Реферат: Устройства СВЧ

--PAGE_BREAK--2      РЕАКТИВНЫЕ ЭЛЕМЕНТЫ


Реактивные нагрузки, применяемые в качестве мер при измере­ниях на СВЧ, а также в согласующих и управляющих устройст­вах СВЧ, должны обладать стабильным нормированным входным сопротивлением, величина которого может быть строго рассчитана по геометрическим размерам. В качестве реактивных двухполюс­ников обычно используют короткозамкнутые отрезки закрытых ли­ний передачи, иначе говоря короткозамкнутые шлейфы. Реактив­ное сопротивление короткозамкнутого шлейфа определяют по фор­муле<img width=«93» height=«24» src=«ref-1_463078626-312.coolpic» v:shapes="_x0000_i1031">, где ZВ — нормированное волновое сопротивление;  b — коэффициент фазы, l — длина шлейфа. Основным параметром, характеризующим качество реального шлейфа, является величина входного КСВ, которая должна быть как можно более высокой. В нерегулируемых коаксиальных или волноводных шлейфах с не­подвижным запаянным поршнем КСВ может достигать. 500 и бо­лее. В регулируемых шлейфах с подвижными поршнями значения КСВ из-за дополнительных потерь в контактах   получаются ниже, однако,   как   правило, превышают  100. Холостой ход в шлейфах, т.е.   размыкание выхода, может  быть  реализован только в закрытых многопроводных   линиях    передачи, когда устранено излучение.


2.1         Поршни
 Возможные конструктивные  решения   подвижных  короткозамыкающих поршнейдля прямоугольных   волноводов   показаны на рис. 3 для продольных    сечений,     параллельных  узкой стенке волновода. В первой  конструкции   (рис. 3, а)  разрезные пружинные контакты А   вынесены   от  закорачивающей стенки В внутрь  вол­новода на расстояние lв/4. По­этому   контакты   оказываются в сечении волновода с нулевы­ми   значениями    продольного тока на стенках волновода, и неидеальность     контактов   не приводит   к   потерям   мощно­сти.

<img width=«221» height=«322» src=«ref-1_463078938-20382.coolpic» v:shapes="_x0000_i1032">

Рис. 3 Волноводные короткозамыкающие поршни:

1— волновод;  2 — поршень;  3 — тяга

Во второй конструкции поршня (рис. 3, б) механические кон­такты А включены в волновод через два трансформирующих от­резка линии передачи с низкими значениями нормированного волнового сопротивления ZВ1 и ZВ2. Предполагая, что активное сопро­тивление контактов в точке А равно rа, и применяя дважды фор­мулу пересчета сопротивления через четвертьволновый трансформатор, находим  входное сопротивление в точках В: rB= =rA(ZВ1/ZВ2)2. При выборе ZВ1<<ZВ2 удается существенно уменьшить эквивалент­ное сопротивление контакта rA  и увеличить КСВ поршня.
В третьей конструкции поршня (рис. 3, в) точки механического контакта помещены в середину свернутого короткозамкнутого полуволнового отрезка линии передачи, состоящего из двух каскадно включенных четвертьволновых отрезков с волновыми сопротивлениями ZВ1 и ZВ2. К активному сопротивлению контактаrA добавляется бесконечное реактивное сопротивление короткозамкнутого четвертьволнового шлейфа с волновым сопротивлением ZВ2, и сумма сопротивлений контакта и шлейфа трансформируется четвертьволновым отрезком с волновым сопротивлением ZВ1в практически нулевое сопротивление в точке В (т. е. в точке В создается виртуальное короткое замыкание для токов СВЧ).

Рассмотренные принципы выполнения волноводных поршня непосредственно применимы и в коаксиальных поршнях для диа­пазона коротких сантиметровых волн. На дециметровых и более длинных волнах применяются коаксиальные поршни с обычными пружинными контактами в точках короткого замыкания линии передачи, так как четвертьволновые трансформирующие отрезки оказываются слишком громоздкими.


2.2    Диафрагмы
Диафрагмаминазывают тонкие металлические перегородки, частично перекрывающие поперечное сечение волновода. В прямоугольном волноводе наиболее употребительны симметричная индуктивная, симметричная емкостная и резонансная диафрагмы, показанные на рис. 4.   
<img width=«217» height=«266» src=«ref-1_463099320-13598.coolpic» v:shapes="_x0000_i1033">

Рис. 4 Диафрагмы в прямоугольном волноводе


В индуктивной диафрагме (рис. 4, а) поперечные токи на широких стенках волновода частично замыкаются через пластины, соединяющие эти стенки. В магнитном поле токов, текущих по пластинкам диафрагмы, запасается магнитная энергия. Схема замещения индуктивной диафрагмы представляет собой индуктивность, вклю­ченную параллельно в линию передачи. Нормированную реактивную проводимость индуктивной диафрагмы bLопределяют по прибли­женной формуле

<img width=«187» height=«24» src=«ref-1_463112918-440.coolpic» v:shapes="_x0000_i1034">                                                                            (2.2.1)

где <img width=«21» height=«23» src=«ref-1_463113358-212.coolpic» v:shapes="_x0000_i1035"> — длина волны в волноводе; а – размер широкой стенки волновода; dL— ширина зазора диафрагмы.

Емкостная диафрагма (рис. 4, б) уменьшает зазор между ши­рокими стенками волновода, между кромками диафрагмы концен­трируется поле Е и создается некоторый запас электрической энергия. Поэтому схемой замещения емкостной диафрагмы является емкость, включенная параллельно в линию передачи. Нормированная реактивная проводимость емкостной диафрагмы bсопределяется по приближенной формуле

<img width=«220» height=«24» src=«ref-1_463113570-455.coolpic» v:shapes="_x0000_i1036">                                                                                          (2.2.2.)

где b — размер узкой стенки волновода; dc — ширина зазора диа­фрагмы. Емкостная диафрагма сильно снижает электрическую прочность волновода.

Резонансная диафрагма (резонансное окно) — металлическая пластинка с отверстием прямоугольной или овальной формы(рис. 4, в), содержащая в себе элементы индуктивной и емкостной диафрагм. Размеры отверстия резонансной диафрагмы могут быть выбраны так, чтобы на заданной резонансной частоте диа­фрагма не оказывала влияния на распространение волны H10в волноводе, т. е. имела нулевую проводимость. Схема замещения резонансной диафрагмы имеет вид параллельного резонансного контура, включенного в линию передачи параллельно. Прибли­женно резонансную частоту резонансной диафрагмы определяют из условия равенства волновых сопротивлений линии передачи, эквивалентной волноводу, и отверстия диафрагмы на основании формулы (2.2.3):

<img width=«128» height=«47» src=«ref-1_463114025-490.coolpic» v:shapes="_x0000_i1037">                                                                                           (2.2.3)
                              <img width=«245» height=«53» src=«ref-1_463114515-553.coolpic» v:shapes="_x0000_i1038">                           (2.2.4)



Можно убедиться, что выбранной резонансной длине волны l0  в формуле (2.2.4) соответствует множество диафрагм с отверстиями различных размеров, начиная с узкой щели длиной l0/2 и кончая полным поперечным сечением волновода. Эти резонансные диафраг­мы обладают разной внешней добротностью, т. е. добротностью эквивалентного  колебательного LC-контура <img width=«128» height=«27» src=«ref-1_463115068-354.coolpic» v:shapes="_x0000_i1039"> с учетом  влияния   согласованной с двух  концов линии передачи, в ко­торую включен этот контур.


    продолжение
--PAGE_BREAK--2.3    Штыри
Индуктивный    штырь,   показанный    вместе   со   схемой   замещения на рис.5, а, представляет собой проводник круглого сечения, установленный в по­перечном сечении прямо­угольного волновода по на­правлению силовых линий поля Е, и соединенный с двух концов с широкими стенка­ми волновода.

<img width=«225» height=«178» src=«ref-1_463115422-11284.coolpic» v:shapes="_x0000_i1040">

Рис. 5 Индуктивный штырь в прямоугольном волноводе

Схема заме­щения индуктивного штыря содержит параллельно вклю­ченную индуктивность и два последовательных емкостных сопротивления, учитываю­щих конечную толщину шты­ря. Номиналы элементов определяются по формулам и графикам, имеющимся в справочной литературе. Индуктивные штыри не снижают электри­ческой прочности волновода и просты в изготовлении. Когда необходимы низкие значения параллельного сопротивления ха, приме­няют решетки из нескольких индуктивных штырей, располагаемых в поперечном сечении волновода, как показано на рис. 5, б.

Емкостный   штырь    (рис. 6)    представляет     собой   круг­лый  проводник, установленный  по направлению силовых линий поля Е и соединенный однимконцом с широкой стенкой волно­вода. Схема замещения емкостного штыря содержит последовательный LC-контур, включенный параллельно в линию передачи. Емкость этого контура связана с концентрацией поля Eв области разомкнутого конца штыря, а индуктивность обусловлена прохож­дением токов по штырю. При некоторой длине штыря, близкой к l/4, проводимость последовательного контура обращается в бесконечность, и волновод закорачивается.

<img width=«249» height=«105» src=«ref-1_463126706-7097.coolpic» v:shapes="_x0000_i1041">

Рис. 6 Емкостной штырь в прямоугольном волноводе
Более ко­роткие штыри имеют ем­костную проводимость: при длинах штыря, боль­ших резонансной, прово­димость носит индуктив­ный характер. Последова­тельные емкостные сопро­тивления в схеме заме­щения учитывают конечность толщины штыря. При малых диаметрах штыря эти сопро­тивления малы, и их влиянием можно пренебречь. Емкостные штыри в основном применяют в качестве регулируемых реак­тивных элементов, вводимых внутрь волновода с помощью резь­бовых отверстий на широкой стенке. Однако емкостные штыри заметно снижают электропрочность волноводов, и поэтому в мощ­ных трактах они не находят применения.


3      РАЗЪЕМЫ И СОЧЛЕНЕНИЯ В ТРАКТАХСВЧ
Для осуществления сборки и разборки трактов отдельные узлы и устройства СВЧ оснащают специальными разъемами, которые должны обеспечивать надежный электрический контакт в местах соединения проводников между собой. Основные требования к разъемам состоят в сохранении согласования и электрической прочности тракта при минимальном ослаблении мощности и от­сутствии: паразитного излучения.

В высококачественных соединителях для гибких коаксиальных кабелей контакты обеспечивают с помощью пружинных цанг и штекеров (рис. 7, а), удерживаемых в соединении посредством внешних резьбовых соединений или иных фиксирующих приспособ­лений. Соотношение диаметров проводников на любом участке внутри коаксиальных высокочастотных соединителей подбирают таким образом, чтобы с учетом параметров диэлектрика обеспечи­валось постоянство волнового сопротивления линии. Согласование в высокочастотных коаксиальных соединителях в сильной степени зависит от заделки кабеля и при аккуратном выполнении характеризуется среднеквадратическим значением КСВ порядка 1,05—1,15.

Высокочастотное соединители для жестких коаксиальных, вол­новодов на повышенный уровень мощности выполняют без опорных диэлектрических шайб. Эскиз возможной конструкции коаксиального соединителя для жесткой коаксиальной линии показан на рис. 7, б. Во многих случаях высокочастотные соединители для жестких коаксиальных волноводов должны быть герметичнымикак для защиты внутренних рабочих поверхностей проводника от внешних воздействий, так и для повышения электрической прочности тракта путем создания  внутри тракта избыточного давления.  


3.1    Соединители волноводных трактов
Соединение отрезков прямоугольных волноводов осуществляют с помощью фланцев двух типов: контактных и дроссельных.

Контактные притертые фланцы требуют тщательной обработки и строгой параллельности соприкасающихся поверхностей и могут обеспечивать высокое качество сочленения, которое, однако, быстро ухудшается при много­кратных пересборках тракта.
<img width=«393» height=«276» src=«ref-1_463133803-47052.coolpic» v:shapes="_x0000_i1042">

Рис. 7Высокочастотные коаксиальные соединители:

1 — штыревой контакт 2 — гнездовой контакт; 3 — штыревая втулка; 4 — гнез­довая втулка

 


<img width=«228» height=«166» src=«ref-1_463180855-14848.coolpic» v:shapes="_x0000_i1043">

Рис. 8    Контактный волноводный фланец:

1— контактная     прокладка;     2 — канавки с  уплотнителем;   3 — отверстия   

для  фик­сирующих штифтов
Для улучшения качества кон­такта между фланцами на штифтах помещают бронзовую прокладку, имеющую ряд разведенных пружинящих лепест­ков, прилегающих к внутрен­нему периметру поперечного сечения соединяемых волново­дов (рис. 8). Защита сочле­нения от пыли и влаги осуще­ствляется резиновыми уплотнительными кольцами, уложен­ными в канавках на фланцах по обе стороны от контактной прокладки.

В дроссельном фланце (рис. 9) контакт между волноводами осуществляется через последовательный короткозамкнутый шлейф длиной lВ/2, выполненный в форме канавок и углубления внутри фланца. Четвертьволновой участокмежду точкой короткого замы­кания А и точкой механического контакта В является коаксиаль­ным волноводом с волной типаН11, а второй четвертьволновый участок между точкой механического контакта В и точкой вклю­чения шлейфа в волновод С является отрезком радиальной линии передачи. Точка механического контакта попадает в узел распре­деления поверхностного тока Jи поэтому на сопротивлении контакта rкне происходит заметного выделения мощности. Виртуаль­ное короткое замыкание между сочленяемыми волноводами в точ­ке С обеспечивается тем, что суммарная длина дроссельных кана­вок от точки А до точки С составляет lв/2. Для защиты полости тракта от внешних воздействий применяют уплотнительную про­кладку, укладываемую в добавочную концентрическую канавку.

<img width=«371» height=«180» src=«ref-1_463195703-16164.coolpic» v:shapes="_x0000_i1044">

Рис. 9Дроссельный волноводный фланец: a— эскиз; б — схема замещения
Дроссельные фланцы не критичны к качеству механического кон­такта и небольшим перекосам в сочленении, не снижают электри­ческой прочности тракта. Их недостатками являются зависимость качества согласования от частоты и сложность конструкции.


    продолжение
--PAGE_BREAK--
еще рефераты
Еще работы по коммуникациям