Реферат: Разработка системы учёта посещений

--PAGE_BREAK--<img width=«135» height=«68» src=«ref-1_1605106366-659.coolpic» v:shapes="_x0000_i1031">
где λ — интенсивность отказов. Тогда наработка на отказ будет равна:
<img width=«83» height=«54» src=«ref-1_1605107025-322.coolpic» v:shapes="_x0000_i1032">
1.5 Расчёт надёжности
Задачей расчета является определение вероятности Р(t) безотказной работы на 1000 часов эксплуатации и общее время безотказной работы t (m). Вероятность безотказной работы должна учитывать отказы: катастрофический (внезапный), параметрический (постепенный).

При работе элементов РЭА и всего устройства в целом используются ряд положений надежности:
<img width=«206» height=«48» src=«ref-1_1605107347-424.coolpic» v:shapes="_x0000_s1026">
Вероятность безотказной работы элементов РЭА одного типа

где N — число компонентов в элементе, P — вероятность безотказной работы компонента i-го числа.

1.                 При нормальной эксплуатации в лабораторных условиях (t°C=20), когда закончен период приработки, интенсивность отказов может быть принята постоянной. Имеется специальная справочная таблица, где указывается интенсивность отказов для всех компонентов РЭА.

Для  элементов  состоящих  из группы компонентов, суммарная интенсивность определятся как
<img width=«163» height=«56» src=«ref-1_1605107771-583.coolpic» v:shapes="_x0000_s1027">


2.                 <img width=«337» height=«66» src=«ref-1_1605108354-2127.coolpic» v:shapes="_x0000_s1028">
Величина наработки на отказ (время безотказной работы) определяется  по  закону:
<img width=«50» height=«24» src=«ref-1_1605110481-135.coolpic» v:shapes="_x0000_s1030"> <img width=«32» height=«37» src=«ref-1_1605110616-222.coolpic» v:shapes="_x0000_s1029">


где         равна       с учетом поправочных коэффициентов на условия  эксплуатации.
3.                 Вероятность безотказной работы за время t
<img width=«166» height=«52» src=«ref-1_1605110838-537.coolpic» v:shapes="_x0000_i1033">
где t берется как  правило равное 1000 часов.

4.                 Значение интенсивности отказов компонентов РЭА зависит от условий работы аппаратуры и режимов использования компонентов. Фактически интенсивность отказов зависит от нагрузки на элементы и температуры. Для учета этих факторов используется поправочный температурный коэффициент Кт в зависимости от коэффициента нагрузки Кн .

Предварительно, если есть такая возможность, необходимо рассчитать Кн, используя реальные значения токов и напряжений, а также рассеиваемой мощности на элементах предлагаемого устройства. Если такой возможности нет, то выбирают наихудший случай, тогда считают, что элемент работает со 100% нагрузкой то есть Кн = 1.Температура может меняться в пределах от 20°С (нормальные лабораторные условия) до 60°С и выше.
Таблица 2.1 — Поправочный температурный коэффициент Кт для германиевых диодов и резисторов



Таблица 2.2 — Поправочный темп. коэфф-т Кт для кремниевых диодов



Таблица 2.3 — Поправочный температурный коэффициент Кт для германиевых  диодов транзисторов

Т0С

Кт

0,2

0,4

0,6

0,8

1

20

0,2

0,6

0,7

0,8

1,0

30

0,5

0,7

1,0

1,2

1,4

40

0,7

1,2

1,4

1,6

1,8

50

1

1,4

2,0

2,4

3,4

60

1,4

2,0

2,5

3,2

5,0




Таблица 2.4 — Поправочный температурный коэффициент Кт для  интегральных схем при Кн=1 Можно использовать для кремниевых транзисторов

Т0С

Кт

65

2,5

85

5

105

9

125

15

Т0С

Кт



1

25

1

45

1,2

60

1,5


Таблица 2.5 — Поправочный температурный коэффициент Кт для керамических конденсаторов

Т0С

Кт

0,2

0,4

0,6

0,8

1

20

0,1

0,15

0,25

0,5

1

30

0,1

0,2

0,3

0,6

1,2

40

0,1

0,25

0,4

0,8

1,4

50

0,15

0,3

0,5

1,0

1,6

60

0,2

0,4

0,6

1,2

2,0



Таблица 2.6 — Поправочный температурный коэффициент Кт для  бумажных и металлобумажных конденсаторов

Т0С

Кт

0,6

0,8

1

20

0,15

0,4

1

30

0,2

0,6

1,4

40

0,25

0,8

2,0

50

0,3

1,2

2,5

60

0,4

1,6

3,0



Таблица 2.7 — Поправочный температурный коэффициент Кт для трансформаторов и других моточных изделий

Т0С

Кт

0,2

0,4

0,6

0,8

1

20

0,1

0,2

0,5

1,0

1,2

30

0,1

0,3

0,8

1,5

2,2

40

0,1

0,5

1,2

2,0

4,0

50

0,15

0,1

2,0

4,0

7,0

60

0,2

2,0

3,0

7,0

12,0



Причем достаточно тяжелые эксплуатационные условия Кн =1 и Т°С= 60. Для этих технических условий выбираем поправочный коэффициент Кт.

5.                 В реальных условиях эксплуатации элемента РЭА могут подвергаться воздействию: вибрации, ударов, давлению, солнечной и проникающей радиации и других факторов. Поэтому надежность элементов реальной аппаратуры значительно отличается от надежности аппаратуры в лабораторных условиях эксплуатации элементов. Ориентировочный расчет производится с помощью интегрального поправочного коэффициента Кλ.

По техническим условиям устройство относится к стационарно-наземным устройствам.

Сама же ринципиальная схема разрабатываемого устройства приведена в графической части диплома на формате А1.
1.7 Выбор элементной базы
Любое устройство вычислительной техники на низшем конструктивном уровне содержит следующие элементы: микросхемы, полупроводниковые приборы, резисторы, конденсаторы, коммутационные элементы и так далее.

Выбор конкретных элементов для построения проектируемого устройства производится после анализа множества взаимосвязанных факторов. Всю совокупность факторов, влияющих на принятие решения, можно разбить на группы по следующим признакам:

¾назначение и область применения проектируемого устройства;

¾заданные электрические характеристики, такие как рабочий диапазон частот, ограничение на потребляемую мощность, точность и стабильность характеристик и тому подобное;

¾условия эксплуатации: климатические и механические воздействия, квалификация обслуживающего персонала и тому подобное;

¾конструктивные показатели: требуемая надежность, ограничения на габаритные размеры и массу, заданные тепловые режимы, механическая прочность и так далее;

¾уровень развития и наличие элементной базы, возможности ее применения в данной конструкции;

¾организационно-производственные показатели: сроки, отведенные на конструирование, размер партии, серийность выпуска.

Сделав, анализ приведенных выше групп факторов с учетом состояния современного мирового уровня развития микроэлектронной и вычислительной техники, произведем выбор и радиоэлектронных элементов разрабатываемого устройства. На основе выбора компонентов будем разрабатывать печатную плату.

Микросхема– это стандартный счётчик на основе тригеров: К155ИЕ7. Резисторы выдерживающие работу на высокой частоте и скачки напряжения МЛТ-0,125-1кОм 5% и МЛТ-0,125-140 Ом 5%.Диоды АЛ307А. 700мВт. Кнопки МП-3. ИК диоды АЛ156В. Микросхема К155ЛН1    продолжение
--PAGE_BREAK--
1.8 Описание принципа действия
В основе принципа работы лежит отражение светового потока от предметов. При появлении какого-нибудь объекта в поле видимости датчика. Световой поток, испускаемый светодиодом инфракрасного диапазона. не видимый человеческим глазом диапазон света прерывается и сигнал поступает на счётчик по принципу (+1) и (-1). После этого отражённый световой поток улавливается чувствительным датчиком расположенным возле светодиода, но отделённый от него перегородкой, чтобы не было обратной связи. Сигнал попадающий на линию задержки приводит её в состояние готовности. После того когда объёкт пропадает из поля видимости датчика, отражённый сигнал уже не возвращается к приёмнику. Приёмник находится в состоянии покоя и управляющий сигнал пропадает.



2. Конструкторско-технологический раздел
2.1 Разработка печатной платы
При разработке различных устройств радиолюбители пользуются обычно двумя способами изготовления печатных плат – прорезанием канавок и травлением рисунка, используя стойкую краску. Первый способ прост, но непригоден для выполнения сложных устройств. Второй – более универсален, но порой пугает радиолюбителей сложностью из-за незнания некоторых правил при проектировании и изготовлении травленых плат.

Проектировать печатные платы наиболее удобно в масштабе 2:1 на миллиметровке или другом материале, на котором нанесена сетка с шагом 5 мм. При проектировании в масштабе 1:1 рисунок получается мелким, плохо читаемым и поэтому при дальнейшей работе над печатной платой неизбежны ошибки. Масштаб 4:1 приводит к большим размерам чертежа и неудобству в работе.

Все отверстия под выводы деталей в печатной плате целесообразно размещать в узлах сетки, что соответствует шагу 2,5 мм на реальной плате (далее по тексту указаны реальные размеры). С таким шагом расположены выводы у большинства микросхем в пластмассовом корпусе, у многих транзисторов и других радиокомпонентов. Меньшее расстояние между отверстиями следует выбирать лишь в тех случаях, когда это крайне необходимо.

В отверстия с шагом 2,5 мм, лежащие на сторонах квадрата 7,5 х 7,5 мм, удобно монтировать микросхему в круглом металлостеклянном корпусе. Для установки на плату микросхемы в пластмассовом корпусе, с двумя рядами жестких выводов, в плате необходимо просверлить два ряда отверстий. Шаг отверстий – 2,5 мм, расстояние между рядами кратно 2,5 мм. Замечу, что микросхемы с жесткими выводами требуют большей точности разметки и сверления отверстий.

Если размеры печатной платы заданы, вначале необходимо начертить ее контур и крепежные отверстия. Вокруг отверстий выделяют запретную для проводников зону с радиусом, несколько превышающим половину диаметра металлических крепежных элементов.

Далее следует примерно расставить наиболее крупные детали – реле, переключатели (если их впаивают в печатную плату), разъемы, большие детали и т.д. Их размещение обычно связано с общей конструкцией устройства, определяемой размерами имеющегося корпуса или свободного места в нем. Часто, особенно при разработке портативных приборов, размеры корпуса определяют по результатам разводки печатной платы.

Цифровые микросхемы предварительно расставляют на плате рядами с межрядными промежутками 7,5 мм. Если микросхем немного, все печатные проводники обычно удается разместить на одной стороне платы и обойтись небольшим числом проволочных перемычек, впаиваемых со стороны деталей. Попытки изготовить одностороннюю печатную плату для большего числа цифровых микросхем приводят к резкому увеличению трудоемкости разводки и чрезмерно большому числу перемычек. В этих случаях разумнее перейти к двусторонней печатной плате.

Условимся называть ту сторону платы, где размещены печатные проводники, стороной проводников, а обратную — стороной деталей, даже если на ней вместе с деталями проложена часть проводников. Особый случай представляют платы, у которых и проводники, и детали размещены на одной стороне, причем детали припаяны к проводникам без отверстий.

Микросхемы размещают так, чтобы все соединения на плате были возможно короче, а число перемычек было минимальным. В процессе разводки проводников взаимное размещение микросхем приходится менять не раз.

Далее можно начинать собственно разводку. Полезно заранее измерить и записать размеры мест, занимаемых используемыми элементами. Резисторы МЛТ-0,125 устанавливают рядом, соблюдая расстояние между их осями 2,5 мм, а между отверстиями под выводы одного резистора – 10 мм. Так же размечают места для чередующихся резисторов МЛТ-0,125 и МЛТ-0,25, либо двух резисторов МЛТ-0,25, если при монтаже слегка отогнуть один от другого (три таких резистора поставить вплотную к плате уже не удастся).

С такими же расстояниями между выводами и осями элементов устанавливают большинство малогабаритных диодов и конденсаторов КМ-5 и КМ-6, вплоть до КМ-66 емкостью 2,2 мкФ; не надо размещать бок о бок две «толстые» (более 2,5 мм) детали, их следует чередовать с «тонкими». Если необходимо, расстояние между контактными площадками той или иной детали увеличивают относительно необходимого.

При разработке двусторонней платы надо постараться, чтобы на стороне деталей осталось возможно меньшее число соединений. Это облегчит исправление возможных ошибок, налаживание устройства и, если необходимо, его модернизацию. Под корпусами микросхем проводят лишь общий провод и провод питания, но подключать их нужно только к выводам питания микросхем. Проводники к входам микросхем, подключаемым к цепи питания или общему проводу, прокладывают на стороне проводников, причем так, чтобы их можно было легко перерезать при налаживании или усовершенствовании устройства.

Если же устройство настолько сложно, что на стороне деталей приходится прокладывать и проводники сигнальных цепей, позаботьтесь о том, чтобы любой из них был доступен для подключения к нему и перерезания.

При разработке радиолюбительских двусторонних печатных плат нужно стремиться обойтись без специальных перемычек между сторонами платы, используя для этого контактные площадки соответствующих выводов монтируемых деталей; выводы в этих случаях пропаивают с обеих сторон платы. На сложных платах иногда удобно некоторые детали подпаивать непосредственно к печатным проводникам.

При использовании сплошного слоя фольги платы в роли общего провода отверстия под выводы, не подключаемые к этому проводу, следует раззенковать со стороны деталей.
2.2 Выбор способа изготовления печатной платы
Применение печатных плат создаёт предпосылки для механизации и автоматизации процессов сборки электронной аппаратуры, повышает её надёжность, обеспечивает повторяемость параметров монтажа.

Печатный монтаж – это нанесение на изоляционное основание тонких электропроводящих покрытий (печатных проводников), выполняющих функции монтажных проводов для соединения элементов схемы.

Печатные платы служат для размещения и закрепления элементов устройства на одном основании, а печатный монтаж обеспечивает связь между этими элементами в соответствии с принципиальной схемой устройства.

Наряду с традиционным проводным монтажом печатные платы являются основным этапом в подготовке устройства к производству и имеют ряд преимуществ, т. е. они позволяют:

ü                       Увеличить плотность монтажных соединений и возможность миниатюризации компоновки радиоэлементов и блоков внутри устройства;

ü                       Организовать изготовление печатных проводников и электрорадиоэлементов в одном технологическом цикле;

ü                       Гарантированная стабильность и повторяемость электрических характеристик;

ü                       Повышенная стойкость устройства к климатическим и механическим воздействиям;

ü                       Провести унификацию конструкторских и технологических решений;

ü                       Увеличить надежность;

ü                       Организовать комплексную автоматизацию работ по изготовлению устройства;

По конструктивному исполнению все печатные платы можно подразделить на: односторонние, двухсторонние, однослойные и многослойные.

Односторонние печатные платы представляют собой диэлектрическое основание, на одной стороне которого выполнен печатный монтаж, а на другой стороне размещаются элементы устройства.

У двухсторонних печатных плат печатный монтаж выполнен на двух сторонах, а переход токопроводящих линий осуществляется металлизированными контактными отверстиями. Такое исполнение печатной платы позволяет обеспечить большую плотность размещения печатных проводников.

Многослойные печатные платы состоят из чередующихся слоев материала с проводящим рисунком, соединенных клеевыми прокладками в монолитное основание путем прессования. Такое исполнение печатной платы позволяет обеспечить наибольшую плотность и надежность печатного монтажа, что в свою очередь позволяет уменьшить габаритные размеры печатной платы.

Теперь рассмотрим более подробно методику нанесения токопроводящего рисунка на подложку печатной платы. Существует несколько способов:

1  Химическое травление;

2  Электрохимическое осаждение;

3  Комбинированный.

Наиболее распространенным из этих методов является метод химического травления.

Организация процесса химического травления фольгированного материала осуществляется при помощи специально изготавливаемых для этих целей химических составов. Существует широкая номенклатура таких реактивов, большинство из которых довольно легко можно изготовить даже в домашних условиях. Наиболее простыми способами травления фольгированного материала в процессе изготовления печатной платы является:

1 Участки фольги, которые на полученном рисунке должны остаться в виде проводников, покрывают нитролаком, или клеем БФ, подкрашенным несколькими каплями чернил. После высыхания краски рисунок проверяют на соответствие чертежу и при необходимости корректируют его. Затем в стакане холодной воды растворяют 4 – 6 таблеток перекиси водорода и осторожно добавляют 15 – 25 мл концентрированной серной кислоты. Раствор выливается в стеклянную или керамическую емкость, в которую помещается плата. Время травления в данном растворе примерно 1 час.

2 Раствор хлорного железа в воде: в 200 мл воды растворяют 150 г хлорного железа в порошке. Для приготовления хлорного железа берут 9 % -ную соляную кислоту и мелкие железные опилки. На 25 объемных частей кислоты берут одну часть железных опилок. Опилки засыпают в открытый сосуд с кислотой и оставляют на несколько дней. Через 5 – 6 дней раствор окрасится в желто-бурый цвет, что означает готовность раствора к применению.

3 Травление платы в концентрированном растворе азотной кислоты занимает 1 –5 минут, но требует осторожности. После травления плату тщательно промывают водой с мылом.

Существует также механический способ изготовления печатной платы без применения химикатов. Данный процесс осуществляется следующим образом: требуемых размеров плату вырезают из фольгированного материала, сверлят все необходимые отверстия и наносят на нее рисунок печатного монтажа. Контуры обводят острым шилом. Фольгу там, где это необходимо снимают при помощи резака. Для изготовления платы средней сложности приведенным способом затрачивается 1,5 – 2 часа. При применении данного метода незначительно ухудшается качество платы.

Как и для любого устройства, для изготовления печатной платы также существует своя методика:

-Сначала на клетчатой бумаге вычерчивается плата в натуральную величину.

-Следующим действием изготавливается копия этого чертежа, на котором отмечены только места, где необходимо просверлить отверстия для установки в них радиоэлементов и цифровых интегральных микросхем.

-Эта копия наклеивается на пластину фольгированного стеклотекстолита со стороны фольги. Применять для изготовления печатной платы гетенакс или текстолит не рекомендуется, т. к. существует высокая вероятность, что при повторной пайке печатные проводники отклеятся.

-Следующим этапом является проделывание отверстий для установки радиоэлементов и микросхем. Сверлятся отверстия обычно сверлами с диаметром от 0,5 до 1,0 мм, в зависимости от элементов.

-После вся плата со стороны фольги покрывается слоем нитрокраски и высушивается не менее 20 мин.

-Затем производится тщательное обследование печатной платы и в местах где краска попала мимо печатных проводников производится ее удаление при помощи скальпеля.

-Готовая плата травится обычным способом в растворе хлорного железа. Однако и здесь существует одна небольшая хитрость, для ускорения процесса травления печатную плату нужно травить в вертикальном положении. При этом продукты реакции не будут оседать на печатную плату, и не будут препятствовать процессу травления.
2.3 Разработка компоновки устройства
Процесс создания радиоэлектронной аппаратуры включает в себя выполнение всех проектов и расчетов в виде технической, конструкторской и технологической документации в объеме, необходимом и достаточном для многократного повторения конструкции в производстве.

В самом общем виде требования к любой конструкции состоят в том, что она должна обладать высоким качеством и надежностью функционирования, сохраняя эти свойства при заданных внешних воздействиях.

Конструкция должна обладать достаточной механической прочностью и жесткостью.

Каждый технический объект конструирования является сложной системой, состоящей из различных блоков и узлов.

Низшим уровнем любой конструкции являются электрорадиоэлементы: конденсаторы, резисторы, п/п приборы, ИМС, провода, кабели, коммутационные элементы. Прежде чем приступить к изготовлению печатной платы и корпуса, нужно сделать их рисунок. Для этого вначале подбирают необходимые детали. При расположении электрорадиоэлементов на рисунках (на печатной плате и внутри корпуса) следует учитывать размеры ЭРЭ, учитывать при компоновке места для крепления платы, места крепления элементов с оригинальными типоразмерами и др. Обозначив на бумаге детали и выводы, проводят линии, соединяющие детали, как указанно на принципиальной схеме. Необходимо следить, что бы соединительные линии не пересекались. При этом можно изменять предварительное расположение деталей.

Для компоновки блоков необходимо иметь принципиальную схему устройства, а так же габаритно-устоновочные чертежи, узлов и приборов, входящих в общую схему.

Существуют следующие методы компоновки РЭА:

-              аналитическая компоновка;

-              модельная и аппликационная компоновка;

-              графическая компоновка.

Аналитическая компоновка производится на начальных этапах проектирования РЭА с целью получения обобщённых характеристик конструктивных параметров изделия.

Модельной и аппликационной компоновки основаны на использовании объёмных и плоских моделей ЭРЭ, изготовленных из картона и пенопласта. Данные методы широко применяют при проектировании печатных плат и расположения всех деталей внутри корпуса. С помощью модельной и аппликационной компоновки находят оптимальное взаимное расположение деталей, на основании которого делают сборочный чертёж.

Графическую компоновку выполняют на листе бумаги, вычерчивая контура компонуемых деталей. Графическую компоновку рекомендуется выполнять после модельной и аппликационной компоновки. После этого приступаем к изготовлению печатной платы. А когда готова печатная плата – изготовляется корпус.
2.4 Поиск и устранение неисправностей
Процедура поиска и устранения неисправностей истолковывается просто как ремонт отказавшего устройства. Специалист, занятый поиском и устранением неисправностей, кроме всего прочего, должен уметь оценивать качество функционирования радиоэлектронной аппаратуры путём сопоставления своих теоретических знаний с реальным поведением устройства. Такая оценка должна проводиться до и после ремонта неисправного устройства.

Уровень сложности большинства современных электронных систем таков, что лица, ответственные за поддержание их в исправном состоянии, должны пройти специальную подготовку.

Любое радиоэлектронное устройство обладает ограниченной надёжностью и сроком службы. В связи с этим возникает острая необходимость в техническом обслуживании и ремонте. Для сокращения времени на поиск неисправности и увеличения эффективности ремонта необходимо наличие современных технических средств (стендовая аппаратура и контрольно-измерительные приборы).

Существуют хорошо проверенные методы и этапы поиска неисправностей. Первым шагом является тщательный внешний осмотр аппаратуры. Проверяется, нет ли сгоревших предохранителей, разрушенных или утративших первоначальный цвет компонентов, обрывов, повреждённых участков плат, трансформаторов с запахом гари, перегретых деталей, вытекших электролитических конденсаторов. Другими словами обращается внимание на любое отклонение от нормы. Затем продолжается поиск неисправностей примерно в следующей последовательности:

  — изучение электронного устройства;

  — замеры питающего напряжения;

  — метод от конца к началу;

  — последовательное деление схемы;

  — размыкание цепи обратной связи;

  — логическое разделение системы;

  — сравнение с известными правильными результатами;

  — применение диагностических систем.

Одним из этапов предлагаемого подхода к анализу неисправностей заключается в выявлении признаков неисправности. Признак неисправности – это некоторый симптом, или указатель, свидетельствующий о нарушении нормального функционирования радиоэлектронного устройства. Задача выявления признака заключается в распознавании этого симптома при его появлении. Поскольку признак неисправности – свидетельство того, что в работе устройства произошли нежелательные изменения, необходимо иметь некоторые показатели его нормального функционирования, служащие в качестве эталона. Сравнивая показатели текущего и нормального функционирования, можно обнаружить признак неисправности и принять решение о том, что он собой представляет. На следующем этапе с помощью органов управления и индикаторов устройства собирается как можно больше информации о характеристике неисправности. Далее, исходя из собранной информации и принципов работы схемы, определяются потенциально неисправные функциональные узлы. На следующем этапе выполняются реальные проверки устройства с помощью контрольно-измерительных приборов, в результате которых определяется часть схемы, содержащая неисправность. На последнем этапе процедуры поиска неисправности для выявления местонахождения неисправного компонента необходимо проверить определённые ветви неисправной схемы. После этого можно приступать к ремонту.

Системный подход к поиску и устранению неисправностей в радиоэлектронной аппаратуре позволит существенно сократить время простоя аппаратуры и стоимость ремонта по сравнению с бессистемными методами технического обслуживания и ремонта. Другим не менее важным достоинством такого подхода является возможность постоянного поддержания радиоэлектронной аппаратуры в работоспособном состоянии, при котором её рабочие характеристики соответствуют паспортным данным.

Неисправность разрабатываемой системы датчика может возникнуть в результате:

1.  Неисправностей ИС, которые могут возникать из-за:

  — повреждения корпуса и выводов;

  — изменения ВАХ отдельных цепей на внешних зажимах;

  — неправильности монтажа;

  — повреждения микроскопической структуры.

2.  Отказов активных элементов;

Отказы металлизации возникают чаще всего под влиянием токов повышенной плотности, высоких температур, а также в результате длительных температурных и электрических нагрузок.

Различают следующие основные виды отказов металлизации:

   — обрывы металлизации в результате электродиффузии металла и выгорания мест повышенной плотности тока, образующихся в местах утончения металлической пленки при переходах через ступеньки окисла.

   — обрывы и КЗ, вызванные электролитической и химической коррозией алюминия при некачественном защитном покрытии и загрязнении поверхности кристалла.

   — КЗ металлизации через отверстия в окисле или в результате образования «мостиков» между токоведущими дорожками в процессе электролитической коррозии.

3. Отказов контактных соединений:

  — некачественное соединение является одним из основных источников отказов ИС и составляет более 50% всех отказов.

4. Обрывов, которые чаще происходят по двум причинам:

  — в результате сдвиговых усилий в местах контакта возникающих при колебании температуры;

  — из-за пережима мягкого вывода вблизи контакта в процессе термокомпрессии.
Таблица 1 – Поиск и устранение неисправностей

Неисправность

Способ устранения

Не работает светодиод

1. Проверить провода питания.

2. Проверить исправность управляющего транзистора.

3. Проверить работу генератора.

Не включается свет при появлении в помещении постороннего объекта

1. Проверить провода питания.

2. Проверить работоспособность исполнительного устройства.

3. Проверить работу микросхемы приёмника.

Не срабатывает задержка выключения освещения

1.Проверить работоспособность микросхемы линии задержки.

2.Проверить исправность диодов.
    продолжение
--PAGE_BREAK--


3. Экономический раздел
В данном разделе будет рассчитана стоимость изготовления устройства для автоматической подачи звонков в учебных заведениях. Для этого будет составлена калькуляция себестоимости изготовления данного изделия в условиях предприятия РУП «Гомель ВТИ». Для расчётов использованы данные и нормы расхода материалов этого предприятия. Цены на покупные комплектующие – розничные.

1. Расчет затрат на сырье и материалы:
См = SНi* Цi,
где См – стоимость сырья и материалов, руб.;

Нi– норма расхода i-го материала, в натуральных показателях;

Цi– цена за единицу измерения i-го материала, руб.





п/п

Наименование

материала

Единицы измерения

Норма расхода

Цена,

( руб.)

Сумма,

(руб.)

1.    

2.    

3.    

4.    

5.    

6.    

1

Канифоль сосновая

 ГОСТ 19113 – 72

кг

0,072

15 000

1 080

2

Припой ПОС 61

 ГОСТ 21931 – 76

кг

0,0288

8 750

252

3

Хлорное железо

ТУ6– 09– 3084– 82

кг

0,144

2 340

336,96

4

Ацетон (УАЙТ – СПИРИТ) ГОСТ 2603 – 79

кг

0,144

2 790

401,76

5

Стеклотекстолит

 СФ– 2– 35Г– 1,5 1с

ГОСТ 10316 – 78

кг

0,072

8 480

610,56

Итого:

2 681




2. Расчет затрат на покупные комплектующие изделия и полуфабрикаты:
Ск = S(Кi* Цi,)
где Ск — стоимость покупных комплектующих изделий и полуфабрикатов на одно устройство, руб.

Кi— количество комплектующих изделий и полуфабрикатов i-го наименования на одно устройство, шт.

Цi— цена за единицу, руб.





N/n

Наименование  комплектующих изделий и полуфабрикатов

Количество на 1 устройство

Цена за единицу,

(руб.)

Сумма,
(руб.)

1.    

2.    

3.    

4.    

5.    

1

2

3

4

5

1

Микросхема К155ЛН1

1

2000

2000

2

Микросхема К155ИЕ7

4

2300

9200

3

Резисторы МЛТ

4

500

2000

4

Диоды АЛ 307А

2

700

1400

5

Кнопки МП-3

2

500

1000

6

ИК диоды

2

15000

30000

7

Разъёмы для микросхем

5

300

1500







Итого:

47 100


3.Расчет основной заработной платы производственных рабочих
ЗПтар = S(Счij* Тei),
где ЗПтар — тарифная заработная плата производственных рабочих, руб.;

Счij— часовая тарифная ставка по i-той операции, j-го разряда работ, руб.;

Тei— трудоемкость i-той операции, чел-час.;





п/п

Наименование операции

Разряд

работ

Часовая

тарифная ставка (руб.)

Трудоемкость,

(чел-час.)

Сумма тарифной

зарплаты, (руб.)

1

2

3

4

5

6

1

Слесарные

2

706

1

706

2

Регулировочные

3

822

6

4 931

3

Контрольные

3

822

3

2 466

4

Лакокрасочные

2

706

1

706

5

Монтажные

3

822

6

4931

Итого заработная плата тарифная (ЗПтар):

13 740



4.                 Расчет основной заработной платы производственных рабочих:
ЗПосн = ЗПтар + Пр,
где ЗПосн — основная заработная плата производственных рабочих, руб.;

Пр — сумма премии, руб.

ЗПосн = 13 740*1,3 = 17 862 руб.

5.                 Расчет дополнительной заработной платы производственных рабочих  ( ЗПдоп):
ЗПдоп = ЗПосн * 9,6 / 100,
где 9,6 — % дополнительной зарплаты по предприятию.

ЗПдоп =17 862 *9,6/100 = 1714 руб.

6. Расчет отчислений от заработной платы производственных рабочих (1% — в фонд занятости; 35% — в фонд соц. защиты (по данным РУП «Гомель ВТИ»))


Озп = 0,395* (ЗПосн + ЗПдоп)

Озп = 0,395*(1714+ 17 862) = 6906 руб.
7. Итого прямые затраты (Зпр):
Зпр = М + ЗПосн + ЗПдоп + Озп

Зпр = 2 681+47 100+17 862+1714+6906 = 76 263 руб
8. Расчет накладных расходов (Нр):
Нр = ЗПосн / 100 * %Нр = 17 862 /100 * 180,6 = 32 258,77 руб.
Где %Нр — процент накладных расходов по предприятию за базисный период (180,6 %) (Использованы данные РУП «Гомель ВТИ» по состоянию на 01.05.2009)

9. Калькуляция себестоимости устройства для подачи управляющих воздействий



п/п

Наименование статей

Условные обозначения

Сумма, руб.

1

Материальные затраты

М

49 780

2

Заработная плата производственных рабочих

ЗПосн + ЗПдоп

19 576

3

Отчисления от заработной платы производственных рабочих

Озп

6906

4

Итого прямые затраты

Зпр

76 263

5

Накладные расходы

Нр

32 258,77

6

Итого полная себестоимость ( Сп = Зпр + Нр)

Сп

108 521,77

7

Плановая прибыль (П = Ур * Сп / 100; где Ур — уровень плановой рентабельности 20%)

П

21 704,35



В результате проведенных расчетов были определены следующие экономические показатели:

1.            Материальные затраты — 49 780руб.

2.            Заработная плата рабочих- 19 576руб.

3.            Полная себестоимость — 108 521,77руб.

4.            Отпускная цена — 161 104,47руб.

Из произведенных ниже расчётов стоимости изготовления, очевидно, что предложенное устройство обладает конкурентоспособной ценой в условиях рыночной экономики, при промышленном производстве. При внедрении устройства учёта посещений в серийное производство, себестоимость его изготовления может быть снижена, за счёт экономии материалов и более низких цен на комплектующие при оптовой закупке.



4. Охрана труда
Общие требования безопасности

К выполнению работ по пайке паяльником допускаются работники в возрасте не моложе 18 лет, прошедшие обучение, инструктаж и проверку знаний по охране труда, освоившие безопасные методы и приемы выполнения работ, методы и приемы правильного обращения с приспособлениями, инструментами и грузами.

Работники, выполняющие пайку паяльником, должны иметь II группу по электробезопасности.

В случае возникновения в процессе пайки паяльником каких-либо вопросов, связанных с ее безопасным выполнением, работник должен обратиться к своему непосредственному или вышестоящему руководителю.

При пайке паяльником на работника могут воздействовать опасные и вредные производственные факторы:

·                   повышенная загазованность воздуха рабочей зоны парами вредных химических веществ;

·                   повышенная температура поверхности изделия, оборудования, инструмента и расплавов припоев;

·                   повышенная температура воздуха рабочей зоны;

·                   пожароопасность;

·                   брызги припоев и флюсов;

·                   повышенное значение напряжения в электрической цепи, замыкание которой может произойти через тело работника.

Работники, занятые пайкой паяльником, должны обеспечиваться средствами индивидуальной защиты.

Работы с вредными и взрывопожароопасными веществами при нанесении припоев, флюсов, паяльных паст, связующих и растворителей должны проводиться при действующей общеобменной и местной вытяжной вентиляции. Системы местных отсосов должны включаться до начала работ и выключаться после их окончания. Работа вентиляционных установок должна контролироваться с помощью световой и звуковой сигнализации, автоматически включающейся при остановке вентиляции.

Паяльник должен проходить проверку и испытания в сроки и объемах, установленных технической документацией на него.

Кабель паяльника должен быть защищен от случайного механического повреждения и соприкосновения с горячими деталями.

Рабочие места обжига изоляции с концов электропроводов (жгутов) должны быть оборудованы местной вытяжной вентиляцией. Работа по обжигу изоляции без применения работниками защитных очков не допускается.

Для местного освещения рабочих мест при пайке паяльником должны применяться светильники с непросвечивающими отражателями. Светильники должны располагаться таким образом, чтобы их светящие элементы не попадали в поле зрения работников.

На рабочем месте должны быть емкости с нейтрализующими жидкостями для удаления паяльных флюсов, содержащих фтористые и хлористые соли, в случаях их попадания на кожу работника.

На участках пайки паяльником на полу должны быть положены деревянные решетки, покрытые диэлектрическими ковриками.

Рабочие поверхности столов и оборудования на участках пайки паяльником, а также поверхности ящиков для хранения инструментов должны покрываться гладким, легко очищаемым и обмываемым материалом.

Использованные при пайке паяльником салфетки и ветошь, должны собираться в специальную емкость, удаляться из помещения по мере их накопления в специально отведенное место.

Работник, занятый пайкой паяльником, немедленно извещает своего непосредственного или вышестоящего руководителя о любых ситуациях, угрожающих жизни и здоровью людей, о каждом несчастном случае, происшедшем на производстве, или об ухудшении состояния своего здоровья, в том числе о проявлении признаков острого профессионального заболевания (отравления).

Требования безопасности перед началом работы    продолжение
--PAGE_BREAK--
еще рефераты
Еще работы по коммуникациям