Реферат: Особенности пищевого производства

--PAGE_BREAK--Согласно ГОСТ Р 51953-2002 «Крахмал и крахмалопродукты», модифицированными крахмалами называют крахмалы, свойства которых направленно изменены в результате физической, химической, биохимической или комбинированной обработки.
49-й Экспертной комиссией по пищевым добавкам Всемирной организации здравоохранения дано следующее определение модифицированным крахмалам: «пищевые крахмалы, у которых одна или более начальных характеристик изменены путём обработки в соответствии с практикой производства пищевых продуктов в одном из физических, химических, биохимических или комбинированных процессов».
Модифицированных крахмалов, разрешенных в Российской Федерации к применению при производстве пищевых продуктов, согласно СанПиН 2.3.2.560-96, насчитывается около 20 видов.
Использование крахмалов в мясной промышленности обусловлено тем, что очень часто предприятиям отрасли приходится перерабатывать мясо, имеющее неудовлетворительные функциональные характеристики – подвергавшееся длительному хранению в замороженном состоянии и имеющее низкую водосвязывающую способность (ВСС), а также мясо, содержащее большое количество соединительной ткани. Кроме того, на рынке мясопродуктов очень велика доля продукции эконом-класса, для производства которой крахмал оказывается одним из самых незаменимых ингредиентов, так как стоимость крахмала в 3-3,5 раза ниже, чем говядины 2 сорта и в 2 раза ниже, чем соевого изолята. Использование крахмала наиболее эффективно в технологии низкосортных колбас, для связывания свободной влаги, выделяющейся после нагрева, но оно ограничено 10% к массе сырья.
Крахмалы по своим технологическим функциям играют роль стабилизатора, загустителя и наполнителя. Они не обладают эмульгирующей способностью, но имеют выраженную ВСС, которая проявляется в результате термообработки при развитии процесса клейстеризации.
Молекула крахмала построена из большого числа остатков простых сахаров и представляет собой смесь двух типов полимеров – амилозы и амилопектина. Их соотношение определяет способность крахмала растворяться при нагревании с образованием вязких коллоидных систем, называемых клейстерами.
При обычной температуре крахмальные зерна не растворяются в воде. Нагрев крахмала в присутствии воды вызывает его клейстеризацию: разрушается внутренняя структура крахмальных зерен, растворяется и частично выходит во внешнюю среду полисахарид амилоза и сильно набухает другой полисахарид – амилопектин. Первая стадия клейстеризации наступает при 50-65°С: вода проникает внутрь крахмальных зерен, растворяет часть амилозы и вызывает набухание амилопектина. Зерна сильно увеличиваются в размерах, но сохраняют свою форму. При более высоких температурах разрушается структура крахмальных зерен, исчезает их слоистое строение. Размеры зерен увеличиваются в десятки раз. Часть полисахаридов переходит в воду. Образуется клейстер, обладающий высокой водосвязывающей способностью и склеивающий частицы фарша.
Образующийся вязкий коллоидный раствор после охлаждения превращается в гель, обладающий термотропными свойствами. Кроме того, для него характерен процесс самопроизвольного необратимого упрочнения, сопровождающийся сжатием сетки геля с выделением влаги – так называемый процесс синерезиса.
Крахмалы образуют гелеобразные структурированные слои, сольватированные дисперсионной средой и диффузно переходящие в золь по мере удаления от поверхности частиц дисперсной фазы. Подобные тонкие прослойки в составе фаршевой эмульсии, обладая механической прочностью, мешают коагуляционному взаимодействию между частицами дисперсной фазы и являются стабилизаторами.
Кроме того, ингредиенты, присутствующие в мясных системах, оказывают определенное действие на функционально-технологические свойства крахмалов и степень их выраженности во время термообработки: наличие белка и жира сопровождается обволакиванием молекул крахмала, что замедляет гидратацию гранулы и снижает как скорость гелеобразования, так и уровень вязкости, адгезии, ВСС. Низкие значения рН ускоряют набухание гранул крахмала. Добавление сахара повышает адгезию и водосвязывающую способность.
Поэтому для создания крахмалов, обладающих наилучшими функционально-технологическими свойствами, их подвергают направленным изменениям.
Как упоминалось выше, основных способов модификации крахмала четыре – физический, химический, биохимический или комбинированный способ. Меж тем в мире производятся десятки видов модифицированных крахмалов, которые используются при производстве пищевых продуктов, как в чистом виде, так и в составе многокомпонентных функциональных добавок.
Некоторые модифицированные крахмалы сравнительно мало отличаются по своему составу и свойствам от природного крахмала. Их основные виды – это крахмал, лишенный запаха, с измененным цветом, рассыпчатый и др. Наряду с ними известны многие другие модифицированные крахмалы, получаемые путем сильного изменения их природных свойств: набухающие, термически расщепленные, жидкокипящие и др.
Чаще всего для производства мясопродуктов применяют следующие модификации:
Е 1404 – окисленные крахмалы;
Е 1412 – дикрахмалфосфат, этерифицированный тринатрийфосфатом или хлорокисью фосфора;
Е 1414 – ацетилированный дикрахмалфосфат;
Е 1420 – ацетатный крахмал, этерифицированный уксусным ангидридом;
Е 1422 – ацетилированный дикрахмаладипат.
Для производства этих продуктов используют:
а) окислители (например, перманганат калия), которые местами расщепляют крахмальные цепочки, и после реакции удаляются из раствора;
б) натриевую соль триметафосфорной кислоты и фосфороксихлорид;
в) ангидрид адипиновой кислоты;
г) ангидрид уксусной кислоты.
Вещества из пп. б) и в) используются для перекрестного связывания полимерных цепей крахмала, а уксусный ангидрид (г) – для этерификации (стабилизации) полисахаридов крахмала с образованием простых и сложных эфиров. Данные вещества в крахмалах химически связаны и находятся в микроскопических количествах, так что они не могут нанести вреда здоровью человека.
Модифицированные крахмалы применяются не только в пищевой промышленности.
Окисленные крахмалы получают в результате обработки крахмалов окисляющими агентами (пероксид водорода, перманганат калия и др.), в результате чего образуются более короткие молекулярные цепи. Такие крахмалы обладают повышенной прозрачностью раствора, но пониженной вязкостью, а также высокой стабильностью.
Крахмалы, модифицированные кислотами (жидкокипящие), получают при нагревании водных растворов крахмалов с соляной, ортофосфорной, серной кислотами при температуре, не превышающей точку клейстеризации. Отличительной особенностью таких крахмалов является то, что их клейстеризованные растворы в нагретом состоянии имеют значительно меньшую вязкость, чем у обычных крахмалов. Вместе с тем после охлаждения их растворы образуют прочные студни.
Фосфатирование крахмала позволяет получать клейстеры с повышенной устойчивостью к перемешиванию, низким значениям рН, хранению, замораживанию-оттаиванию.
Ацетилирование крахмала снижает вязкость его клейстеров, но повышает их стабильность и пленкообразующую способность. Такие крахмалы применяют как структурообразователи, загустители.
Стабилизированные крахмалы – это продукты химической модификации функциональными реагентами с образованием производных с простой или сложной эфирной связью по гидроксильным группам глюкозных остатков. Эти крахмалы имеют пониженную температуру клейстеризации, высокую растворимость, повышенную прозрачность и стабильность геля.
Сшитые крахмалы получают при сшивании поперечных молекул крахмала между собой, в результате взаимодействия их гидроксильных групп с помощью различных органических реагентов. При этом упрочняется трехмерная сетка геля, но снижается растворимость.
Как видно из написанного выше, модифицированные крахмалы не имеют никакого отношения к генной инженерии. Правда, и модифицированный, и обычный крахмал зарубежных производителей (в России генетически модифицированных растений пока не выращивают) может быть получен из картофеля или кукурузы, в которые введен ген инсектицидного белка (Bt-токсина), убивающего насекомых-вредителей и абсолютно безопасного для животных и человека.
Крахмал, состоящий практически только из углеводов, нигде и никогда не рассматривался как продукт, несущий какие-либо следы генной модификации. В соответствии с п. 3.5.5 ГОСТ Р 51074-2003 (Продукты пищевые. Информация для потребителя. Общие требования) «… Информацию об использовании генетически модифицированных источников не наносят на пищевые продукты, не содержащие белка (ДНК), полученного из генетически модифицированных источников».
Ни в самом крахмале, даже полученном из генномодифицированного сырья, ни в продуктах, содержащих крахмал, не остается ничего «генетически модифицированного». Таким образом, крахмал, модифицированный он или нет, и независимо от источника его получения, гарантированно не нанесет вреда вашему здоровью.

Какие причины вызывают порчу жира?
Пищевые жиры вследствие особенностей химического состава легко подвергаются изменениям в процессе хранения и промышленной переработки, которые снижают их качество и биологическую ценность.
Жиры, свободные от влаги и полученные из хорошего сырья, при низкой температуре и без доступа света могут сохраняться продолжительное время. В противном случае они подвергаются различным изменениям, образующиеся вещества ухудшают органолептические показатели жиров и в большей или меньшей степени оказывают вредное действие на организм человека. В основе порчи жиров лежат химические процессы и биохимические превращения. Поэтому в первую очередь необходимо по возможности исключить соприкосновение жира с О2 воздухе, светом, теплом. Сохранение жиров в герметической таре значительно удлиняет индукционный период. например, рекомендуется пищевые жиры сохранять в вакууме, в атмосфере инертного газа при минусовой температуре. В жирах не должно быть примесей, катализирующих металлов и бактерий.
При пищевой порче жиров образуются низкомолекулярные летучие соединения — альдегиды, кетоны и низкомолекулярные кислоты, которые и обусловливают специфический запах прогорклых жиров. С течением времени в жирах образуются также некоторые нелетучие продукты окисления. Жиры, подвергшиеся порче, обычно содержат перекисные вещества, но количество их невелико. Перекисные соединения образуются в результате действия на жиры молекулярного кислорода и оказывают токсичное действие на мелких животных, а также болезнетворное влияние на детей младшего возраста.
Носителями прогорклости являются летучие альдегиды и кетоны, продукты окисления жиров. Они всегда содержатся в прогорклом жире одновременно, но в разных количествах. Альдегиды доминируют в жирах с ненасыщенными кислотами. В жирах с небольшим количеством ненасыщенных кислот (например кокосовое) преобладают кетоны — метилалкилкетоны. При прогоркании жиров кроме указанных соединений образуются вода, оксид и диоксид углерода. В испорченных жирах происходит резкое повышение содержания свободных жирных кислот вследствие гидролиза глицеридов, содержащихся в жирах. Накопление свободных жирных кислот может происходить и в результате воздействия на жиры молекулярного кислорода. Полученные свободные жирные кислоты имеют более низкую молекулярную массу, чем кислоты исходного жира.
Для предупреждения окислительного разрушения жиров к ним добавляют антиокислители. Этот процесс называется стабилизацией жиров. Сущность действия окислителей заключается в том, что они более активно вступают в реакцию со свободными радикалами и тем самым обрывают цепную реакцию, приводящую к порче жиров. По характеру участия в ингибировании цепной реакции различают два типа антиокислителей: одни препятствуют образованию свободных радикалов, другие способствуют разрушению уже образовавшихся гидроперекисей. Существует также группа веществ, которые не обладая прямым антиокислительным действием, усиливают действия антиокислителей, т. е. являются их синергистами.
К антиокислителям и их синергистам предъявляют следующие требования:
1) не должны обладать вредными для организма человека свойствами;
2) не должны изменять органолептических качеств жира;
3) должны предохранять жир от окисления в течение длительного времени.
Повышенное содержание воды, температуры, свободный доступ кислорода, света снижают эффективность антиоксидантов.
Природные антиокислители — фосфолипиды, топоферолы, каратиноиды.
Наряду с окислительными процессами при прогоркании жиров происходят также микробиологические и ферментативные процессы. Последние в основном сводятся к гидролизу, т. е. к расщеплению жира. Реакция эта развивается в жирах, содержащих белковые вещества и воду. Часто она бывает обусловлена наличием плесеней.
В растительных маслах на повышение кислотности влияет наличие фермента липазы, содержащегося в нежировом комплексе. При фильтрации осадок, а с ним и большая часть липазы удаляется из масла. В связи с этим профильтрованные масла более устойчивы при хранении.
Существуют и другие причины пищевой порчи жиров. Так, появление в коровьем масле рыбного привкуса и запаха обусловливается расщеплением лецитина и образованием холина. Разложение последнего ведет к образованию триметиламина, имеющего рыбный запах. Появляются иногда и другие неприятные запахи и вкусовые ощущения, связанные с гидролизом некоторых глицеридов под влиянием ферментов и разложения белков плесенями.

Какое значение имеют белки для организма?
«Во всех растениях и животных присутствует некое вещество, которое без сомнения является наиболее важным из всех известных веществ живой природы и без которого жизнь была бы на нашей планете невозможна. Это вещество я наименовал — протеин». Так писал еще в 1838 году голландский биохимик Жерар Мюльдер, который впервые открыл существование в природе белковых тел и сформулировал свою теорию протеина. Слово «протеин» (белок) происходит от греческого слова «протейос», что означает «занимающий первое место». Все живое на земле содержит белки. Они составляют около 50% сухого веса тела всех организмов. У вирусов содержание белков колеблется в пределах от 45 до 95%.
Белки являются одними из четырех основных органических веществ живой материи (белки, нуклеиновые кислоты, углеводы, жиры), но по своему значению и биологическим функциям они занимают в ней особое место. Около 30% всех белков человеческого тела находится в мышцах, около 20% — в костях и сухожилиях и около 10% — в коже. Но наиболее важными белками всех организмов являются ферменты, которые, холя и присутствуют в их теле и в каждой клетке тела в малом количестве, тем не менее управляют рядом существенно важных для жизни химических реакций. Все процессы, происходящие в организме: переваривание пищи, окислительные реакции, активность желез внутренней секреции, мышечная деятельность и работа мозга регулируется ферментами.
Основные азотосодержащие вещества, из которых состоят белки, — это аминокислоты. Количество аминокислот невелико — их известно только 28. Все громадное разнообразие содержащихся в природе белков представляет собой различное сочетание известных аминокислот. От их сочетания зависят свойства и качества белков.
Белки играют важнейшую роль в жизнедеятельности всех организмов. При пищеварении белковые молекулы перевариваются до аминокислот, которые, будучи хорошо растворимы в водной среде, проникают в кровь и поступают во все ткани и клетки организма. Здесь наибольшая часть аминокислот расходуется на синтез белков различных органов и тканей, часть—на синтез гормонов, ферментов и других биологически важных веществ, а остальные служат как энергетический материал. Т.е. белки выполняют каталитические (ферменты), регуляторные (гормоны), транспортные (гемоглобин, церулоплазмин и др.), защитные (антитела, тромбин и др.) функции.
Белки являются важнейшим компонентом питания организмов по следующим причинам:
1.  С белками связаны основные проявления жизни — обмен веществ, сокращение мышц, раздражимость нервов, способность к росту, способность к размножению и даже мышлению.
2.  Благодаря белковым веществам, гемоглобину и др., происходит перенос кислорода.
3.  Ферменты играют роль ускорителей биохимических реакций.
4.  Гормоны — регулируют обменные процессы.
5.  Нуклеопротеиды — в значительной степени определяют направление синтеза белка в организме и являются носителями наследственных свойств.
6.  Белки представляют основу структурных элементов клетки и тканей.
    продолжение
--PAGE_BREAK--
еще рефераты
Еще работы по кулинарии