Реферат: Расчет задач вычислительных систем

МІНІСТЕРСТВО ОСВІТИ ТА НАУКИ УКРАЇНИ

НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ

“ХАРКІВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ”

Кафедра “Обчислювальна техніка та програмування”

РГЗ

з курсу “Комп’ютерні системи”

Варіант № xxxx

Виконав:

Студент групи xxxx

xxxxxx.

Перевірив:

xxxxxxxxx.

Харків 2007

Задача №1

Составить алгоритм и программу вычисления функции на параллельной структуре, используя разложение функции в ряд Маклорена.

/>,

де />– условие окончания расчетов.

Решение

Однопроцессорный алгоритм решения заданной задачи:

/>

Многопроцессорный алгоритм решения задачи:

/>

Программа на параллельном Паскале:

Program par_pascal;

Var

R, S, x, f, L, e: real;

K: longinteger;

BEGIN

FORK;

begin

read(e);

R := 0;

K = 1;

end;

begin

read(x) ;

S := x;

F := x*x;

end;

JOIN;

repeat

FORK;

begin

R := R + S;

L = S*(-1);

end;

begin

K = K + 2;

Z=1/(K*(K-1))

end;

JOIN;

S := L*z;

until (ABS(S) > e);

writeln(R);

END.

Задача №2

Спроектировать два универсальных программируемых конвейера с числом звеньев m1 и m2 для вычисления массивы С длинной n элементов. Определить и сравнить эффективности конвейеров и выполнить анализ полученных результатов. Определить размер буферной памяти между звеньями.

Длительность операций:

Чтение, запись

4

+, -

3

*, /

5

/>, />

6

инкремент, декремент

1

m1= 5, m2= 6.

/>

Решение

Составим таблицу операций:

№ п/п

Операция

Количество тактов

1

чтение />

4

2

чтение />

4

3

вычисление />

5

4

вычисление />

5

5

вычисление />

3

6

вычисление />

3

7

вычисление />

5

8

вычисление />

5

8

вычисление />

3

9

вычисление />

--PAGE_BREAK--

3

10

вычисление/>

6

11

вычисление/>

5

12

вычисление/>

5

13

запись />

4

14

n = n -1

1

15

ifn >…, gotoп. 1

1

Тпосл = 6т + 6×5т +3×4т + 4×3т + 2×1т = 62т

при m = 4 Тзв.треб.1 62т / 5 = 12,4 = 13;

при m = 6 Тзв.треб.2 62т / 6 = 10,33 = 11;

Распределение операций между звеньями конвейера при m = 5:

/>

Входные данные поступают на первое (/>и />) звено, обратной линией отмечено управление конвейером (когда на первом звене выполняется условие n>0, то на пятом звене оно соответствует условию n-4>0; это условие проверяется на пятом, и сигнал о чтении следующего значения или прекращение чтения поступает на первое звено).

Распределение операций между звеньями конвейера при m = 6:

/>

Графики загрузки процессоров

/>

Для m = 5 Тдейств = 13.

Для m = 6 Тдейств = 11.

/>

Для m = 5 />

при />/>.

Для m = 6 />

при />/>,

/>– эффективность конвейера на 6-ть шагов выше.

Размер буферной памяти между звеньями:

при m = 5 – 5 элементов;

при m = 6 – 5 элементов.

Критическая длина массива

m=5m=6

/>=1/>=1

/>/>

/>/>

Вывод: Наиболее эффективна конвейерная обработка при наибольшем числе звеньев конвейера. Критическая минимальная эффективная длина массива для обработки конвейером – 2.

Задача №3

Реализовать заданные функции на вычислительных системах с программируемой структурой.

а) />

б) />

Решение

a) />

Схема элементарногопроцессора:

/>

б) />= />

Схема элементарного процессора:

/>

Задача №4

Вероятностные модели. По матрице вероятностных переходов составить граф марковской цепи и систему линейных алгебраических уравнений. Определить среднюю продолжительность пребывания вычислительной системы в каждом состоянии.

/>

Составили граф-схему модели:

/>

Система уравнений:

/>

Решили систему уравнений:

/>

/>

Определили середнюю продолжительность каждого состояния:

t=/>; t1=/>; t2=/>; t3=/>.

Задача №5

По заданной структуре вычислительной системы сформулировать и при необходимости дополнить исходные данные. Составить таблицу состояний, граф переходов и систему уравнений (систему не решать). Преобразовать полученный граф переходов и систему уравнений в задачу Шерра II рода.

/>

Каждый модуль может находиться в одном из состояний: рабочее – “1”, нерабочее – “0”.

Состояния системы:

S0— все ЭВМ рабочие;

S1 — одна из ЭВМ 2, ЭВМ 3 не работает, а ЭВМ 1 работает;

S2 — ЭВМ 2, ЭВМ 3 не работают, ЭВМ 1 работает;

    продолжение
--PAGE_BREAK--

S3 — ЭВМ 2, ЭВМ 3 работают, ЭВМ 1 не работает;

S4 — одна из ЭВМ 2, ЭВМ 3 не работает, а ЭВМ 1 не работает;

S5 — все ЭВМ не работают.

Таблица состояний:

Si

ЭВМ2, ЭВМ3

ЭВМ1

Состояние системы

S

11

1

1

S1

01v1

1

1

S2

00

1

1

S3

11

1

S4

10v01

S5

00

Система уравнений:

/>

Граф переходов имеет вид:

/>

Исключим выходящие стрелки из отказных состояний и получим граф переходов для задачи Шерра II рода:

/>

Система уравнений:

/>

Задали />и />. Решили данные системы уравнений в математическом пакете MathCad:

/>

/>

Полученные вектор-матрицы – решения сформулированных систем уравнений, задающих вероятности состояний вычислительной системы.


еще рефераты
Еще работы по информатике