Реферат: Интерполяция функций 2

Министерство образования Российской Федерации.

Хабаровский государственный Технический Университет.

Кафедра «Прикладная математика и информатика»

Лабораторная работа №4

по дисциплине «Вычислительные методы линейной алгебры».

Интерполяция функций.

Вариант 4

Выполнил: ст. гр. ПМ 11 Крамарев Д. В.

Проверил: д.ф.-м.н., проф. Чехонин К.А.

Хабаровск 2004

Задание.

1) Построить интерполяционный многочлен Ньютона. Начертить график и отметить на нем узлы интерполяции. Вычислить значения в точке х=1.25.

xi 1 1.5 2 2.5 3 3.5
yi 0.5 2.2 2 1.8 0.5 2.25

2) Построить интерполяционный многочлен Лагранжа. Начертить график и отметить на нем узлы интерполяции. Вычислить значение в точке х=1.2.

xi 0.25 1.25 2.125 3.25
yi 5.0 4.6 5.7 5.017 4.333

3)Выполнить интерполяцию сплайнами третьей степени. Построить график и отметить на нем узлы интерполяции.

xi 7 9 13
yi 2 -2 3

Постановка задачи интерполяция.

Пусть известные значения функции образуют следующую таблицу:

x0 x1 x2 ... Xn-1 xn
y0 y1 y2 ... yn-1 yn

При этом требуется получить значение функции f в точке x, принадлежащей
отрезку [x0..xn ] но не совпадающей ни с одним значением xi.Часто при этом не известно аналитическое выражение функции f(x), или оно не пригодно для вычислений.

В этих случаях используется прием построения приближающей функции F(x), которая очень близка к f(x) и совпадает с ней в точках x0, x1, x2 ,… xn. При этом нахождение приближенной функции называется интерполяцией, а точки x0,x1 ,x2 ,...xn — узлами интерполяции. Обычно интерполирующую ищут в виде полинома n степени:

Pn (x)=a0xn +a1 xn-1 +a2 xn-2 +...+an-1 x+an

Для каждого набора точек имеется только один интерполяционный многочлен, степени не больше n. Однозначно определенный многочлен может быть представлен в различных видах. Рассмотрим интерполяционный многочлен Ньютона и Лагранжа.

Интерполяционная формула Лагранжа.

Формула Лагранжа является наиболее общей, может применяться к таким узлам интерполяции, что расстояние между соседними узлами не постоянная величина.

Построим интерполяционный полином Ln (x) степени не больше n, и для которого выполняются условия Ln (xi )=yi. Запишем его в виде суммы:

Ln (x)=l0(x)+ l1 (x)+ l2 (x)+...+ ln (x),(1)

где lk ( xi )= yi, если i=k, и lk ( xi )= 0, если i≠k;

Тогда многочлен lk ( x) имеет следующий вид:

lk (x)= (2)

Подставим (2) в (1) и перепишем Ln ( x) в виде:

Если функция f(x), подлежащая интерполяции, дифференцируема больше чем n+1 раз, то погрешность интерполяции оценивается следующим образом:

где0<θ <1 (3)


Интерполяционная формула Ньютона.

Построение интерполяционного многочлена в форме Ньютона применяется главным образом когда разность xi+1 -xi =h постоянна для всех значений x=0..n-1.

Конечная разность k-го порядка:

Δyi =yi+1 -yi

Δ2 yi = Δyi+1 — Δyi =yi+2 -2yi+1 +yi

………………………………

Δk yi =yi+k -kyi+1-k +k(k-1)/2!*yi+k-2 +...+(-1)k yi

Будем искать интерполяционный многочлен в виде:

Pn(x)=a0+a1 (x-x0)+a2 (x-x0)(x-x1 )+...+an (x-x0)(x-x1 )...(x-xn-1 )

Найдем значения коэффициентов a0, a1, a2, ...,an :

Полагая x=x0, находим a0=P(x0)=y0;

Далее подставляя значения x1, x2, ...,xn получаем:

a1 =Δy0/h

a2 =Δ2 y0/2!h2

a3 =Δ3 y0/3!h3

....................

an =Δn y0/n!hn

Такимобразом:
Pn(x)=y0+ Δy0/h*(x-x0)+ Δ2 y0/2!h2 *(x-x0)(x-x1 )+...+ Δn y0/n!hn *(x-x0)(x-x1 )...(x-xn-1 ) (1)

Практически формула (1) применяется в несколько ином виде:

Возьмем: t=(x-x0)/h, тогда x=x0+th и формула (1) переписывается как:

Pn (x)=y0+t Δ y0+ t(t-1) / 2! Δ 2 y0+...+ t(t-1)...(t-n+1) / n! Δ n y0 (2)

Формула (2) называется интерполяционнойформулой Ньютона.

Погрешность метода Ньютона оценивается следующим образом:

(3)


Интерполяция сплайнами.

При большом количестве узлов интерполяции сильно возрастает степень интерполяционных многочленов, что делает их неудобными для проведения вычислений.

Высокой степени многочленов можно избежать, разбив отрезок интерполирования на несколько частей, с построением в каждой части своего интерполяционного полинома. Такой метод называется интерполяцией сплайнами. Наиболее распространенным является построение на каждом отрезке [xi, xi+1 ], i=0..n-1 кубической функции. При этом сплайн – кусочная функция, на каждом отрезке заданная кубической функцией, является кусочно-непрерывной, вместе со своими первой и второй производной.

Будем искать кубический сплайн на каждом из частичных отрезков [xi, xi+1 ] в виде:

, где ai ,bi ,ci ,di – неизвестные.

Из того что Si (xi )=yi получим:

В силу непрерывности потребуем совпадения значений в узлах, т.е.:

,i=0..n-1; (1)

Также потребуем совпадения значений первой и второй производной:

,i=0..n-2; (2)

,i=0..n-2; (3)

Из (1) получим n линейных уравнений с 3n неизвестными

,i=0..n-1; (1*)

Из (2) и (3) получим 2(n-1) линейных уравнений с теми же неизвестными:

,i=0..n-1; (2*)

,i=1..n-1; (3*)

Недостающие два уравнения определим следующим образом. Предположим, что в точках х0и хn производная равна нулю и получим еще два уравнения. Получим систему из 3*n линейных уравнений с 3*n неизвестными. Решим ее любым из методов и построим интерполяционную функцию, такую что на отрезке [xi, xi+1 ] она равна Si .


Метод Лагранжа

procedure TForm1.Button1Click(Sender: TObject);

type tip=array of real;

var x,y:tip;

i,j,n:byte;

p,s,xx:real;

begin

n:=edt.Count;

setlength(x,n);

setlength(y,n);

for i:=0 to n-1 do x[i]:=edt.massiv[i];edt.Lines.Delete(0);

for i:=0 to n-1 do y[i]:=edt.massiv[i];edt.Lines.Delete(0);

xx:=strtofloat(edt.Text);

edt.Lines.Delete(0);

s:=0;

for i:=0 to n-1 do

begin

p:=1;

for j:=0 to n-1 do if i<>j then p:=p*(xx-x[j])/(x[i]-x[j]);

p:=p*y[i];

s:=s+p;

end;

edt.writer('',1);

edt.writer('',s,1);

end;


Сплайн – интерполяция ( программа составляет систему линейных уравнений, решая которую находим коэффициенты кубических сплайнов).

procedure TForm1.Button1Click(Sender: TObject);

var b,c,d,x,y:array of real;

urm:array of array of real;

i,j,k,n :byte;

begin

n:=edt.Count;

setlength(x,n);setlength(y,n);

for i:=0 to n-1 do x[i]:=edt.massiv[i];edt.Lines.Delete(0);

for i:=0 to n-1 do y[i]:=edt.massiv[i];edt.Lines.Delete(0);

setlength(b,n-1);setlength(c,n-1);setlength(d,n-1);

setlength(urm,3*(n-1),3*(n-1)+1);

for i:=0 to 3*(n-1)-1 do

for j:=0 to 3*(n-1) do urm[i,j]:=0;

for i:=0 to n-1 do edt.writer(' ',y[i],0);

for i:=0 to n-2 do

begin

urm[i,3*i+0]:=x[i+1]-x[i];

urm[i,3*i+1]:=(x[i+1]-x[i])*(x[i+1]-x[i]);

urm[i,3*i+2]:=(x[i+1]-x[i])*(x[i+1]-x[i])*(x[i+1]-x[i]);

urm[i,3*(n-1)]:=y[i+1]-y[i];

end;

for i:=0 to n-3 do

begin

urm[i+n-1,3*i+0]:=1;

urm[i+n-1,3*i+1]:=2*(x[i+1]-x[i]);

urm[i+n-1,3*i+2]:=3*(x[i+1]-x[i])*(x[i+1]-x[i]);

urm[i+n-1,3*i+3]:=-1;

end;

for i:=0 to n-3 do

begin

urm[i+2*n-3,3*i+1]:=1;

urm[i+2*n-3,3*i+2]:=3*(x[i+1]-x[i]);

urm[i+2*n-3,3*i+4]:=-1;

end;

urm[3*n-5,0]:=1; urm[3*n-5,3*(n-1)]:=0;

urm[3*n-4,3*(n-1)-3]:=1;urm[i+2*n-3,3*(n-1)-2]:=2*(y[n-1]-y[n-2])]

urm[3*n-4,3*(n-1)-1]:=3*(y[n-1]-y[n-2]) *(y[n-1]-y[n-2]);

urm[i+2*n-3,3*(n-1)]:=0

for i:=0 to 3*(n-1)-1 do

begin

edt.writer('',1);

for j:=0 to 3*(n-1) do edt.writer(' ',urm[i,j],0);

end;

end;


Выполнить интерполяцию сплайнами третьей степени. Построить график и отметить на нем узлы интерполяции.

xi 7 9 13
yi 2 -2 3

Решение.

Будем искать кубический сплайн на каждом из частичных отрезков [xi, xi+1 ], i=0..2 в виде:

, где ai ,bi ,ci ,di – неизвестные.

Из того что Si (xi )=yi получим:

В соответствии с теоретическим положениями изложенными выше, составим систему линейных уравнений, матрица которой будет иметь вид:

При этом мы потребовали равенства производной нулю.

Решая систему уравнений получим вектор решений [b1 ,c1 ,d1 ,b2 ,c2 ,d2 ]:

Подставляя в уравнение значения b1 ,c1 ,d1, получим на отрезке [7..9]:

Если выражение упростить то:

Аналогично подставляя в уравнение значения b2 ,c2 ,d2, получим на отрезке [9..13]:

или

График имеет вид:


Метод Ньютона

procedure TForm1.Button1Click(Sender: TObject);

type tip=array of real;

var x,y:tip;

i,j,n:byte;

p,s,xx,t,h:real;

kp:array of array of real;

begin

n:=edt.Count;

setlength(x,n);

setlength(y,n);

for i:=0 to n-1 do x[i]:=edt.massiv[i];edt.Lines.Delete(0);

for i:=0 to n-1 do y[i]:=edt.massiv[i];edt.Lines.Delete(0);

xx:=strtofloat(edt.Text);

edt.Lines.Delete(0);

setlength(kp,n,n);

for i:=0 to n-1 do for j:=0 to n-1 do kp[i,j]:=0;

for i:=0 to n-1 do kp[0,i]:=y[i];

for i:= 1 to n-1 do

for j:=0 to n-i-1 do

kp[i,j]:=kp[i-1,j+1]-kp[i-1,j];

for i:= 0 to n-1 do

begin

for j:=0 to n-1 do edt.writer(' ',kp[i,j],0);

edt.writer('',1);

end;

edt.writer('',1);

h:=0.5;

t:=(xx-x[0])/h;

s:=y[0];

for i:=1 to n-1 do

begin

p:=1;

for j:=0 to i-1 do p:=p*(t-j)/(j+1);

s:=s+p*kp[i,0];

end;

edt.writer('',s,1);;

end;


Построить интерполяционный многочлен Ньютона. Начертить график и отметить на нем узлы интерполяции. Вычислить значение функции в точке х=1.25.

xi 1 1.5 2 2.5 3 3.5
yi 0.5 2.2 2 1.8 0.5 2.25

Решение.

Построим таблицу конечных разностей в виде матрицы:

Воспользуемся интерполяционной формулой Ньютона:

Pn ( x )= y + t Δ y + t( t-1) /2! Δ 2 y0+...+ t(t-1)...(t-n+1) / n! Δ n y0

Подставив значения получим многочлен пятой степени, упростив который получим:

P5 (x)=2.2x5 -24x4 +101.783x3 -20.2x2 +211.417x-80.7

Вычислим значение функции в точке x=1.25; P(1.25)=2.0488;

График функции имеет вид:


Построить интерполяционный многочлен Лагранжа. Начертить график и отметить на нем узлы интерполяции. Вычислить значение в точке х=1.2.

xi 0.25 1.25 2.125 3.25
yi 5.0 4.6 5.7 5.017 4.333

Решение.

Построим интерполяционный многочлен Лагранжа L4 ( x), подставив значения из таблицы в формулу:

Напишем программу и вычислим значение многочлена в точке х=1.2:

L4 (1.2)=5.657;

Полученный многочлен имеет четвертую степень. Упростим его и получим:

Построим график полученного полинома:

еще рефераты
Еще работы по математике