессор управляет операциями поиска, считывания и за­писи информации в ВЗУ.

Описанию отдельных устройств предшествует изло­жение принципов организации и функционирования си­стемы обмена информацией и интерфейса ввода — вы­вода. Эти вопросы являются общими для внешних устройств всех типов и всех моделей ЕС ЭВМ.

Введение средств расширения возможностей интер­фейса ввода — вывода требует использования дополнительных линий. Принято решение об использовании этой целью существовавших ранее резервных линий. Эти линии обеспечивают уплотнение информации в шинах, повторение канальных команд и селективный сброс, вводимый УВУ, без увеличения числа разъемов. Вве­дение второго комплекта информационных шин требует использования двух дополнительных кабелей: информа­ционного и маркерного.

Перечисленные возможности усовершенствованного интерфейса ввода — вывода должны учитываться при новых разработках каналов и УВВ. Усовершенствованный интерфейс, сохраняя основные функциональные характеристики, параметры, схемы и конструкции электрических связей интерфейса ввода — вывода ЕС ЭВМ, обеспечивает совместимость ранее выпущенных УВВ с УВВ новых разработок ЕС ЭВМ и имеет средства для выполнения дополнительных функций, расширяющих возможности каналов и устройств ввода — вывода.


Глава 2. Виды ВЗУ

2.1. Жестки диски (винчестеры)

Накопители на жёстком диске (винчестеры) предназначены для постоянного хранения информации, используемой при работе с компьютером: программ операционной системы, часто используемых пакетов программ, редакторов документов, трансляторов с языков программирования и т.д. Наличие жёсткого диска значительно повышает удобство работы с компьютером.

С точки зрения операционной системы элементарной единицей размещения данных на диске является кластер. Он представляет собой группу секторов, с точностью до которой происходит размещение файлов на диске. Сектор представ­ляет собой зону дорожки, в кото­рой собственно и хранятся разряды данных.Количе­ство секторов на дорожке зависит от многих пере­менных, но в основном опреде­ляются суммарной длиной поля дан­ных и служебного поля, образующих сектор (горизонтальная плотность). размер сектора.

Емкость винчестера – его основная характеристика. Сегодня объем данных, которые можно записать должен быть не менее 10-15 Гб, но требования программного обеспечения постоянно растут, поэтому жесткий диск придется менять раз в 1-2 года в зависимости от то того насколько интенсивно и с какими целями используется компьютер.

Еще одой характеристикой является время доступа необходимое HDD для поиска любой информации на диске. Среднее время доступа, на сегодняшний день, для лучших IDE и SCSI дисков — это значение меньше 2 мс. Среднее время поиска – время, в течение которого магнитные головки перемещаются от одного цилиндра к другому главным образом зависит от механизма привода головок, а не от интерфейса. Скорость передачи данных, зависит от количества байт в секторе, количестве секторов на дорожке и от скорости вращения дисков (3000-3600 об./мин. Самые современные HDD – 7200 об./мин.). Производители дают гарантию надежности устройства, которая обычно составляет 20000-500000 часов. Наработка винчестера за год составит 8760 часов, что делает этот параметр не важным, так как винчестер морально устареет раньше, чем физически.

2.2 Магнитные носители

Технология записи информации на магнитные носители появилась примерно в середине 20-го века (40-ые — 50-ые годы). Но уже несколько десятилетий спустя — 60-ые — 70-ые годы — это технология стала очень распространенной во всём мире.

Очень давно появилась на свет первая грампластинка. Которая использовалась в качестве носителя различных звуковых данных — на неё записывали различные музыкальные мелодии, речь человека, песни.

Сама технология записи на пластинки была довольно простой. При помощи специального аппарата в специальном мягком материале, виниле, делались засечки, ямки, полоски. И из этого получалась пластинка, которую можно было прослушать при помощи специального аппарата — патефона или проигрывателя.

Приводился в действие механизм, вращающий пластинку, и ставилась игла на пластинку. Игла плавно плыла по канавкам, прорубленным в пластинке, издавая при этом различные звуки — в зависимости от глубины канавки, её ширины, наклона и.т.д., используя явление резонанса. А после труба, находившаяся около самой иголки, усиливала звук, “высекаемый” иголкой. (рис. 1)

Почти такая же система и используется в современных (да и использовалась раньше тоже) устройствах считывания магнитной записи. Только поменялись сами составные части — вместо виниловых пластинок теперь используются ленты с напылённым на них сверху слоем магнитных частиц; а вместо иголки — специальное считывающее устройство. А трубка, усиливающая звук, исчезла совсем, и на её место пришли динамики, использующие уже более новую технологию воспроизведения и усиления звуковых колебаний. А в некоторых отраслях, в которых применяются магнитные носители (например, в компьютерах) пропала необходимость использования таких трубок.

Магнитная лента состоит из полоски плотного вещества, на которую напыляется слой ферромагнетиков. Именно на этот слой “запоминается” информация.

Процесс записи также похож на процесс записи на виниловые пластинки — при помощи магнитной индукционной вместо специального аппарата.

На головку подаётся ток, который приводит в действие магнит. Запись звука на плёнку происходит благодаря действию электромагнита на плёнку. Магнитное поле магнита меняется в такт со звуковыми колебаниями, и благодаря этому маленькие магнитные частички (домены) начинают менять своё местоположение на поверхности плёнки в определённом порядке, в зависимости от воздействия на них магнитного поля, создаваемого электромагнитом.

А при воспроизведении записи наблюдается процесс обратный записи: намагниченная лента возбуждает в магнитной головке электрические сигналы, которые после усиления поступают дальше в динамик. (рис. 2)

Для данных нужно меньше места на плёнке, чем для звука. Просто вся информация, записываемая на магнитный носитель в компьютерах, записывается в двоичной системе — если при чтении с носителя головка “чувствует” нахождение под собой домена, то это означает, что значение данной частички данных равно “1”, если не “чувствует”, то значение — “0”. А дальше уже система компьютера преобразует данные, записанные в двоичной системе, в более понятную для человека систему.

Сейчас в мире присутствует множество различных типов магнитных носителей: дискеты для компьютеров, аудио- и видеокассеты, бобинные ленты, жёсткие диски внутри компьютеров и.т.д.

2.3 Гибкие диски

В приводе флоппи-диска (гибкого диска, или просто дискеты) имеются два двигателя: один обеспечивает стабильную скорость вращения вставленной в накопитель дискеты, а второй перемещает головки записи-чтения. Скорость вращения первого двигателя зависит от типа дискеты и составляет от 300 до 360 об/мин. Двигатель для перемещения головок в этих приводах всегда шаговый. С его помощью головки перемещаются по радиусу от края диска к его центру дискретными интервалами. В отличие от привода винчестера головки в данном устройстве не «парят» над поверхностью флоппи-диска, а касаются ее.

Для подключения разных типов дисководов предназначены обычно комбинированные кабели с четырьмя разъемами, включенными попарно. Некоторые BIOS компьютеров позволяют программно изменять назначение физического адреса: «первый» (A:) и «второй» (B:) привод. В отличие от винчестеров, для флоппи-дисководов порядок накопителя (A: или B:) определяется именно положением устройства на кабеле.

Для каждого из типоразмеров дискет (5,25 или 3,5 дюйма) существуют свои специальные приводы соответствующего форм-фактора.

Дискеты каждого типоразмера (5,25 и 3,5 дюйма) бывают обычно двусторонними (Double Sided, DS), односторонние давно стали анахронизмом. Плотность записи может быть различной: одинарной (Single Density, SD), двойной (Double Density, DD) и высокой (High Density, HD). Поскольку об одинарной плотности уже мало кто вспоминает, такую классификацию обычно упрощают, говоря только о двусторонних дискетах двойной плотности (DS/DD, емкость 360 или 720 Кбайт) и двусторонних дискетах высокой плотности (DS/HD, емкость 1,2, 1,44 или 2,88 Мбайта). Плотность записи определяется величиной зазора между диском и магнитной головкой, а от стабильности зазора зависит качество записи (считывания). Для повышения плотности записи необходимо уменьшить зазор, однако при этом значительно повышаются требования к рабочей поверхности дисков.

В качестве материала для изготовления магнитных дисков обычно применяют алюминиевый сплав Д16МП (МП — магнитная память). Этот сплав немагнитный, мягкий, достаточно прочный, хорошо обрабатывается.

Гибкие диски (Floppy Disk – FD) Гибкие дисковые устройства состоят из устройства чтения/записи – дисковода и непосредственного носителя – дискеты.

Дискета представляет собой слой магнитно-мягкого материала, нанесенный на специальную подложку, выполненную из полимерного немагнитного пластического материала, степень жесткости которого может быть различна в зависимости от реализации. Носитель помещается в бумажный, пластмассовый или другой кожух-корпус. В настоящее время, используются только двусторонние носители, следовательно покрытие нанесено с обеих сторон дискеты и чтение/запись производится с обеих сторон. Дискеты различного диаметра, как правило, имеют разные оформления корпуса. Так гибкие диски диаметром 5.25 дюйма помещаются в бумажный кожух, а 3.14 – в пластмассовый. Дискета в кожухе свободно вращается приводом устройства – дисковода через окно центрального захвата, что обеспечивает прохождение площади дорожки под устройством чтения/записи называемом головкой чтения/записи.

На кожухе дискеты имеются, соответственно, отверстия: центрального захвата(3), отверстие позиционирования головки(1), отверстие физической защиты от записи (5, 8), направляющие отверстия и пазы (2), отверстия авто определения типа магнитного покрытия (9), отверстие определения полного оборота носителя (4). Отверстие для позиционирования магнитных головок чтения/ записи у 3.14 дюймовых носителей закрыто металлической задвижкой (7), а отверстие для центрального захвата и вращения на шпинделе привода вращения диска, в отличие от носителя диаметром 5.25 дюймов, находится только с нижней стороны дискеты… Каждый сменный дисковый магнитный носитель перед использованием в какой-либо операционной системе необходимо подготовить к приему данных. Такая операция называется форматированием. Форматирование дискет производится при помощи специального программного обеспечения – программ форматирования дисков и, как правило, специфично для каждой операционной системы.

Дисковод представляет собой устройство чтения/записи с/на носитель – дискету. Каждый тип носителя (дискет), как правило, требует собственного устройства – для чтения 5.25 и 3.14 дюймовых дискет, хотя выпускаются и смешанные дисководы, соединяющие в себе устройства для чтения 3.14 и 5.25 дюймовых дискет. Дисководы, как правило, располагаются внутри системного блока, однако, выпускаются и внешние варианты. Снаружи системного блока находится передняя панель дисковода на которой располагаются управляющие элементы – ручка или кнопка фиксации/извлечения дискеты внутри дисковода, отверстие для помещения/извлечения дискеты, индикатор обращения к устройству, светящийся во время операций обращения к дисководу. Внутри дисковод состоит из двигателя, системы управления вращением носителя, двигателя, системы управления позиционированием головок чтения/записи, схем формирования и преобразования сигналов и др. электронных устройств. Дисководы подключаются к другим схемам компьютера посредством интерфейсного кабеля – шлейфа. На концах и/или по длине шлейфа находятся разъемы, один из которых служит для соединения шлейфа с дисководом или дисководами, другой с интерфейсом дискового устройства, находящемся на плате контроллера (интерфейсной карте, плате адаптера) дисковых устройств или на материнской плате. Дисковод также нуждается в подключении питающего напряжения при помощи кабеля питания.

В настоящий момент, технологии хранения и чтения/записи информации на обычную дискету дают невысокие скорости обмена и позволяют добиться плотности записи для объема информации до 2 мегабайт. Такой объем и быстродействие считаются малыми и поэтому дискеты используют лишь как средство транспортировки и архивного хранения небольших объемов информации. Надежность дискет, также, оставляет желать лучшего. Они подвержены вредным воздействиям температурных, гидрометрических, магнитных, механических и др. факторов. Поэтому, с дискетами следует обращаться аккуратно.

Во избежание потери данных или повреждения носителя недопустимо: хранение дискет в местах подверженных воздействию магнитных полей, влаги, сильных механических воздействий, обильного количества пыли, резких температурных перепадов. Необходимо осторожно вставлять и извлекать дискету из дисковода только после того, как индикатор обращения к диску погаснет. В зависимости от интенсивности использования дискеты, ее необходимо проверять на предмет целостности и правильности логической и физической структуры при помощи специального программного обеспечения с различной частотой, но не реже одного раза в два месяца. Также, необходимо производить чистку головок чтения/записи дисковода при помощи специальной чистящей дискеты и очистителя. Срок службы носителя зависит не только от способа его эксплуатации, но и от его исходного качества. Дискеты высокого качества известных крупных производителей способны форматироваться на максимальные объемы и выдерживают при эксплуатации до 70 млн. проходов головки чтения/записи по дорожке, что, практически, означает срок интенсивной эксплуатации до 20 лет. Дискеты безымянных производителей и просто плохого качества, как правило, подвержены таким вредным процессам как высыпанию частичек магнитного покрытия и размагничиваемости. Не следует экономить на носителях информации. На практике, нужно стараться использовать только высококачественные дискеты известных производителей.

2.4 Оптические диски.

2.4.1 CD

Компакт-диск — оптический носитель информации в виде диска с отверстием в центре, информация с которого считывается с помощью лазера. В настоящее время широко используется как устройство хранения данных широкого назначения. Аудио-компакт-диски по формату отличаются от компакт-дисков с данными, и CD-плееры обычно могут воспроизводить только их (на компьютере, конечно, можно прочитать оба вида дисков). Встречаются диски, содержащие как аудиоинформацию, так и данные — их можно и послушать на CD-плеере, и прочитать на компьютере. С развитием MP3 производители бытовых CD-плееров и музыкальных центров начали снабжать их возможностью чтения MP3-файлов с CD-ROM’ов.

Аббревиатура CD-ROM означает англ. Compact Disc Read Only Memory, что в переводе обозначает компакт-диск только с возможностью чтения. КД-ПЗУ означает «Компакт-диск, постоянное запоминающее устройство». Название CD-ROM часто ошибочно используют для обозначения приводов для чтения компакт-дисков (правильно — CD-ROM Drive, CD-привод).

Компакт-диск представляет собой поликарбонатную подложку толщиной 1,2 мм и диаметром 120 мм, покрытую тончайшим слоем металла (алюминий, золото, серебро и др.) и защитным слоем лака, на которое обычно наносится графическое представление содержания диска. Принцип считывания через подложку позволяет весьма просто и эффективно осуществить защиту информационной структуры и удалить её от внешней поверхности диска. Диаметр пучка на внешней поверхности диска составляет порядка 0,7 мм, что повышает помехоустойчивость системы к пыли и царапинам. Кроме того, на внешней поверхности имеется кольцевой выступ высотой 0,2 мм, позволяющий диску, положенному на ровную поверхность, не касаться этой поверхности. В центре диска расположено отверстие диаметром 15 мм. Информация на диске записывается в виде спиральной дорожки из питов (англ. pit — углубление), выдавленных в поликарбонатной основе. Каждый пит имеет примерно 100 нм в глубину и 500 нм в ширину. Длина пита варьируется от 850 нм до 3,5 мкм. Промежутки между питами называются лендом (англ. land — пространство, основа). Шаг дорожек в спирали составляет 1,6 мкм.

Различают диски только для чтения («алюминиевые»), CD-R — для однократной записи, CD-RW — для многократной записи. Диски последних двух типов предназначены для записи на специальных пишущих приводах. В некоторых CD-плеерах и музыкальных центрах такие диски могут не воспроизводиться (в последнее время все производители бытовых музыкальных центров и CD-плееров включают в свои устройства поддержку чтения CD-R/RW).

Данные с диска читаются при помощи лазерного луча с длиной волны 780 нм. Принцип считывания информации лазером для всех типов носителей заключается в регистрации изменения интенсивности отражённого света. Лазерный луч фокусируется на информационном слое в пятно диаметром ~1,2 мкм. Если свет сфокусировался между питами (на ленде), то фотодиод регистрирует максимальный сигнал. В случае, если свет попадает на пит, фотодиод регистрирует ме́ньшую интенсивность света. Различие между дисками «только для чтения» и дисками однократной/многократной записи заключается в способе формирования питов. В случае диска «только для чтения» питы представляют собой некую рельефную структуру (фазовую дифракционную решетку), причём оптическая глубина каждого пита чуть меньше четверти длины волны света лазера, что приводит к разнице фаз в половину длины волны между светом, отражённым от пита и светом, отражённым от ленда. В результате в плоскости фотоприёмника наблюдается эффект деструктивной интерференции и регистрируется снижение уровня сигнала. В случае CD-R/RW пит представляет собой область с бо́льшим поглощением света, нежели ленд (амплитудная дифракционная решетка). В результате фотодиод также регистрирует снижение интенсивности отражённого от диска света. Скорость чтения/записи CD указывается кратной 150 Кб/с (то есть 153 600 байт/с). Например, 48-скоростной привод обеспечивает максимальную скорость чтения (или записи) CD, равную 48 × 150 = 7200 Кб/с (7,03 Мб/с).

Компакт-диски имеют в диаметре 12 см и изначально вмещали до 650 Мбайт информации (или 74 минуты звукозаписи). Согласно одной из легенд, разработчики рассчитывали объём так, чтобы на диске полностью поместилась девятая симфония Бетховена (самое популярное музыкальное произведение в Японии в 1979 году согласно специально проведённому опросу), длящаяся именно 74 минуты. Однако, начиная приблизительно с 2000 года, всё большее распространение получали диски объёмом 700 Мбайт, которые позволяют записать 80 минут аудио, впоследствии полностью вытеснившие диск объёмом 650 Мбайт. Встречаются и носители объёмом 800 мегабайт (90 минут) и даже больше. Бывают также синглы (не путать с мини-дисками), диаметром 8 см, на которые вмещается около 140 или 210 Мбайт данных или 21 минута аудио, и CD, формой напоминающие кредитные карточки (т. н. диски-визитки).

2.4.2 DVD

DVD-стандарт был реализован с учетом накопленного опыта по производству и распространению компакт-дисков и CD-устройств, требований и рекомендаций производителей компьютерной и киноиндустрии, а также предварительных разработок различных компаний. Новый стандарт базируется на следующих основных принципах:

· большая емкость и возможность ее дальнейшего наращивания;

· обратная совместимость с существующими CD;

· совместимость с будущими записываемыми DVD-дисками;

· единая файловая система для всех приложений;

· единый интерактивный стандарт для компьютера и телевидения;

· надежность хранения данных и их последующего считывания;

· высокая производительность при записи и считывании данных как для последовательного, так и для произвольного доступа к данным;

· отсутствие вспомогательных конструкций типа картриджей и кэдди;

· доступная цена.

Внешне конструкция DVD аналогична устройству традиционного компакт-диска — с теми же геометрическими размерами (диаметр — 120 мм, толщина — 1,2 мм), но содержательно она значительно сложнее. Для увеличения объема данных при сохранении тех же геометрических размеров диска, что и CD, были предприняты следующие шаги:

· уменьшение размеров углублений (питов) на DVD до 0,4 мкм;

· уменьшение расстояния между соседними дорожками (треками) до 0,74 мкм;

· размещение несущих информацию слоев в несколько этажей (до 8 пар, и это еще не предел).

DVD может быть как односторонним, так и двухсторонним. Конструктивно двухсторонний диск представляет собой два склеенных нерабочими поверхностями диска толщиной 0,6 мм каждый (модель, предложенная компанией Toshiba). Спецификации DVD-стандарта предусматривают четыре конструктивно различных типа дисков с разной информационной емкостью:

· односторонний однослойный диск (4,7 Гбайт, видео ресурс — 133 мин.);

· односторонний двухслойный диск (8,5 Гбайт, видео ресурс — 240 мин.);

· двухсторонний однослойный диск (9,4 Гбайт, видео ресурс — 266 мин.);

· двухсторонний двухслойный диск (17 Гбайт, видео ресурс — 481 мин.).

Таким образом, емкость одностороннего однослойного диска в семь раз, а двухстороннего двухслойного — в двадцать шесть раз превышает емкость стандартного компакт-диска. Первый тип дисков находит более широкое распространение для большинства компьютерных приложений, где емкости 4,7 Гбайт вполне достаточно, а более емкие диски, видимо, будут востребованы киноиндустрией.

Увеличение плотности данных стало возможным благодаря созданию более совершенных источников лазерного излучения и системы обнаружения и коррекции ошибок. Для считывания DVD используется луч красного спектра с возможностью двойного фокусирования с длиной волны 650 нм или 635 нм, в зависимости от толщины считываемого диска. Привод DVD сам определяет, какой тип диска используется, и автоматически поворачивает линзу в положение нужной фокусировки луча.

При такой плотности записи любая внутренняя неоднородность может сделать диск непригодным к использованию. Поэтому с помощью технологии компании Sony была модернизирована и стандартизирована схема цифровой модуляции и коррекции ошибок RS-PC (Reed Solomon Product Code), которая уменьшила вероятность их появления на порядок по сравнению с компакт-диском.

2.4.3 Blu-Ray

Япония, Токио, 19 февраля 2002… Представители девяти лидирующих высокотехнологических компаний Sony, Matsushita (Panasonic), Samsung, LG, Philips, Thomson, Hitachi, Sharp и Pioneer на совместной пресс-конференции объявили о создании и продвижении нового формата оптических дисков большой емкости под названием Blu-Ray Disс. Согласно объявленной спецификации Blu-Ray Disс — перезаписываемый диск следующего поколения со стандартным CD/DVD размером 12 см с максимальной емкостью записи на один слой и одну сторону до 27 Гб.

Blu-Ray это скорее эволюция формата DVD. В Blu-Ray для записи и воспроизведения диска применен синий лазер (blue-violet laser). У синего лазера длина волны составляет 405 нанометров, что значительно меньше длины волны красного лазера. Меньшая длина волны — соответственно меньшая интерференция отраженного луча, соответственно можно сделать толщину дорожку данных тоньше, что приводит к значительному увеличению емкости носителя. Толщина дорожки у Blu-Ray диска в два раза меньше, чем у DVD.

Покрытие Blu-Ray на которое записываются данные (optical transmittance protection layer) очень тонкое — 0.1 мм. Из этого факта можно сделать 3 вывода. Первое — чем тоньше слой, тем меньше рассеяние отраженного луча и больше данных можно вместить на квадратный дюйм, то есть тонкий слой — это необходимость для достижения большой емкости диска. Второе — настолько тонкий слой позволит без проблем сделать диск многослойным (по крайне мере двухслойным, как DVD), так как уменьшается рефракция луча отраженного от более глубокого слоя. Третье — настолько тонкий слой легко повредить, следовательно Blu-Ray Disс потребует защиты, то есть будет упакован в пластиковую оболочку, наподобие MiniDisk от Sony. Последний факт, к сожалению, говорит о том, что цены на Blu-Ray приводы возможно будут существенно выше, чем на DVD, так как, если бы Blu-Ray Disc оставался бы диском без упаковки, то производители смогли бы использовать корпуса и механику от DVD-приводов без переделки, сменив лишь лазер и декодирующую микросхему, а так придется начинать практически с нуля. Возможен компромиссный вариант, когда односторонние диски относительно малой емкости (23-27 ГБ) будут производиться без упаковки и иметь соответствующие приводы, мало отличающиеся от DVD-приводов по внешнему виду и по цене, такие объемы для домашних мультимедийных компьютеров на первое время более чем достаточны, по крайне мере объем Blu-Ray диска в разы превосходит DVD, а для пользователей весьма важна цена. Потребители голосуют рублем, неважно зеленый он или нет, соответственно, чем меньше будет начальная стоимость Blu-Ray для домашнего и мультимедийного сектора, тем быстрее он наберет популярность. Так же диски этого формата будут использоваться для цифровых пишущих видеоплееров нового поколения, так как на один Blu-Ray Disc умещается до 13 часов видеоинформации качества VHS (MPEG-2 c bitrate 3.8Mbps) или же 2 часа видео в модном сейчас в Японии формате HDTV (телевидение высокого разрешения до 1600х1200х32bit, MPEG-2 c bitrate от 8Mbps и выше).

2.5 Магнитно-Оптический носитель.

Это так называемые магнитооптические дисководы. МО-привод представляет собой накопитель информации, в основу которого положен магнитный носитель с оптическим (лазерным) управлением. Существуют следующие форматы магнитооптических дисков: Односторонние 3,5”, Двусторонние 5,25”, 2.5” диски MDData, разработанные фирмой Sony, 1.2” диски фирмы Maxell

Конечно, оптические накопители значительно опережают магнитооптические в скорости записи и объемах хранимых данных но, увы, значительно проигрывают им в надежности хранения данных. Для примера, испортить данные на магнитооптическом диске довольно трудно; во-первых, диск заключен в картридж, предохраняющий от царапин; во-вторых — для того, чтобы стереть данные на магнитооптическом диске, необходимо нагреть его до очень высокой температуры Сегодня в продаже встречаются MOD 5,25”емкостью 4,6 Гб. Главное их преимущество, это возможность перезаписи информации. Тем не менее, эти устройства имеют слишком высокую цену.

2.6 Флэш-память

С появлением флэш-памяти производители электроники получили возможность без особых проблем и затрат оснастить свои устройства новым типом накопителей. Налицо были выгоды – низкое энергопотребление, высокая надежность (из-за отсутствия движущихся деталей) и устойчивость к внешним воздействиям и нагрузкам.

USB Flash Drive — портативное устройство для хранения и переноса данных с одного компьютера на другой. Компактный, легкий, удобный и удивительно простой в эксплуатации. Для его работы не нужны ни соединительные кабели, ни источники питания (включая батарейки), ни дополнительное программное обеспечение. Особенности USB Flash Drive: высокая скорость обмена данными по USB, защита от записи переключателем на корпусе, защита данных паролем, не требуются драйверы и внешнее питание, может быть отформатирован как загрузочный диск, хранение данных до 10 лет.

Теоретический предел емкости накопителей на базе CompactFlash – 137 Гбайт. На данный момент на рынке доступны модели емкостью от 16 Мбайт (которые потихоньку становятся архаизмами) до 12 Гбайт. Но самые распространенные – на 1 и 2 Гбайта. CompactFash – самый популярный формат на цифровых фотокамерах профессионального уровня. До 2003-2004 года на рынке карт памяти существовал ярко выраженный лидер CompactFlash. Этому способствовали несколько обстоятельств: емкость CF достигла 4 Гбайт, в то время как SD остановились на отметке 1 Гбайт; скорость работы CF значительно превышала возможности конкурента; целый легион компаний производил всевозможные контроллеры в формате CF. Однако с 2004 года стало заметно, что SecureDigital очень сильно укрепил позиции и догоняет более «старого» конкурента. Если раньше CF был единственный открытый стандарт, пригодный для использования в мобильных устройствах, то теперь производители новой портативной техники стали массово переходить на SD из-за их меньшего размера.


Глава 3. Современное состояние и пути совершенствования ВЗУ

3.1. Новейшие запоминающие устройства

3.1.1 Голографические устройства

В своё время 650 мегабайт, помещавшиеся на оптическом диске, казались не таким уж и малым объёмом. Но информации становится всё больше, и зачастую оказывается, что хранить её просто негде. Выходом из сложившейся ситуации могут стать новые технологии, в частности — голографическая запись. Почему именно она? Дело в том, что на появившиеся в стандарты Blu-Ray, Blue-Laser и HD-DVD («идейно» они очень похожи на обычный DVD) надежды мало. Пока закончатся ожесточённые «войны стандартов», 20 или 50 гигабайт, которые возможно записать на подобные носители, покажутся нам не слишком большими числами.А вот голографическая запись, анонсированная ещё в 2001 году компанией InPhase Technologies, позволяет записать на диск стандартного размера до 1,6 терабайта данных. Суть ноу-хау достаточно проста. Для записи луч лазера разделяется на опорный и сигнальный потоки, последний обрабатывается с помощью пространственного светового модулятора (Spatial Light Modulator — SLM). Это устройство преобразует предназначенные для хранения данные, состоящие из последовательностей 0 и 1, в «шахматное поле» светлых и тёмных точек — каждое такое поле содержит около миллиона бит информации.

После пересечения опорного луча и проекции «шахматной доски» образуется голограмма, и на носитель производится запись интерференционной картины. Изменяя угол наклона опорного луча, а также длину его волны или положение носителя, на одну и ту же площадь можно записать несколько различных голограмм одновременно — этот процесс называется мультиплексированием. Для чтения данных достаточно осветить диск соответствующим опорным лучом и «прочитать» получившийся срез голограммы, фактически – ту самую «шахматную доску» — с помощью сенсора. Так и восстанавливаются исходные биты информации. Кроме объёмов хранения, в технологии впечатляют и остальные характеристики. Так, например, заявленная скорость передачи данных составляет 960 мегабит в секунду.

Конечно же, Maxel и InPhase Technologies — далеко не единственные компании, работающие на ниве голографической записи данных. В Японии подобные устройства собирается выпускать фирма OptWare. Кстати, обитатели Страны Восходящего Солнца даже сформировали для продвижения этого стандарта альянс (HVD Aliance), в состав которого входят такие гиганты, как FujiFilm. Их технологическое решение выглядит даже несколько более привлекательным: во-первых, никаких громоздких картриджей, напоминающих о пятидюймовых дискетах, а во-вторых, конструкторы обещают сделать так, чтобы в новом дисководе можно было проигрывать и стандартные CD и DVD-диски.

3.1.2 MODS -диски

Физики из Имперского колледжа в Лондоне (Imperial College) разработали оптический диск размером с CD или DVD, в котором помещается 1 терабайт данных (или 472 часа высококачественного видео), что на порядки больше не только по сравнению с DVD-ROM, но и перспективным диском формата Blu-Ray. Новый формат назван MODS (MultiplexedOpticalDataStorage). Его секрет заключается не только в размерах одного пита (это углубления, которые считывает луч лазера) или их плотной упаковке. Главное новшество — один пит в MODS кодирует не один бит (1 или 0, как у всех прежних систем записи), а десятки бит.Дело в том, что каждый пит в новом формате не симметричен. Он содержит небольшую дополнительную впадинку, наклонённую вглубь под одним из 332 углов. Они создали аппаратуру и специальное программное обеспечение, позволяющее точно идентифицировать тонкие различия в отражении света от таких питов. По прогнозу физиков, серийные диски MODS и дисководы для них могут прийти на рынок между 2010 и 2015 годами, при условии финансирования дальнейшей работы группы. Интересно, что эти приводы будут обратно совместимыми с DVD и CD, хотя, разумеется, нынешние дисководы MODS-диски прочитать не смогут.

3.1.3 Перпендикулярная запись

Согласно прогнозам консультационной компании TrendFocus, жёсткие диски обычного настольного компьютера к 2010 году достигнут объёма более 500-600 гигабайт. На ноутбуки будут устанавливать диски поменьше — 300 гигабайт, а в КПК и разных мелких мобильных устройствах обычным делом будут объёмы около 20 гигабайт. Уже на подходе новая технология «перпендикулярной записи данных», основанная на ориентации магнитных частиц перпендикулярно поверхности диска, которая позволит записывать до 1 Тб в стандартном 3,5-дюймовом форм-факторе. Упрощённо, биты (намагниченные участки) не лежат «навзничь» на поверхности диска, как это имеет место в обычной (продольной) записи, а стоят вертикально, перпендикулярно плоскости диска..

3.2. Разрабатываемые технологии

3.2.1 Революционная технология хранения данных

Корпорация IBM разрабатывает революционную технологию хранения данных, которая, как ожидается, в перспективе позволит создавать относительно недорогие и надежные накопители очень высокой емкости.

В IBM отмечают, что широко распространенные сейчас жесткие диски, а также устройства хранения на базе флэш-памяти обладают недостатками. Так, например, традиционные винчестеры не слишком надежны вследствие наличия подвижных частей, да и обеспечиваемые ими скорости чтения/записи информации зачастую оставляют желать лучшего. Что касается флэш-памяти, то она деградирует с течением времени и пока остается довольно дорогой.

Новый тип памяти, разрабатывающийся исследователями IBM, получил название RaceTrack Memory, что можно перевести как «беговая» или «трековая» память. Такое имя технология получила потому, что в процессе чтения или записи информации биты данных как бы «скачут» вокруг нанопроводника. Принцип работы памяти типа RaceTrack сводится записи данных в стены магнитных доменов, представляющих собой границы между магнитными областями в проводнике. Оперировать битами данных при этом можно импульсами тока.

Специалисты компании IBM подчеркивают, что новая технология теоретически позволит создавать компактные энергонезависимые устройства хранения данных, вмещающие в сотни раз больше информации по сравнению с самыми емкими современными чипами флэш-памяти. При этом у накопителей типа RaceTrack Memory не будет подвижных частей, а каждый цикл записи информации будет занимать доли наносекунды. К другим преимуществам RaceTrack Memory исследователи IBM причисляют высокую надежность, сверхнизкое энергопотребление и дешевизну (при условии начала массового производства).

Впрочем, прежде чем накопители RaceTrack Memory появятся на рынке, ученым корпорации IBM предстоит проделать огромный объем работ. Специалисты рассчитывают получить первые прототипы памяти нового типа в течение двух-четырех лет. Еще примерно четыре года уйдут на коммерциализацию методики. Так что, ожидать появления накопителей RaceTrack Memory на рынке можно, в лучшем случае, к середине следующего десятилетия.

3.2.2 Твердотельные диски с интерфейсом USB 3.0

Компания OCZ Technology Group в ближайшее время начнет продажи внешних твердотельных дисков, использующих для подключения к компьютеру порт USB 3.0.

Названия грядущих накопителей не уточняются.

Интерфейс USB 3.0, также известный как SuperSpeed USB, позволяет передавать данные на скорости до 5 Гбит/с, что примерно в десять раз больше пропускной способности USB 2.0 (до 480 Мбит/с).

По имеющейся информации, новые твердотельные диски OCZ будут выполнены в тонком корпусе и снабжены восемью микрочипами флеш-памяти NAND (емкость не уточняется). Питание осуществляется непосредственно по шине USB; для подключения к ПК будет использоваться коннектор micro-USB.

Ожидается, что SSD-диски OCZ с поддержкой интерфейса SuperSpeed USB дебютируют на предстоящей выставке бытовой электроники CES 2010, которая пройдет в Лас-Вегасе (Невада, США) с 7 по 10 января.

Напомним, что внешние накопители с поддержкой USB 3.0 уже не новость, хотя массового внедрения стандарта следует ожидать только в 2011 году. Отчасти это связано с тем, что корпорация Intel отложила реализацию поддержки интерфейса USB 3.0 в своих чипсетах до начала следующего десятилетия.

3.2.3 Самый емкий твердотельный накопитель в мире

Компания ViON Corporation выпустила твердотельный накопитель HyperStor-6200, который, как утверждается, на сегодня является самым емким в мире: устройство способно вмещать до 100 Тб информации.

В семейство накопителей ViON HyperStor входят модели емкостью от 256 Гб.

В HyperStor-6200 использованытехнологии Hitachi Data Systems и Texas Memory Systems. Накопитель может выполнять до 5 млн операций ввода/вывода в секунду (IOPS), а его пропускная способность достигает 60 Гб/с. Время отклика устройства — всего 72 микросекунды; поддерживаются интерфейсы InfiniBand и Fibre Channel.

Накопитель HyperStor-6200 предназначен для использования в вычислительных центрах с интенсивным обменом информацией. Это могут быть системы обработки банковских транзакций или сейсмических данных, высокопроизводительные информационные хранилища, станции видеомонтажа, рендеринга сложной графики и т. п.

Стоимость устройства не называется, однако, по оценкам экспертов, она может составлять не одну сотню тысяч долларов. Накопитель ориентирован на крупные корпорации, исследовательские и правительственные учреждения.

3.2.4 Хранение данных тысячу лет

Компания Cranberry разработала технологию, позволяющую увеличить время хранения информации на оптических носителях в сотни раз.

Комплект Cranberry Starter Pack стоит около 5 000 долларов.

Диски нового типа, получившие название DiamonDisc, по заявлениям Cranberry, гарантируют сохранность данных в течение тысячи лет. Для сравнения: в случае с обычными DVD проблемы при считывании информации могут возникнуть уже через пять–десять лет, даже если носитель вообще не вынимался из коробки.

Секрет долговечности Cranberry заключается в использовании материала, не подвергающегося деградации с течением времени. Для записи файлов требуется специальное оборудование, однако считать данные можно при помощи обычного DVD-привода. Емкость носителей DiamonDisc стандартна — 4,7 Гб.

Компания Cranberry предлагает услуги записи DiamonDisc из расчета $35 за один диск или $30 за два и более носителей. Желающие также могут приобрести специальный рекордер для «прожига» дисков DiamonDisc, который стоит около $5 000.

3.2.5 Сверхтонкий микрочип флеш-памяти

Южнокорейская компания Samsung объявила о разработке сверхтонких микрочипов флеш-памяти NAND, предназначенных для использования в мобильных устройствах.

Микрочипы флеш-памяти Samsung нового поколения.

Представленный модуль состоит из восьми микросхем емкостью 32 Гбит каждая, произведенных с применением 30-нанометровой технологии. Таким образом, модуль может хранить до 32 Гб информации.

По заявлениям разработчиков, новый микрочип на сегодня является самым тонким в своем классе. Его толщина составляет всего 0,6 миллиметра, что примерно на 40% тоньше аналогичных решений, уже доступных на рынке. За счет уменьшения габаритов модулей разработчики получат возможность наращивать размер памяти выпускаемых устройств, не боясь за размеры конечных изделий.

Ожидается, что сверхтонкие микрочипы найдут применение в смартфонах, портативных медиаплеерах, нетбуках и прочих гаджетах. Кроме того, новые флеш-модули могут быть востребованы при производстве твердотельных накопителей (SSD). Кстати, по оценкам аналитической компании iSuppli, объем поставок SSD-дисков вырастет со $127 млн в прошлом году до $883 млн в текущем. В штучном выражении, как ожидается, поставки увеличатся с 1,4 до 5,8 млн единиц.

Заключение

Таким образом, можно сказать, что жесткие диски еще долго будут сохранять лидирующие позиции на рынке ВЗУ.

Рассмотрев каждый вид записывающего устройства, можно сделать выводы, что самым дешевым устройством является дискета, самым долговечным – MO, а лучше соотношение цены и качества совмещает в себе DVD.

Я считаю, что нам стоит уделить должное внимание на нововведение в оптических дисках – Blu-Ray, ведь достоинства Blu-Ray Disc состоят не только в огромной емкости, но и в том, что его разрабатывали и собираются производить сразу девять крупнейших электронных корпораций, что должно застраховать пользователей от проблем несовместимости приводов, хотя мы и видим существенный недостаток — это предполагаемая высокая цена приводов и дисков и проблемы обратной совместимости с предыдущими носителями информации. Но я думаю, что ситуация должна улучшиться после привлечения сторонних производителей, которые так же возможно помогут разобраться и с защитой от копирования, хотя вряд ли — девять основных компаний, думаю, смогут настоять на соблюдении условия полного соответствия формату. А насчет совместимости — все зависит от массовости старта Blu-Ray, его разрекламированности и грядущей популярности.

Мы убедились, что не существует универсального совершенного записывающего устройства ПК, но у человечества открыто множество дорог к развитию технологии, с каждым днем ученые совершают все новые и новые открытия. К тому же, на данный момент ведутся разработки нано-технологий, которые могут привести к перевороту в сфере информационных технологий.

Мысль не стоит на месте, и никто не знает, что еще может изобрести человек в скором времени.


Список литературы

1. Архитектура ПК, комплектующие, мультимедиа. — Рудометов Е., Рудометов В. – Питер, 2000.

2. Батыгов М., Денисов О. «Накопители на жестких магнитных дисках с интерфейсом IDE».

3. Гейн А.Г., Сенокосов А.И. Информатика. — М.: Дрофа, 1998.

4. Гуриков В. Восковой, виниловый, лазерный…//ТМ.-2001

5. Колесниченко О., И. Шишигин «Аппаратные средства РС» 3-е издание. СПб, БХВ – Санкт-Петербург, 1999.

6. Кушниренко А.Г. и др. Информатика. — М.: Дрофа, 2000.

7. Кузнецов А.А. и др. Основы информатики. — М.: Дрофа, 2001.

8. Лебедев Г.В., Кушниренко А.Г. 12 лекций по преподаванию курса информатики. — М.: Дрофа, 2002.

9. hard.compulenta.ru/

10. ru.wikipedia.org/

еще рефераты
Еще работы по информатике