Реферат: Комплекс моделей енергоспоживання регіонами України

--PAGE_BREAK--

Рис. 2.1. IDEF модель аналізу енергоспоживання регіонами України
Кон’юктура виступає як динамічний прогрес економічних змін, що характеризується напрямом і мірою варіативної певної сукупності елементів народного господарства. Вона є постійно змінюючимся динамічним процесом. Її роль є дуже значною, бо саме вона впливає на роботу підприємств, що характеризують регіон.

Варто зауважити, що зараз існує проблема енергозбереження, яка робить науково –технічний прогрес рушійною ланкою для її вирішення. Нові розробки та дослідження дають змогу підприємствам оптимізувати затрати.

Для забезпечення використання потенціалу енергозбереження, перш за все, необхідні удосконалення нормативно-правової бази і державної політики у сфері енергозбереження, яка б спонукала енергоспоживачів до належного обліку ощадного використання. Галузеві міністерства та науково-дослідницькі центри, зазначені на рис. 2.2., сприяють впровадженню інноваційних технологій, допомагають створити необхідну базу для поліпшення умов праці.

Важливість подібних установ проявляється в працях, розроблених працівниками, та співробітництві з підприємствами не тільки в місцевій сфері діяльності інших регіонів.
<img width=«499» height=«348» src=«ref-1_1244881176-20712.coolpic» v:shapes="_x0000_i1026">

Рис. 2.2. Декомпозиція комплексу моделей енергоспоживання регіонами України
Проведення аналізу є вкрай необхідним, адже для економіки сучасної України характерна дуже низька ефективність використання енергетичних ресурсів. Таке положення справ є наслідком ряду причин, зокрема, структури промислового виробництва з переважанням енергоємних галузей чорної металургії і хімічної промисловості, а також що збереглася, в основному, ще з радянських часів виробничо-технічної бази, орієнтованої на тодішні низькі внутрішні ціни на нафту і газ. До недавнього часу Україна могла отримувати недорогий природний газ, що не стимулювало його економне використання. У нас також великі втрати енергоресурсів при транспортуванні чи розподілі і саме для того щоб дослідити загальне становище України шляхом використання методів поділу регіонів на групи, забражених на рис.2.3.
<img width=«589» height=«366» src=«ref-1_1244901888-26558.coolpic» v:shapes="_x0000_i1027">

Рис.2.3. Декомпозиція моделі аналізу енергоспоживання регіонами України
В результаті проведення моделювання можна отримати необхідне для виявлення особливо енергозатратних регіонів, що потребують втручання держави у разі не спроможності самостійно подолати зайві витрати ресурсів, або власноруч, через заміну обладнання та впровадження інновацій.

В результаті виникнення необхідності розробляти оптимальний баланс підприємства або енергосистеми, тобто планувати витрати кожного виду палива в певний проміжок часу з метою здобуття необхідного навантаження з мінімальними витратами в умовах швидких змін технологічної, економічної і інших ситуацій. полягає в тому, що теоретичні узагальнення, основні положення і виводи дисертаційного дослідження можуть бути використані в діяльності органів законодавчої і виконавчої влади України, а саме: при розробці концепції розвитку паливно-енергетичного комплексу країни, розвитку її нафто- та газотранспортної системи і проведенні зовнішньоекономічної політики України, спрямованої на посилення її енергетичної безпеки.

аргументовано вести політику відносно вибору і реалізації оптимального плану з метою забезпечення зниження додаткових витрат, що виникли від вжитку додаткових одиниць енергоресурсів;

понизити витрати на виробництво продукції і як наслідок зменшити ціну собівартості і продажу, тобто стати привабливішим для потенційних замовників.

Побудова моделей для отримання у висновку аналітичних значень, дає можливість дізнатися про роботу підприємств та ЖКГ, що представляють основні енергоємні регіони України.

В даному випадку оптимізація є завершальною об’єднуючою ланкою, яка включає в себе як структуру так і отримані дані кластеризації.

В результаті проведення моделювання отримані дані можна використовувати для оперативного і тактичного управління споживання енергоресурсів, що дозволяють підвищити ефективність їх виробництва і розподілу і, як наслідок, стримувати зростання цін, добиватися відносного зниження тарифів.

В результаті проведення моделювання шляхом дискримінантного аналізу та кластерного розбиття на групи, можно проаналізувати стан регіонів вцілому та кожного окремо.Кластерізація дозволить будучому користувачу моделей(інвестору або державному службовцю) визначити доцільність співпраці з регіональніми представниками та масштаб виконання необхідних дій. А налізуючи на прикладі Харківської області енергоспоживання на душу населення можно розробити комплекс заходів відносно його оптимізації, тоб то більш ефективного використання таких енергоресурсів як вугілля, газ, нафта та електроенергія.

Дані оцінки дозволяють, хоча і в першому наближенні, виявити ступінь гостроти економічних та екологічних проблем територій регіону і виділити їх у типологічні групи.
2.2 Застосування методів багатовимірного статистичного аналізу в моделюванні енергоспоживання
Одним з найбільш дієвих інструментів аналізу є кластерний аналіз. Його основне достоїнство полягає в тому, що він дозволяє об'єднувати об'єкти в однорідні за кількома показниками групи (кластери). Алгоритм його застосування складається з наступних кроків:

формування матриці «об'єкт — ознака», де в якості об'єктів можуть виступати регіони, міста і т.д., а ознаками є значимі характеристики пов'язані з енергоспоживанню;

вибір заходи схожості або міри відстані, на основі якої буде будуватися класифікація;

визначення зв'язку між об'єктами на основі побудови матриці схожості або відстаней, симетричної вихідної матриці;

виявлення груп та інтерпретація отриманих результатів.

При визначенні пріоритетних напрямків комплексного енергоспоживання регіону кластерний аналіз може використовуватися в кількох аспектах. Перша область застосування — це виявлення проблем, формування переліку регіонів з високими показниками споживання ресурсів, наявності великих родовищ, заводів, які визначають загальні витрати енергоресурсів. Другим аспектом аналізу є оцінка потенціалу та відбір регіонів, які можуть стати «локомотивами» споживання, на основі вивчення розподілу ресурсів, виробничих потужностей і т.д.

Для таких об'єктів в подальшому можуть створюватися інвестиційні проекти розвитку, що фінансуються повністю або частково за рахунок бюджетних коштів. Крім того, проведення кластерного аналізу за одним і тим же об'єктам і показниками за даними різних часових зрізів дає уявлення про динаміку розвитку регіонів, їх рух щодо сформованих груп, що надає вихідну інформацію для прогнозування.

Використання кластерного аналізу не вичерпується узагальненням великих масивів кількісних даних. Він також застосовується для зіставлення об'єктів за якісними характеристиками. У стратегічному управлінні методики багатовимірних угруповань можуть використовуватися для агрегування експертних оцінок поточного або прогнозованого рівня розвитку об'єктів та їх підсистем.

Об'єднання або метод деревовидної кластеризації використовується при формуванні кластерів несхожості або відстані між об'єктами. Ці відстані можуть визначатися в одновимірному або багатовимірному просторі. Наприклад, якщо ви повинні кластеризувати типи їжі в кафе, то можете взяти до уваги кількість калорій, що містяться в ній, ціну, суб'єктивну оцінку смаку і так далі. Найбільш прямий шлях обчислення відстаней між об'єктами в багатовимірному просторі полягає в обчисленні відстаней Евкліда.

На першому кроці, коли кожен об'єкт є окремим кластером, відстані між цими об'єктами визначаються вибраною мірою. Проте коли зв'язуються разом декілька об'єктів слід визначити відстані між кластерами.

Іншими словами, потрібне правило об'єднання або зв'язку для двох кластерів. Тут є різні можливості: наприклад, ви можете зв'язати два кластери разом, коли будь-які два об'єкти в двох кластерах ближче один до одного, ніж відповідна відстань зв'язку. Іншими словами, ви використовуєте «правило найближчого сусіда» для визначення відстані між кластерами; цей метод називається методом поодинокого зв'язку. Це правило будує «волокнисті» кластери, тобто кластери, «зчеплені разом» тільки окремими елементами, що випадково виявилися ближче за інших один до одного. Як альтернативу ви можете використовувати сусідів в кластерах, які знаходяться далі за усі інші пари об'єктів один від одного. Цей метод називається метод повного зв'язку. Існує також безліч інших методів об'єднання кластерів, подібних тим, що були досліджені.

Метод кластеризації к –середніх істотно відрізняється від таких агломеративных методів, як об'єднання (деревовидна кластеризація) і двувходове об'єднання. Припустимо, ви вже маєте гіпотези відносно числа кластерів (за спостереженнями або по змінних). Ви можете вказати системі утворити рівно три кластери так, щоб вони були настільки різні, наскільки це можливо. Це саме той тип завдань, які вирішує алгоритм методу K середніх. У загальному випадку метод K середніх будує рівно K різних кластерів, розташованих на можливо великих відстанях один від іншого.

З обчислювальної точки зору ви можете розглядати цей метод, як дисперсійний аналіз «навпаки». Програма починає з K випадково вибраних кластерів, а потім змінює приналежність об'єктів до них, щоб мінімізувати мінливість усередині кластерів, і максимізувати мінливість між кластерами. Цей спосіб аналогічний методу «дисперсійний аналіз (ANOVA) навпаки» в тому сенсі, що критерій значущості в дисперсійному аналізі порівнює міжгрупову мінливість з внутрішньогрупової при перевірці гіпотези про те, що середні в групах відрізняються один від одного. У кластеризації методом K середніх програма переміщає об'єкти (тобто спостереження) з одних груп (кластерів) в інші для того, щоб отримати найбільш значущий результат при проведенні дисперсійного аналізу.

Зазвичай, коли результати кластерного аналізу методом K середніх отримані, можна розрахувати середні для кожного кластера по кожному виміру, щоб оцінити, наскільки кластери розрізняються один від одного. У ідеалі ви повинні отримати середні, що сильно розрізняються, для більшості, якщо не для усіх вимірів, використовуваних в аналізі. Значення F -статистики, отримані для кожного виміру, є іншим індикатором того, наскільки добре відповідний вимір дискримінує кластери.

Функціонування енергетики в Україні відбувається у специфічних умовах ринкової моделі розвитку економіки. Тому застосування сучасного математичного апарату, що дозволяє визначати стан енергетичного комплексу за ступенем кризи, є необхідною ланкою в досягненні сталого розвитку як регіону, так і держави в цілому. Фактори, що впливають на стан енергетіческогот комплексу, достатньо тісно пов'язані між собою. Дослідження показують, що підхід до визначення факторів, що впливають передбачає поетапне перетворення матриці вихідних даних з результатом стиснення інформації. Це дозволяє виявити найбільш значимі властивості, що впливають на стан енергетичного комплексу в умовах використання мінімуму вихідної інформації. Надмірно великий обсяг інформації може призвести до того, що ступінь показності вибірки виявиться обернено пропорційній розмірності простору факторів, що, в кінцевому рахунку, може не тільки не поліпшити, а й навіть погіршити якість бажаного результату. Основною метою побудови моделі є підвищення адекватності оцінки стану енергетичного комплексу, що дозволяє встановити ступінь кризи в регіоні.

Для оцінки стану енергетичного комплексу регіону в якості основного методу застосований дискримінантний аналіз.

Спочатку за допомогою експертизи визначається ряд регіонів-зразків, що характеризують нормальний рівень функціонування енергетичного комплексу. До регіонів — зразків відносимо ті регіони, у яких найбільша узгодженість думок експертів (узгодженість думок оцінюємо за допомогою коефіцієнта конкордації). За даними регіонів, у яких найбільша узгодженість думок експертів, здійснюється формування двох матриць. За допомогою дискримінантного аналізу виробляємо класифікацію залишилися районів на дві групи: нормальну і анормальну. Регіони, які потрапили в анормальну групу, знову даємо на експертизу, за результатами якої поділяємо їх на дві групи: регіони з кризовою і з передкризової ситуацією.

За допомогою дискримінантного аналізу виробляємо класифікацію залишилися регіонів на дві групи з передкризової і кризовою ситуацією.

Перш ніж приступити до розгляду алгоритму аналізу дискримінанта, звернемося до його геометричної інтерпретації. На рис. 2.1. зображені об'єкти, що належать двом різній множини М1 і М2.


<img width=«254» height=«184» src=«ref-1_1244928446-7423.coolpic» alt=«C:\Documents and Settings\МАРАЛ\Рабочий стол\анализ рисунки\сканирование0003.JPG» v:shapes=«Рисунок_x0020_1»>

Рис. 2.1. Геометрична інтерпретація дискримінантних функцій та дискримінантних змінних
Адаптований алгоритм розрахунку коефіцієнтів дискримінантної функції представленої у третьому розділі дозволить поетапно стежити за виконанням розрахунків.

Кожен об'єкт характеризується в даному випадку двома змінними і. Якщо розглядати проекції об'єктів (точок) на кожну вісь, то ці множини перетинаються, тобто по кожній змінній окремо деякі об'єкти обох великих кількостей мають схожі характеристики. Щоб якнайкраще розділити дві дані множини, треба побудувати відповідну лінійну комбінацію змінних і. Для двовимірного простору це завдання зводиться до визначення нової системи координат. Причому нові осі L і З мають бути розташовані так, щоб проекції об'єктів, що належать різним множинам на вісь L, були максимально розділені. Вісь С перпендикулярна осі L і розділяє дві «хмари» точок якнайкраще, Тобто щоб множини виявилися по різні сторони від цієї прямої. При цьому вірогідність помилки класифікації має бути мінімальною. Сформульовані умови мають бути враховані при визначенні коефіцієнтів і наступною:
F(x) = <img width=«39» height=«25» src=«ref-1_1244935869-306.coolpic» v:shapes=«Рисунок_x0020_2»>+<img width=«40» height=«25» src=«ref-1_1244936175-317.coolpic» v:shapes=«Рисунок_x0020_4»>
Функція F(x) називається канонічною функцією дискримінанта, а величини і — змінними дискримінантів.

Позначимо — середнє значення j -ої ознаки у об'єктів i -ої великої кількості (класу). Тоді для множини М1 середнє значення функції буде рівне:
<img width=«15» height=«26» src=«ref-1_1244936492-243.coolpic» v:shapes=«Рисунок_x0020_14»>(x) = <img width=«44» height=«25» src=«ref-1_1244936735-332.coolpic» v:shapes=«Рисунок_x0020_16»>+<img width=«47» height=«25» src=«ref-1_1244937067-347.coolpic» v:shapes=«Рисунок_x0020_18»>;
Для множини М2 середнє значення функції рівне:
<img width=«16» height=«26» src=«ref-1_1244937414-251.coolpic» v:shapes=«Рисунок_x0020_30»>(x) = <img width=«44» height=«25» src=«ref-1_1244937665-341.coolpic» v:shapes=«Рисунок_x0020_32»>+<img width=«48» height=«25» src=«ref-1_1244938006-345.coolpic» v:shapes=«Рисунок_x0020_34»>;
Геометрична інтерпретація цих функцій — дві паралельні прямі, що проходять через центри класів як на рис.2.2.

<img width=«345» height=«220» src=«ref-1_1244938351-11043.coolpic» hspace=«12» alt=«C:\Documents and Settings\МАРАЛ\Рабочий стол\анализ рисунки\сканирование0004.JPG» v:shapes=«Рисунок_x0020_2»>
Рис. 2.2. Центри великих кількостей, що розділяються, і константа дискримінації
Функція дискримінанта може бути як лінійною, так і нелінійною. Вибір її виду залежить від геометричного розташування класів, що розділяються, в просторі змінних дискримінантів. Для спрощення викладень надалі розглядається лінійна функція дискримінанта. Коефіцієнти функції дискримінанта визначаються так, щоб значення функцій якомога більше розрізнялися між собою, тобто щоб для двох множин (класів) було максимальним вираження:

<img width=«239» height=«60» src=«ref-1_1244949394-3419.coolpic» hspace=«12» alt=«C:\Documents and Settings\МАРАЛ\Рабочий стол\анализ рисунки\Безымянный.JPG» v:shapes=«Рисунок_x0020_3»>
Основними проблемами дискримінантного анализу являються, по-перше, знахедження дискримінантних змінних, по-друге, вибір виду дискримінантной функції. Існують різноманітні критерії послідовного відбіру змінних, що дозволяють отримати найкращі відмінності у множин. Також можна скористатися алгоритмом поступового дискримінантного анализу, котрий в літературі описаний дуже добре.
2.3 Метод аналізу із застосуванням карт Кохонена
Аналізуючи найбільш відомі на даний час розробки нейромереж, слід зазначити, що самим поширеним варіантом архітектури є багатошарові мережі зазначені на рис. 2.3. Нейрони в даному випадку об'єднуються у прошарки з єдиним вектором сигналів входів. Зовнішній вхідний вектор подається на вхідний прошарок нейронної мережі (рецептори). Виходами нейронної мережі є вихідні сигнали останнього прошарку (ефектори). Окрім вхідного та вихідного прошарків, нейромережа має один або декілька прихованих прошарків нейронів, які не мають контактів із зовнішнім середовищем.

Таким чином, звичайні нейронні мережі виявляють закономірності між вхідними даними і прогнозованою величиною. Якщо такі закономірності є, то нейромережа їх виділить, і прогноз буде успішним.


<img width=«371» height=«143» src=«ref-1_1244952813-5813.coolpic» v:shapes="_x0000_i1045">

Рис. 2.3. Багатошаровий тип з'єднання нейронів
Мережі прямого поширення відносять до статичних, так як на задані входи нейронів надходить не залежний від попереднього стану мережі вектор вхідних сигналів. Рекурентні мережі вважаються динамічними, тому що за рахунок зворотних зв'язків (петель) входи нейронів модифікуються в часі, що приводить до змін станів мережі.

Оригінальність нейромереж, як аналога біологічного мозку, полягає у здібності до навчання за прикладами, що складають навчальну множину. Процес навчання нейромереж розглядається як налаштування архітектури та вагових коефіцієнтів синаптичних зв'язків відповідно до даних навчальної множини так, щоб ефективно вирішити поставлену задачу. Виділяють варіанти контрольованого та неконтрольованого навчання.

Величезна більшість рішень отримана від нейромереж з контрольованим навчанням, де біжучий вихід постійно порівнюється з бажаним виходом. Ваги на початку встановлюються випадково, але під час наступних ітерації коректуються для досягнення близької відповідності між бажаним та біжучим виходом. Створені методи навчання націлені на мінімізації біжучих похибок всіх елементів обробки, яке створюється за якийсь час неперервною зміною синаптичних ваг до досягнення прийнятної точності мережі.

Перед використанням, нейромережа з контрольованим навчанням повинна бути навченою. Фаза навчання може тривати багато часу, зокрема, у прототипах систем, з невідповідною процесорною потужністю навчання може займати декілька годин. Навчання вважається закінченим при досягненні нейромережею визначеного користувачем рівня ефективності. Цей рівень означає, що мережа досягла бажаної статистичної точності, оскільки вона видає бажані виходи для заданої послідовності входів. Після навчання ваги з'єднань фіксуються для подальшого застосування. Деякі типи мереж дозволяють під час використання неперервне навчання, з набагато повільнішою оцінкою навчання, що допомагає мережі адаптуватись до повільно змінюючихся умов.

Навчальні множини повинні бути досить великими, щоб містити всю необхідну інформацію для виявлення важливих особливостей і зв'язків. Але і навчальні приклади повинні містити широке різноманіття даних. Якщо мережа навчається лише для одного прикладу, ваги старанно встановлені для цього прикладу, радикально змінюються у навчанні для наступного прикладу. Попередні приклади при навчанні наступних просто забуваються. В результаті система повинна навчатись всьому разом, знаходячи найкращі вагові коефіцієнти для загальної множини прикладів. Наприклад, у навчанні системи розпізнавання піксельних образів для десяти цифр, які представлені двадцятьма прикладами кожної цифри, всі приклади цифри «сім» не доцільно представляти послідовно. Краще надати мережі спочатку один тип представлення всіх цифр, потім другий тип і так далі.

Головною компонентою для успішної роботи мережі є представлення і кодування вхідних і вихідних даних. Штучні мережі працюють лише з числовими вхідними даними, отже, необроблені дані, що надходять із зовнішнього середовища повинні перетворюватись. Додатково необхідне масштабування, тобто нормалізація даних відповідно до діапазону всіх значень. Попередня обробка зовнішніх даних, отриманих за допомогою сенсорів, у машинний формат спільна для стандартних комп'ютерів і є легко доступною.

Якщо після контрольованого навчання нейромережа ефективно опрацьовує дані навчальної множини, важливим стає її ефективність при роботі з даними, які не використовувались для навчання. У випадку отримання незадовільних результатів для тестової множини, навчання продовжується. Тестування використовується для забезпечення запам'ятовування не лише даних заданої навчальної множини, але і створення загальних образів, що можуть міститись в даних.

Неконтрольоване навчання може бути великим надбанням в майбутньому. Воно проголошує, що комп'ютери можуть самонавчатись у справжньому роботизованому сенсі. На даний час, неконтрольоване навчання використовується мережах відомих, як самоорганізовані карти (self organizing maps), що знаходяться в досить обмеженому користуванні, але доводячи перспективність самоконтрольованого навчання. Мережі не використовують зовнішніх впливів для коректування своїх ваг і внутрішньо контролюють свою ефективність, шукаючи регулярність або тенденції у вхідних сигналах та роблять адаптацію згідно навчальної функції. Навіть без повідомлення правильності чи неправильності дій, мережа повинна мати інформацію відносно власної організації, яка закладена у топологію мережі та навчальні правила.

Алгоритм неконтрольованого навчання скерований на знаходження близькості між групами нейронів, які працюють разом. Якщо зовнішній сигнал активує будь-який вузол в групі нейронів, дія всієї групи в цілому збільшується. Аналогічно, якщо зовнішній сигнал в групі зменшується, це приводить до гальмуючого ефекту на всю групу.

Конкуренція між нейронами формує основу для навчання. Навчання конкуруючих нейронів підсилює відгуки певних груп на певні сигнали. Це пов'язує групи між собою та відгуком. При конкуренції змінюються ваги лише нейрона-переможця.

Оцінка ефективності навчання нейромережі залежить від декількох керованих факторів. Теорія навчання розглядає три фундаментальні властивості, пов'язані з навчанням: ємність, складність зразків і обчислювальна складність. Під ємністю розуміють, скільки зразків може запам'ятати мережа, і які межі прийняття рішень можуть бути на ній сформовані. Складність зразків визначає число навчальних прикладів, необхідних для досягнення здатності мережі до узагальнення. Обчислювальна складність напряму пов'язана з потужністю процесора ЕОМ.

У загальному використанні є багато правил навчання, але більшість з цих правил є деякою зміною відомого та найстаршого правила навчання, правила Хеба. Дослідження різних правил навчання триває, і нові ідеї регулярно публікуються в наукових та комерційних виданнях. Представимо декілька основних правил навчання.

Правило Хеба з'явилося у його книзі «Організація поведінки» у 1949 р. «Якщо нейрон отримує вхідний сигнал від іншого нейрону і обидва є високо активними (математично мають такий самий знак), вага між нейронами повинна бути підсилена». При збудженні одночасно двох нейронів з виходами (хj, уі) на k-тому кроці навчання вага синаптичного з'єднання між ними зростає, в інакшому випадку — зменшується, тобто
D Wij(k)=r xj (k) yi (k),
де r — коефіцієнт швидкості навчання.

Правило Хопфілда є подібним до правила Хеба за винятком того, що воно визначає величину підсилення або послаблення. «Якщо одночасно вихідний та вхідний сигнал нейрона є активними або неактивними, збільшуємо вагу з'єднання оцінкою навчання, інакше зменшуємо вагу оцінкою навчання».

Правило «дельта». Це правило є подальшою зміною правила Хеба і є одним із найбільш загально використовуваних. Це правило базується на простій ідеї неперервної зміни синаптичних ваг для зменшення різниці («дельта») між значенням бажаного та біжучого вихідного сигналу нейрона.
DWij= xj (di — yi).


За цим правилом мінімізується середньоквадратична похибка мережі. Це правило також згадується як правило навчання Відрова-Хофа та правило навчання найменших середніх квадратів.

У правилі «дельта» похибка отримана у вихідному прошарку перетворюється похідною передатної функції і послідовно пошарово поширюється назад на попередні прошарки для корекції синаптичних ваг. Процес зворотного поширення похибок мережі триває до досягнення першого прошарку. Від цього методу обчислення похибки успадкувала своє ім'я відома парадигма FeedForward BackPropagation.

При використанні правила «дельта» важливим є невпорядкованість множини вхідних даних. При добре впорядкованому або структурованому представленні навчальної множини результат мережі може не збігтися до бажаної точності і мережа буде вважатись нездатною до навчання.

Правило градієнтного спуску. Це правило подібне до правила «дельта» використанням похідної від передатної функції для змінювання похибки «дельта» перед тим, як застосувати її до ваг з'єднань. До кінцевого коефіцієнта зміни, що діє на вагу, додається пропорційна константа, яка пов'язана з оцінкою навчання. І хоча процес навчання збігається до точки стабільності дуже повільно, це правило поширене і є загально використовуване.

Доведено, що різні оцінки навчання для різних прошарків мережі допомагає процесу навчання збігатись швидше. Оцінки навчання для прошарків, близьких до виходу встановлюються меншими, ніж для рівнів, ближчих до входу.

На відміну від навчання Хеба, у якому множина вихідних нейронів може збуджуватись одночасно, при навчанні методом змагання вихідні нейрони змагаються між собою за активізацію. Це явище відоме як правило «переможець отримує все». Подібне навчання має місце в біологічних нейронних мережах. Навчання за допомогою змагання дозволяє кластеризувати вхідні дані: подібні приклади групуються мережею відповідно до кореляцій і представляються одним елементом.

При навчанні модифікуються синаптичні ваги нейрона-переможця. Ефект цього правила досягається за рахунок такої зміни збереженого в мережі зразка (вектора синаптичних ваг нейрона-переможця), при якому він стає подібним до вхідного приклада. Нейрон з найбільшим вихідним сигналом оголошується переможцем і має можливість гальмувати своїх конкурентів і збуджувати сусідів. Використовується вихідний сигнал нейрона-переможця і тільки йому та його сусідам дозволяється коректувати свої ваги з'єднань.
DWij (k+1)= Wij(k)+r [xj — Wij(k)].
Розмір області сусідства може змінюватись під час періоду навчання. Звичайна парадигма повинна починатись з великої області визначення сусідства і зменшуватись під час процесу навчання. Оскільки елемент-переможець визначається по найвищій відповідності до вхідного зразку, мережі Коxонена моделюють розподіл входів. Це правило використовується в самоорганізованих картах.

Розглядаючи карти Кохонена забражені на рис. 2.4., перш за все необхідно пригадати, що будь-яка нейронна мережа, перш за все, має бути виучена. Процес навчення полягає в підстроюванні внутрішніх параметрів нейромережі під конкретне завдання.
<img width=«179» height=«123» src=«ref-1_1244958626-4597.coolpic» v:shapes="_x0000_i1046">    продолжение
--PAGE_BREAK--

Рис. 2.4. Мережа Кохонена


При вченні «класичної» багатошарової нейромережі на вхід подаються дані або індикатори, а вихід нейромережі порівнюється з еталонним значенням (з так званим «вчителем»). Різниця цих значень називається помилкою нейронної мережі, яка і мінімізується в процесі вчення.

Таким чином, звичайні нейронні мережі виявляють закономірності між вхідними даними і прогнозованою величиною. Якщо такі закономірності є, то нейромережа їх виділить, і прогноз буде успішним [26].

В процесі навчання карт Кохонена на входи також подаються дані і індикатори, але при цьому мережа підстроюється під закономірності у вхідних даних, а не під еталонне значення виходу. Таке вчення називається вченням «без вчителя». Вчення при цьому полягає не в мінімізації помилки, а в підстроюванні внутрішніх параметрів нейромережі (вагів) для великого сов падіння з вхідними даними. Після вчення така нейромережа візуально відображує багатовимірні вхідні дані на плоскості нейронів.

Маючи таке представлення даних, можна дуже наочно побачити наявність або відсутність взаємозв'язку у вхідних даних. Для великої зручності візуальної вистави нейрони карти Кохонена розташовують у вигляді двомірної матриці і розфарбовують цю матрицю залежно від аналізованих параметрів нейронів

При роботі із звичайними нейромережами, операція картами Кохонена складається з декількох послідовних етапів.

Першим з них є етап визначення складу входів.Для хорошого вчення звичайної нейромережі потрібно вибрати таку безліч входів, яка найсильніше впливає на вихідні (прогнозовані) значення. Якщо ми вгадали, і входи дійсно впливають на виходи, то нейромережа працюватиме і даватиме відмінні прогнози. Проте підібрати правильні входи дуже складно. Зазвичай це робиться методом проб і помилок, тобто простим перебором різних комбінацій індикаторів і даних [27].

Входи нейромережі, що виучується «без вчителя», визначаються іншим чином, і перед такою нейромережею ставиться інша мета — виявлення закономірностей між будь-якими вхідними даними і індикаторами, які і подаються на вхід карти.

Архітектура карт Кохонена, на відміну від багатошарової нейромережі, дуже проста і є один-єдиним шаром нейронів, який організований у вигляді двомірної матриці. Користувачеві необхідно визначити лише розмір цієї матриці, тобто кількість нейронів по ширині і кількість нейронів по висоті.

Карти Кохонена дають візуальне відображення багатовимірних вхідних даних. У картах Кохонена аналізуються не тільки виходи нейронів (як у віпадку звичайної нейромережі), але також ваги нейронів і розподілу прикладів по нейронах. Оскільки карта Кохонена організована у вигляді двомірних грат, у вузлах якої розташовуються нейрони, то її дуже зручно відображувати на плоскості у вигляді «карти» з розфарбовуванням, залежним від величини аналізованого параметра нейрона.Саме за схожість такого типу зображення нейромережі з топографічними картами вони отримали назву карт Кохонена.

Таким чином, карти Кохонена, що самоорганізующиеся, є одним з видів нейронних мереж. Принципи роботи і вчення такої нейромережі були сформульовані фінським ученим Тойво Кохоненом в 1982 році. Основною ідеєю Т. Кохонена є введення в правило вчення нейрона інформації про його розташування. По Кохонену, нейромережу має один вхідний шар, з числом нейронів, рівним числу входів, і єдиний прихований (вихідний) шар нейронів, створюючий одновимірні (лінія) або двомірні (прямокутник) грати. По аналогії з топографічними картами таку нейромережу також називають картою Кохонена [28].

Для цієї парадигми вчення проводиться без «вчителя», тобто в процесі вчення немає порівняння виходів нейронів з еталонними значеннями.

В процесі навчання на вхід такої нейромережі поступово подаються навчальні приклади. Після подачі чергового прикладу визначається найбільш схожий нейрон, тобто нейрон, у якого скалярний добуток вагів і поданого на вхід вектора мінімально. Такий нейрон вважається переможцем і покликаний бути центром при підстроюванні вагів у сусідніх нейронів.

Правило вчення, запропоноване Кохоненом, передбачає змагання з врахуванням відстані нейронів від «нейрона-переможця.

Для нейрона-переможця функція сусідства дорівнює 1 і потім плавно (по лінійному або експоненціальному закону) зменшується при видаленні від нього. Таким чином, в процесі вчення підстроювання вагів відбувається не лише в одному нейроні — нейроні-переможцеві, але і в його околицях.

Після закінчення процесу вчення карта Кохонена класифікує вхідні приклади на групи схожих один з одним. Вся сукупність нейронів у вихідному шарі точно моделює структуру розподілу повчальних прикладів в багатовимірному просторі. Унікальність технології карт, що самоорганізующихся, полягає в перетворенні N-мерного простори в двух- або одновимірне. Єдине, що треба пам'ятати, — таке перетворення зв'язане з деякими помилками. Дві крапки, близько лежачі на карті Кохонена, будуть близькі і в N-мерном вхідному просторі, але не навпаки.

Для кращого розуміння надається приклад, що роз'яснює спільні підходи до аналізу карт, що самоорганізующихся. Подамо на два входи карти (розміром 50х50 нейронів) набір випадкових чисел від 0 до 50 спільним числом 500 прикладів.

Після проведення вчення такої карти Кохонена все сімейство карт матиме вигляд, змальований на малюнку. Карта частот має рівномірний розподіл прикладів по поверхні карти, що пояснюється рівномірним розподілом вхідних прикладів і якістю вчення карти.

Для нас в даному прикладі представляє інтерес розфарбовування карти входів. Розфарбовування кожною з них лінійна і постійна по одній з граней карти. Причому обидві карти входів мають однакове розфарбовування, але розгорнені один відносно одного на 90 градусів. Як це можна трактувати? При значенні 1- го входу, рівного 0 (темно-синя смуга на першій карті), 2-й вхід може приймати весь спектр значень від 0 (темно-синій) до 50 (темно-червоний). Це відповідає вхідному розподілу даних (пара незалежних, рівномірно розподілених величин). Таким чином, карта, що самоорганізующаяся, змогла правильно відображувати взаємний розподіл двох входів карти.

Виходи нейронів карти Кохонена нагадують топографічну карту. Координати цієї карти визначають положення одного нейрона. Наприклад, координати 12:34 описують нейрон, що знаходиться на пересіченні 12 стовпця з 34 поруч в матриці нейронів. Величина виходу нейрона по аналогії з географічними картами трактується як висота крапки.

Карти Кохонена, так само як і географічні карти, можна відображувати або в двомірному, або тривимірному вигляді. У двомірному вигляді карта розфарбовується відповідно до рівня виходу нейрона.

Для вищих значень зазвичай використовуються світлі тони, а для низьких значень — темні.

Карта виходів є головною картою в аналізі карт Кохонена. Саме на неї проектується взаємне розташування досліджуваних даних. Схожі вхідні дані утворюють на карті кластери — замкнуті області, що складаються з нейронів з однаковими значеннями виходів. Як правило, яскраво виражені кластери в даних мають чіткі кордони з іншими областями карти. У тривимірному вигляді це виглядає як крутий схил горба.

Після завершення вчення кожен вхідний приклад потрапляє в «свій» нейрон. При цьому в деякі нейрони не попаде жодного прикладу, а в деяких попаде декілька прикладів. Розподіл повчальних прикладів по нейронах дуже показово і відображується на карті частот.

У спільному випадку вхідні приклади рівномірно розподіляються по карті. Але якщо в даних є яскраво виражені групи, то приклади розподіляються нерівномірно, утворюючи кластери. Кластером може бути або відособлена група з декількох нейронів, в яку попало деяке число вхідних прикладів, або окремий нейрон, в який попало велике число вхідних прикладів.

Як говорилося вище, при аналізі карт Кохонена проводиться оцінка не лише виходів нейронів, але також і вагів нейронів.

Для кажного входу нейрона складається своя карта, яка розфарбовується у відповідності зі значенням відповідної нейрона. У нейронної мережі, навчаємої зі вчителем, ваги нейронів не мають фізичного сенсу і не використовуються в аналізі. При вченні ж без «вчителя» ваги нейронів підстроюються під точні значення вхідних змінних і відображають їх внутрішню структуру. Для ідеально вивченої нейронної мережі вага нейрона рівна відповідною компоненті вхідного прикладу. Зазвичай аналізують одночасно декілька карт входів. Спочатку на одній карті виділяють області однакового кольору. У цій області групуються вхідні приклади, що мають однакове значення відповідного входу. Далі нейрони з цієї області вивчаються на інших картах на предмет колірного розподілу.

При роботі з картами Кохонена важливо розуміти, що всі розглянуті вище карти — не більше ніж розфарбовування одних і тих же нейронів. При цьому кожен навчальний приклад має одне і те ж розташування на кожній з розглянутих карт.

В результаті проведення аналізу методів, що можуть бути примінені в сфері енергоспоживання, були виділені методи багатомірного статистичного аналізу для оцінки регіонального споживання енергоресурсів, а токож карти Кохонена для проведення кластеризації.

При визначенні пріоритетних напрямів комплексного енергоспоживання регіону кластерний аналіз може використовуватися в декількох аспектах. Перша сфера застосування — це виявлення проблем, формування переліку регіонів з високими показниками споживання ресурсів, наявності великих родовищ, заводів, які визначають загальні витрати енергоресурсів. Другим аспектом аналізу є оцінка потенціалу і відбір регіонів, які можуть стати «локомотивами» споживання, на основі вивчення розподілу ресурсів, виробничих потужностей.

Для того щоб оцінити регіони по їх енергоспоживанню була обрана модель дискримінантного аналізу, що дасть змогу при спостереженні великих статистичних сукупностей, як у даному випадку з регіонами, розділити неоднорідну сукупність на однорідні групи (класи). Таке розчленовування надалі при проведенні статистичного аналізу дає кращі результати моделювання залежностей між окремими ознаками.




Розділ 3. Моделювання та аналіз енергоспоживання регіонами України
3.1 Моделі аналізу регіонів України за енергоспоживанням
Для вирішення завдання аналізу використаємо інструмент багатовимірного статистичного аналізу такий як кластерний аналіз. Його основна перевага полягає в тому, що він дозволяє об'єднувати об'єкти в однорідні за декількома показниками групи (кластери).  Формування матриці «об'єкт — ознака», вказаної на рис. 3.1., є одним з етапів побудови такої моделі, де об'єктами в даному випадку виступають регіони, а ознаками є значущі характеристики що відносяться до енергоспоживання.
<img width=«205» height=«297» src=«ref-1_1244963223-16392.coolpic» v:shapes="_x0000_i1047">

Рис.3.1.Дані необхідні для розрахунків
Вказані змінні є показниками витрат енергоресурсів регіонами України зазначні у одиницях виміру toe, а саме: Х1 – обсяги споживання природнього газу; Х2 — обсяги споживання електроенергії; Х3 — обсяги споживання нафти та нафтопродуктів; Х4 — обсяги споживання вугілля; Х5 — обсяги споживання альтернативних джерел енергії.

При визначенні пріоритетних напрямів комплексного енергоспоживання регіону кластерний аналіз може використовуватися в декількох аспектах. Перша сфера застосування — це виявлення проблем, формування переліку регіонів з високими показниками споживання ресурсів, наявності великих родовищ, заводів, які визначають загальні витрати енергоресурсів. Другим аспектом аналізу є оцінка потенціалу і відбір регіонів, які можуть стати лідерами в ефективному енергоспоживанні, на основі вивчення розподілу ресурсів, виробничих потужностей.

Для більш повного аналізу регіонального споживання енергоресурсів необхідно використати декілька методів кластеризації починаючи з побудови дерева зазначеної на рис. 3.2.:
<img width=«218» height=«133» src=«ref-1_1244979615-8992.coolpic» v:shapes="_x0000_i1048">

Рис. 3.2. Вибір метода кластеризації
Оберемо дані з рис. 3.3. та у пункті кластеру зазначимо «Cases», щоб створювати умови, за яких регіони увійдуть чи будуть виключені з даного кластеру.
<img width=«166» height=«133» src=«ref-1_1244988607-5042.coolpic» v:shapes=«Рисунок_x0020_7»><img width=«218» height=«133» src=«ref-1_1244993649-7945.coolpic» v:shapes=«Рисунок_x0020_10»>

Рис. 3.3. Вибір змінних та шляху
В результаті отримаємо наступні результати зазначені на рис. 3.4.:

--PAGE_BREAK--

Рис. 3.34. Відображення значень аналізу
Результати даної роботи, вказані на рис. 3.34, можуть бути використані для оцінки енергоспоживання регіонами України при заданому наборі показників.

Недоліком є те, що в моделі враховані лише кількісні ознаки. А вони не можуть повною мірою описати енергоспоживання регіонів України, адже існує безліч якісних які і можуть дати бів полне уявлення про стан енергоспоживання.

Як висновок можна сказати, що сформована класифікація регіонів за основними характеристиками і складовими елементами енергоефективності, що дозволяє провести диференціацію регіонів по наявності і ефективності використання енергетичних ресурсів.

Аналізуючи регіони за основними характеристиками, що формують енергоспоживання, треба зауважити, що існують системи з надлишком або нестачею енергоресурсів, інфраструктури їх генерації і передачі, а також здатності споживачів сплатити їх, способу дослідження початкових матеріальних (паливних і інших) ресурсів.

Як видно з таблиці усі регіони були розподілені по групах, що дає змогу проводити подальші аналізи відносно доцільності введення додаткових заходів типу нових енергозберігаючих програм та технологій.
<img width=«205» height=«369» src=«ref-1_1245363710-14854.coolpic» v:shapes="_x0000_i1078">

Рис. 3.36. Порівняння результатів кластеризації
На рис. 3.36. видно, що у результаті проведення розбиття на групи по енергоспоживанню, обидва використані методи розподілили регіони майже однаково. Неспівпадання викликане лише тим, що деякі регіони знаходяться по показникам дуже близько один від одного, а отже межи як такої майже немає. Існує необхідність в остаточному поділі на класи і дослідивши становище в Україні взагалом у сфері енергетики, пропоную віднести всі неспівпадаючі значення до груп з більшим енергоспоживанням, адже так у підприємств та інших користувачів буде мотивація на знаження потреб за рахунок пошуку нових шляхів.
3.2 Моделі оцінки регіонального енергоспоживання
При спостереженні великих статистичних сукупностей часто з'являється необхідність розділити неоднорідну сукупність на однорідні групи (класи). Таке розчленовування надалі при проведенні статистичного аналізу дає кращі результати моделювання залежностей між окремими ознаками.

Змінні дискримінантів мають бути лінійно незалежними. Ще одним припущенням при аналізі дискримінанта є нормальність закону розподілу багатовимірної величини, тобто кожна із змінних дискримінантів усередині кожного з даних класів має бути підпорядкована нормальному закону розподілу. У разі, коли реальна картина у вибіркових сукупностях відрізняється від висунених передумов, слід вирішувати питання про доцільність використання процедур аналізу дискримінанта для класифікації нових спостережень, оскільки в цьому випадку утруднюються розрахунки кожного критерію класифікації.

Дані по регіонам включаючи додатково міста мільйонери Севастополь та Донецьк, були розбиті на групи, представлені в таблиці 3.3.:




Таблиця 3.3.

Дані по регіональному енергоспоживанню

<img width=«282» height=«420» src=«ref-1_1245378564-28595.coolpic» v:shapes="_x0000_i1079">

Вирішальні правила, що формуються на основі імовірнісних методів, можуть бути отримані у вигляді таких характеристик, як групова ковариационная матриця, груповий вектор середніх і визначник ковариационной матриці зазначених у таблицях 3.4. та 3.5.
Таблиця 3.4.

Коваріаційна матриця першої групи регіонів

<img width=«294» height=«72» src=«ref-1_1245407159-6244.coolpic» v:shapes="_x0000_i1080">
Розрахуємо коваріаційну матрицю для другої групи регіонів:




Таблиця 3.5.

Коваріаційна матриця другої групи регіонів

<img width=«218» height=«82» src=«ref-1_1245413403-7173.coolpic» v:shapes="_x0000_i1081">
Для отримання кінцевих результатів необхідно просумувати матриці як наведено у табл. 3.6.
Таблиця 3.6.

Сумарна коваріаційна матриця

<img width=«205» height=«82» src=«ref-1_1245420576-6506.coolpic» v:shapes="_x0000_i1082">
Обернена сумарна матриця коваріацій зазначена у табл. 3.7.:
Таблиця 3.7.

Обернена сумарна коваріаційна матриця

<img width=«192» height=«72» src=«ref-1_1245427082-5705.coolpic» v:shapes="_x0000_i1083">
В результаті перетворень отримали параметри дискримінантної функції зазначені у табл. 3.8.:




Таблиця 3.8.

Параметри дискримінантної функції

<img width=«64» height=«113» src=«ref-1_1245432787-3410.coolpic» v:shapes="_x0000_i1084">
Класифікація діє кращим чином для вибірки, по якій була проведена оцінка дискримінуючої функції отже вирахуємо її і зобразимо у табл. 3.9.
Таблиця 3.9.

Оцінки дискримінантної функції

<img width=«128» height=«174» src=«ref-1_1245436197-7571.coolpic» v:shapes="_x0000_i1085">
Таблиця 3.10.

Дискримінантна константа та значення дискримінантної функції

<img width=«77» height=«72» src=«ref-1_1245443768-2558.coolpic» v:shapes="_x0000_i1086">




Таблиця 3.11.

Дані по енергоспоживанню регіонів України

<img width=«179» height=«307» src=«ref-1_1245446326-15639.coolpic» v:shapes="_x0000_i1087">
<img width=«243» height=«184» src=«ref-1_1245461965-11832.coolpic» v:shapes="_x0000_i1088">

Рис. 3.37. Результати кластерного аналізу
Відстань Махаланобиса є мірою відстані між двома точками в просторі, визначуваним двома або більше корельованими змінними.
<img width=«282» height=«61» src=«ref-1_1245473797-4729.coolpic» v:shapes="_x0000_i1089">

Рис. 3.38. Відстань Махаланобіса між групами регіонів
Для кожної сукупності у вибірці ви можете визначити положення точки, що представляє середні для усіх змінних в багатовимірному просторі, визначеному змінними даної моделі. Ці точки називаються центроїдами групи. Для кожного спостереження ви можете потім вичислити його відстань Махаланобиса від кожного центроїда групи. Знову, ви визнаєте спостереження таким, що належить до тієї групи, до якої він ближчий, тобто коли відстань Махаланобиса до неї мінімально.
<img width=«269» height=«61» src=«ref-1_1245478526-4347.coolpic» v:shapes="_x0000_i1090">

Рис. 3.39. Значення критерію Фішера
<img width=«282» height=«102» src=«ref-1_1245482873-9363.coolpic» v:shapes="_x0000_i1091">

Рис. 3.40. Дискримінуючі функції та константи, середні значення
Класифікаційна матриця з якої видно, що всі дані правильно віднесені дискримінантною функцією до їх класів
<img width=«282» height=«92» src=«ref-1_1245492236-6094.coolpic» v:shapes="_x0000_i1092">

Рис. 3.41. Класифікаційна матриця
Класифікація регіонів, включаючи ті, що досі не були віднесені до жодної з груп

Таблиця 3.12.

Класифікація регіонів за рівнем енергоспоживання

<img width=«141» height=«246» src=«ref-1_1245498330-9582.coolpic» v:shapes="_x0000_i1093">
3.3 Оцінка величини енергетичних потреб населення регіону
Для прогнозування величини енергоспоживання регіоном з урахуванням демографічних та економічних тенденцій з метою подальшого планування паливно-енергетичного балансу регіону цікаво знати енергетичні потреби, як окремої людини, так і всього населення області.

За основу для визначення таких потреб взята мінімальна споживчий кошик (МПК). Енергія, витрачена на виробництво компонентів споживчого кошика та інформація, прийнята за енергетичний споживчий кошик (ЕПК) в розрахунку на одного жителя області. Метод енергетичної споживчого кошика дозволив визначити, чи не загострюючи уваги на таких факторах, як соціально-демографічна приналежність і рівень доходів — величину енергетичних потреб для «середньої» людини, яка склала 6,3 тонни умовного палива (т у. Т.) в розрахунку на одного жителя Харківської області.

Далі розглянемо, як зміниться ЕПК в залежності від:

соціально-демографічної структури населення;

рівня доходів населення.

Приналежність людини до певної соціально-демографічної групи (працездатне населення (чоловіки, жінки), пенсіонери, діти (від 0 до 6 років, від 7 до 15 років)) впливає переважно на споживання продовольчих товарів і потреба в товарах непродовольчої групи. Томська область відноситься до VII зоні за особливостями споживання продуктів харчування і до I зоні по непродовольчих товарах.

На основі енергетичних потреб однієї людини можливо розрахувати енергетичні споживчі кошики для кожної соціально-демографічної групи. Різниця в енергетичних потребах населення залежно від їх соціального приналежності порівняно невелика що і відображено на таблиці у табл. 2.1.:
Таблиця 2.1.

Енергетичні споживчі кошики для соціально-демографічних груп населення, кг умовного палива на 1 людину в рік



Найменування

Працездатне населення

Пенсіонери

Діти

Чоловіки

Жінки

0-6 лет

7-15 лет

1

Продовольча частина

2781,4

2261,1

1797,7

1791,5

2773

2

Непродовольча частина

329,7

359,8

329,8

403

414,7

3

Житлово-комунальні послуги

3900

3900

3900

3900

3900



Разом

7011,1

6520,9

6027,5

6094,5

7087,7



Дані таблиці 2.1. не розходяться зі звичними уявленнями про споживання. Працездатного населення потрібно дещо більше енергії для того, щоб підтримувати себе в нормальній фізичній формі, пенсіонерам та дітям молодшого віку — менше в фізіологічних причин, у дітей з семи до п'ятнадцяти років потреби більше, так як іде період росту і розвитку.

За аналізований період часу в Харківській області збільшилася кількість працездатного населення (причому жінок працездатного віку дещо більше ніж чоловіків), збільшилася кількість пенсіонерів і спостерігається значне зниження народжуваності.


Таблиця 2.2.

Усереднена межа енергоспоживання по соціальній структурі населення в розрахунку на 1 особу та у розрахунку на все населення області



2002

2003

2004

2005

2006

2007

2008

ЕПК на 1 людину, кг у. т.

6627,9

6634,3

6635,5

6640,4

6643,9

6645,1

6643,5

ЕПК на населення області, тис. тонн у. т.

6705

6689

7124

7120

7096

7076

7048



Також на величині енергоспоживання позначається рівень доходів людини. Згідно рівнем доходів усе населення розділене на 10 груп (див. табл. 2.3.) .
Таблиця 2.3.

Кількість осіб в десятивідсотковий групах, розбитих за рівнем доходів, тис. осіб

Група

1

2

3

4

5

6

7

8

9

10

2002

1,3

0,9

421,1

285,5

167,2

139,3

41,3

18,3

2,4

0,7

2003

1

1,7

279,7

242,3

180,1

201,1

87,8

59,1

14,9

7,2

2004

1,4

0,9

275,8

256,3

188,7

203,2

82,3

50,1

10,9

4,1

2005

0,3

0,8

72,2

146,1

168,5

280,1

173,1

153,1

49,2

28,8

2006

0,2

1

23

72

109,1

241,4

198,5

234

102,4

86,4

2007

0,4

1,8

15,1

44,2

70,1

173,2

167,4

247,1

143,3

202,2

2008

1,4

2,6

4,1

16,1

30

103

124,6

233,2

173,2

372,6



Усереднена межа енергоспоживання для населення Томської області за рівнем доходів має такий вигляд (див. табл. 2.4.).
Таблиця 4

Усереднена межа енергоспоживання за структурою рівня доходів населення в розрахунку на 1 особу і на все населення області



2002

2003

2004

2005

2006

2007

2008

На 1 людину, кг у. т.

6595,2

6537,4

6541,9

6430,1

6377,7

6368,7

6392,3

На населення області, тис. тонн у. т.

6781

6781,4

6803,7

6894,4

7024

7027

7109,7


Зі збільшенням доходів людей фізіологічно не може споживати більше продуктів харчування. Причиною зменшення цієї складової (див. рис. 1) є те, що він може дозволити собі сервісне обслуговування і харчування поза домом.    продолжение
--PAGE_BREAK--

Природним є збільшення частки непродовольчих товарів (а, отже, і енергоємності) у людини з великими доходами. Витрата комунально-побутових послуг максимальний у населення з найменшими доходами, зменшується у частини населення із середніми доходами і знову зростає із збільшенням доходів (10 група). У зв'язку з цим крива зміни енергоємності потреб населення від величини доходів має форму параболи.

Дані табл. 2.2. та 2.4. дають уявлення про зміну величини енергоспоживання людиною в залежності від соціально-демографічної групи і від рівня доходів.

Оцінка галузі зміни енергетичних потреб населення регіону дозволяє створити прогнозну модель на найближчу перспективу, яка враховує демографічні та економічні тенденції на території регіону.




Висновок
Аналіз дискримінанта так само, як і кластерний аналіз, відноситься до методів багатовимірної класифікації, але при цьому базується на інших передумовах. Основна відмінність полягає в тому, що в ході аналізу дискримінанта нові кластери не утворюються, а формулюється правило, по якому нові одиниці сукупності відносяться до однієї із вже існуючих множин (класів). Підставою для віднесення кожної одиниці сукупності до певної множини служить величина функції дискримінанта, розрахована по відповідних значеннях дискримінантів.

В результаті побудови комплексу моделей визначено існуючі проблеми підвищення енергоспоживання, обґрунтовано концепцію організаційно-економічної системи енергозбереження в регіонах України, виділено комплекс факторів, що відображають становище України, а також напрямки розвитку й удосконалення.




Список використаних джерел
1.                 1.Український статистичний сбірник. Статистичний сбірник/ Держкомстат України — К.: 2006.-414с.

2.                 Паламарчук М. М. Географія України: Підр. для серед. шк. — 2-тє вид., перероблене і доповнене. — К.: Освіта, 2005. — 159 с

3.                 Закиров Д.Г. Концептуальные основы энергосбережения в промышленности Украины // Уголь. 2000. № 4. С. 13–16.

4.                 Бобряков А.В., Стефанцов А.Г. Разработка информационного портала для сопровождения раздела «Энергоэффективность энергоемких отраслей промышленности» программы «Энергоэффективная экономика» // Современные информационные технологии (Contemporary information technologies)//Труды международной научно-технической конференции (Computer-based conference). — Пенза: Пензенский технологический институт, 2004. с. 8-9.

5.                 Денисенко В. Омельченко Ю. Энергосбережение на предприятиях// Сула. 2000. — №1-2. – С.48-49.

6.                 Бобряков а.В., Данілов О.Л. Створення проблемно-орієнтованого галузевого інформаційного ресурсу «Енергозбережні заходи» // Енерго- і ресурсозберігання Хх1 вік: Матеріали четвертою міжнародною науково-практичною конференциі/ Під редакцією В.А. Голенкова, Ю.С. Степанова, А.Н. Качанова. — Орел: ОРЕЛГТУ, 2006. 261 с. — с. 17 — 19.

7.                 Мішогло Г.О. Економічна географія Україні з основами віробніцтва. — До.,1997. – С.43-54.

8.                 Натовський Е.А.,«Прогнозування і планерування економіки», під ред. Борісевіча в.І.Мн.: 2001г. – С. 123-125.

9.                 Бокун і.А., Темічев А.М.; «Прогнозування і планерування економіки», МН.: 2002г.- С.12-34

10.            Прузнер с.Л., Златопольський а.А., Некрасов А.М.; «Економіка енергетики», М.: 1984г.10. Ежов А.И. «Статистика промышленности», М.: 2003г. – С.45-46.

11.            Ежов А.И. «Статистика промышленности», М.: 2000г.- С.65-76.

12.            Боровиков В.П. и др. Прогнозирование в системе STATISTICA® в среде Windows. – М.: Финансы и статистика, 2004 – С.35-37.

13.            Дуброва Т.А. Статистические методы прогнозирования в экономике: Учебное пособие. – М.: МЭСИ, 2002. – 52 с.

14.            Четыркин Е.М. Статистические методы прогнозирования. – М.: Статистика, 1999. – С.45.

15.            Бриллинджер Д. Временные ряды. Обработка данных и теория: М.: Мир, 1999.- 536 с.;

16.            Мхитарян В.С. Эконометрика — М.: Проспект, 2009.- 384 с.;

17.            Тихонов Э.Е..: Методы прогнозирования в условиях рынка.-Невинномысск, 2006.-221с.

18.            Суворов, Антон Олексійович Адаптивна ідентифікація параметрів елементів мережі для задач оперативного керування: Дис. … канд. техн. наук: 05.14.02 Екатеринбург, 2003

19.            Скляров, Денис Володимирович Аналіз утрат эксергии і підвищення ефективності використання палива на ПГУ ТЭЦ з казанами-утилізаторами: Дис. … канд. техн. наук: 05.14.14 Спб., 2003

20.            Середкин, Олександр Олексійович Розробка енергозберігаючих заходів для комплексу «Тэц-потребитель»: На прикладі міста Чіти: Дис. … канд. техн. наук: 05.14.14 Улан-Уде, 2003

21.            Селезньов, Вадим Євгенович Підвищення безпеки й ефективності газопровідних систем ПЕК з використанням методів прямого чисельного моделювання: Дис.… д-ра техн. наук: 05.26.03, 05.14.01 Саров, 2003

22.            Попов, Володимир Анатолійович Розвиток методів досліджень несиметричних режимів електроенергетичних систем і їхнє практичне застосування: Дис.… д-ра техн. наук: 05.14.02 Кіров, 2003

23.            Павлюченко, Дмитро Анатолійович Розробка і дослідження генетичних алгоритмів для аналізу й оптимізації режимів електроенергетичних систем: Дис.… канд. техн. наук: 05.14.02 Новосибірськ, 2003

24.            Булгаков К.В. Енергопостачання промислових підприємств. М-код-л, «Енергія», 2001. – С.43.

25.            Мастепанов A. M. Аспекти енергетичної стратегії України // енергозбереження в областях. — 2001. №4. С.4-10.

26.            Зубіташвілі д.В., Арвеладзе р.Д. Деякі проблеми енергетики. — Тб.: Енергія, 1977. — № 1. — С. 7-16

27.            Зубіташвілі д.В. Полягання і перспективи енергоспоживання в промисловості. — Тб.: Енергія, 2002. — № 1(21). — С. 42-46

28.            Семченков А.С. Можливості зниження паливно-енергетичних затрат// Супутник. — 2000. — № 5. — С. 2-3.

29.            Віккельсо Е., Пледжруп К. Робоча книга енергетичного офісу.Данія, Виборг, 2003. – С. 23-34.

30.            Логинов В. Прості критерії економічної ефективності інвестиційних проектів в області енергозбереження // Інвестиції в Україні. — 2001. — № 10. — С. 24-27.

31.            Волков А.М., Попов Б.Е., Проценко О.Д., Потрясов С. А. Енергозбереження, ефективність ПЕК і економіки України в цілому // Енергетична політика. — 1999. — 1.- С. 31-34.

32.            Дебок Г., Кохонен Т. Аналіз фінансових даних за допомогою карт, що самоорганізовуються, Альпина Паблишер, 2001, 317 стор.

33.            Автономів А.Б. Світова енергетика: стан, масштаби, перспективи, стійкість розвитку, проблеми екології, цінова динаміка паливно-енергетичних ресурсів// Електричні станції. — 2003.-№5.-С. 55-64.

34.            Аракелов В. Е., Кремер А.И. Методичні питання економії енергоресурсів. — М.: Энергоатомиздат, 2005. — 189с.

35.            Бараз В. І. Видобуток нафтового газу — М.: Надра, 2004. -251с.

36.            Батищев В. Е., Мартыненко Б.Г., Розшуків С. Л., Щелоков Я.М. Енергозбереження. — Єкатеринбург, 2004. — 304с.

37.            Черевиків И.А. Регіональна політика підвищення енергетичної эффек-тивности: від проблем до рішень. — М.: ЦЭНЭФ, 2006. — 192с.

38.            Белоусова Т. та ін. Росія у світі, що міняється, — М.: Інститут економічного аналізу, 2007. — 671с.

39.            Богатирьов Л.Л. Рішення електроенергетичних завдань в умовах невизначеності. — Єкатеринбург: УГТУ-УПІ, 2005. — 115с.

40.            Боксерман Ю.И., Бесчинский А.А., Лихачев В. І. Газ в структурі світової енергетики: ресурси, виробництво, ринки// ПЕК. — 2008. -№3-4.-С. 42-50.

41.            Бушуев В. В., Воропай Н.И., Мастепанов A.M., Шафраник Ю.К. та ін. Енергетична безпека Сибіру — Новосибірськ: Наука. Сибірська видавнича фірма РАН, 2008. — 302с.

42.            Бушуев В. В., Голубев B.C. Енергетика в системі: природа-суспільство-людина і еволюційний шлях Росії в XXI столітті// Енергія: економіка, техніка, екологія. — 2002. — №1. — С. 9-17.

43.            Вайцзеккер Э., Ловинс Э., Ловинс Л. Чинник чотири/ під ред. Заварницына А.П. -М: Вид-во «Academia», 2000. — 396с.

44.            Вальтух К.К., Дементьев Н.П. Математичний і статистичний аналіз функції споживання. — Новосибірськ: Наука. Сиб. відділ., 2006. — 165, [2]с.

45.            Велихов Е.П. Енергетика XXI віку і Росія// Енергія: економіка, техніка, екологія. — 2003. — №12. — С. 2-8.

46.            Віників В. А., Віників Г. В. Теорія подібності і моделювання (стосовно завдань електроенергетики): Підручник для Внз, 3-е видавництво, перераб. і доп. — М.: Высш. Школа, 2004. — 439с.

47.            Вентцель Е.С. Теорія Вероятностей.-м.: Наука, 2006.-576 с.

48.            Вплив енергетичного чинника на економічну безпеку регіонів Російської Федерації/ Богатырев Л.Л., Бушуев В. В., Куклин А.А., Мызин А.Л., Татаркин А.И. та ін. — Єкатеринбург: Видавництво Урал, ун-та, 2008. — 288с.

49.            Гаврилин А.И., Карауш С. А. та ін. Нормативно-правова база енергозабезпечення і енергозбереження в Томській області 1997 -2001гг. Збірка документів. — Томськ: ЦНТИ, 2001. — 216с.

50.            Гаврилин А.И., Косяків С. А. та ін. Азбука енергозбереження. — Томськ: ТПУ, 2001.-96с.

51.            Гаврилин А.И., Косяків С. А., Литвак В. В. та ін. Вступ в енергозбереження. — Томськ: Курсив плюс, 2000. — 219с.

52.            Гительман Л.Д. та ін. Економічний механізм регіональною энергетиче-ской Политики.-Єкатеринбург: Союз-169, 2007.-255 с.

53.            Гмурман В. Е. Теорія вірогідності і математична статистика — М.: Вища школа, 2001. — 479с.

54.            Гордеев О. Г. Стан і перспективи розвитку нафтової і газовою про-мышленности// Нафтове господарство — 2003. — №1. — С. 4-7.

55.            Гофман И.В. Побудова і методика складання і аналізу енергетичних балансів промислових підприємств — М.: Металлургиздат, 2002. — 128с.

56.            Губин В. Е., Косяків С. А. Маловідхідні і ресурсозберігаючі технології в енергетиці. — Томськ: Вид-во НТЛ, 2002. — 252с, мул.

57.            Дмитрівський А.Н. Східні нафтогазові проекти Росії// ТЭК.- 2002.-№2.-С. 9-12.

58.            Дмитрівський А.Н. Природний газ в XXI столітті// Нафтове господарство — 2002.-№12.-С. 14-17.

59.            Долин Ю.Э., Опанасенко С. Н., Зырянов В. П. Проблеми ефективності топливообеспечения теплових електростанцій// Енергетик — 2003. — №3. — С. 2-5.

60.            Дяків А.Ф. Енергетика Росії і світу в 21-м столітті// Енергетик. — 2000. -№7.-С. 2-6.

61.            Дэвинс Д. Енергія/ під ред. Д.Б. Вольфберга. — М.: Энергоатомиздат, 2005. — 360с.

62.            Закон Харківської області «Про порядок розрахунку прожиткового мінімуму в Харківській області» OT15.01.2002. — №12.

63.            Закс Ш. Теорія статистичних виводів/ Під ред. Ю.К. Беляева. — М.: Вид-во «Світ», 2005. — 740с.

64.            Зикань В. М. Вугілля — ефективний і надійний енергоносій// Енергія: економіка, техніка, екологія — 2003. — №4. — С. 17-23.

65.            Іванова В. М., Калинина В. Н., Нешумова Л.А. та ін. Математична статистика: Підручник/ 2-е видавництво, перераб. і доп. — М.: Высш. школа, 2001. -371с, мул.

66.            Клавдиенко В. П. Світова торгівля енергоносіями// Енергія: економіка, техніка, екологія — 2003. — №7. — С. 2-8.

67.            Климов А.А. Електрифікація виробничих процесів в Животноводстве.-м.: Сільгоспгіз, 2005. -2005. — 376с.

68.            Литвак В. В. Прогнозування енергоспоживання на основі даних енергетичного споживчого кошику // Матеріали доповідей дев'ятої всеросійської науково-технічної конференції «Енергетика: екологія, надійність, безпека», м. Томськ, 3-5 грудня, 2003г. — Видавництво ТПУ, 2003, Т. 2 — С. 10-14.

69.            Климова Г. Н., Литвак В. В. Енергоспоживання в регіонах з негативними середньорічними температурами (на прикладі Томської області. — Томськ: Вид-во ГПУ, 2003. — С. 290-292.

70.            Климова Г. Н., Литвак В. В., Алексеева Т. І. Енергетична складова споживчого кошику для Томської області// Ресурси регіонів Росії, 2003. — № 4. — С. 31-35.

71.            Климова Г. Н., Литвак В. В., Яворский М. І. Перспективи енергетичного використання попутного нафтового газу// Промислова енергетика, 2002. — №8.- С. 2-4.

72.            Комплексна методика діагностики енергетичної безпеки террито-риальных утворень Російської Федерації (друга редакція)/ А.И. Та-таркин, А.А. Куклин, А.Л. Мызин, А.В. Калина, В. Г. Литвинов та ін. — Єкатеринбург: Інститут економіки УрО РАН, 2002. -80с.

73.            Комплексна методика оцінки надійності і живучості паливо- і энерго-снабжения територій/ А.И. Татаркин, Н.И. Воропай, А.А. Куклин, А.Л. Мызин, А.В. Калина, СМ. Сендеров, В. Г. Литвинов та ін. -Екатеринбург: Інститут економіки УрО РАН, 2002. — 150с.

74.            Кононов Ю.Д. Вплив енергетичних стратегій на Энергопотребление.-Иркутск: 2005.-106 с.

75.            Конопельник А. Світовий ринок нафти: повернення до епохи низьких цін?// Нафтогазова вертикаль.-2007.-№4.-С. 60-63.

76.            Котлер В. Р. Споживання первинної енергії і структура паливоспоживання у світі// Електричні станції. — 2002. — №7. — С. 71-73.

77.            Котлер В. Р., Макеева Е.Н. Вугілля і проблеми енергетичної безпеки в Західній Європі// Електричні станції — 2002. — №11. — С. 65-66.

78.            Левин А.И., Яркин А.П. Економіка споживання: питання теорії, управління, прогнозування. — М.: Наука, 1984. — 315с

79.            Лисицын Н.В. Аналіз динаміки споживання електричної енергії в Ук-раине за 1990-200ІГГ.// Енергетик — 2003. — №1. — С. 3-7.

80.            Литвак В. В. Основи регіонального енергозбереження (науково-технічні і виробничі аспекти). — Томськ: Вид-во НТЛ, 2002. — 300с.

81.            Литвак В. В. Проблеми енергозбереження і методи їх рішення в регіонах: Автореф. дисс.на здобуття уч. степ, д.т.н. — Томськ, 2003. — 46с.

82.            Литвак В. В., Маркман Г. З., Харлов Н.Н. Електроенергія: економія, якість. — Томськ: STT, 2001. — 195с.

83.            Литвак В. В., Силич В. А., Яворский М. І. Регіональний вектор енергозбереження. — Томськ: STT, 2001.- 342с.

84.                продолжение
--PAGE_BREAK--
еще рефераты
Еще работы по математике