Реферат: Паровоздушная газификация углей
--PAGE_BREAK--Динамика потребления газа из угля в мире
Таблица 1.2
Целевое использование
Использование в 2001 г., МВт по газу
Доля в 2001 г., %
Вводится в эксплуатацию до конца 2004 г., МВт по газу
Годовой прирост мощности в 2002-2004 гг., %
Химическое производство
18 000
45
5 000
9,3
Внутрицикловая газификация (производство электроэнергии)
12 000
30
11 200
31
Синтез по Фишеру-Тропшу
10 000
25
0
0
ВСЕГО
40 000
100
17 200
14,3
Приведенные данные наглядно демонстрируют ускорение динамики вовлечения газификации угля в мировую промышленность. Повышенный интерес к внутрицикловой газификации угля в развитых странах объясняется двумя причинами. Во-первых, ТЭС с внутрицикловой газификацией экологически менее опасна. Благодаря предварительной очистке газа сокращаются выбросы оксидов серы, азота и твердых частиц. Во-вторых, использование бинарного цикла позволяет существенно увеличить КПД электростанции и, следовательно, сократить удельный расход топлива.
В табл.1.2 приведены характерные величины удельных выбросов и КПД для ТЭС с внутрицикловой газификацией и для ТЭС с традиционным сжиганием угля.
Величины удельных выбросов и КПД для ТЭС с внутрицикловой газификацией и с традиционным сжиганием угля
Таблица 1.2
Параметры
Традиционная угольная ТЭС
ТЭС с внутрицикловой газификацией
Концентрация вредных веществ в дымовых газах
(для угольной ТЭС – согласно Евростандарту), мг/м3
— SOx
— NOx
— Твердые частицы
130
150
16
10
30
10
Электрический КПД, %
33-35
42-46
Необходимо отметить, что удельные капитальные затраты при использовании внутрицикловой газификации составляют примерно 1500 долл. США за 1кВт с перспективой снижения до 1000-1200 долл. США, в то время как для традиционной угольной ТЭС удельные капитальные затраты составляют примерно 800-900 долл. США за 1 кВт. Ясно, что ТЭС с внутрицикловой газификацией твердого топлива более привлекательна при наличии экологических ограничений в месте размещения и при использовании достаточно дорогого топлива, так как расход топлива на 1 кВт сокращается. Эти условия характерны для развитых стран. В настоящее время использование внутрицикловой газификации твердого топлива считается самым перспективным направлением в энергетике.
Для современной химической промышленности и энергетики требуются газогенераторы с единичной мощностью по углю 100 т/ч и более. К началу 1970-х годов в промышленном масштабе было реализовано три типа газогенераторов [4].
· Cлоевые газогенераторы. В разное время действовало более 800 газогенераторов, в том числе более 30 газогенераторов “Лурги” с единичной мощностью по углю до 45 т/ч. После 1977 г. введено в эксплуатацию еще 130 газогенераторов “Лурги”.
· Газогенераторы Винклера с кипящим слоем. Было сооружено более 40 аппаратов с единичной мощностью до 35 т/ч по углю.
Пылеугольные газогенераторы Копперса-Тотцека. К началу 1970-х годов эксплуатировалось более 50 аппаратов с единичной мощностью до 28 т/час по углю. Не случайно все самые мощные газогенераторы имели немецкое происхождение. Причина в том, что в Германии нет собственной нефти, но имеются большие запасы угля. В 1920-1940 гг. в Германии была реализована беспрецедентная по масштабам программа углепереработки с производством моторных топлив, металлургического топлива, газов различного назначения и широкого спектра продуктов углехимии, включая пищевые продукты. Во время второй мировой войны с использованием жидких продуктов пиролиза, прямого и непрямого ожижения угля производилось до 5,5 млн. т в год моторного топлива. Именно немецкие разработки того времени определили на многие десятилетия стратегию развития технологий углепереработки, в том числе газификации топлива.
Если проанализировать конструктивные особенности и принцип действия современных промышленных газогенераторов (к настоящему времени до промышленного масштаба доведено еще более десяти конструкций газогенераторов), можно выделить четыре основополагающих инженерных решения.
1. Создание Фрицем Винклером (концерн BASF) в 1926 г. газогенератора с кипящим слоем. Эта технология послужила основой для современных процессов HTW (Hoch-Temperatur Winkler) и KRW (Kellogg-Rust-Westinghouse) и др.
2. Разработка фирмой «Лурги» в 1932 г. слоевого газогенератора, работающего под давлением 3 МПа. Использование повышенного давления для интенсификации процесса газификации реализовано почти во всех современных промышленных газогенераторах.
3. Разработка Генрихом Копперсом и Фридрихом Тотцеком в 1944-45 гг. пылеугольного газогенератора с жидким шлакоудалением. Первый промышленный аппарат этого типа был построен в 1952 г. в Финляндии. Пылеугольный принцип газификации с жидким шлакоудалением реализован в промышленных аппаратах Destec, Shell, Prenflo, разработанных на основе газогенератора Копперса-Тотцека, в аппарате Texaco и др. Удаление шлака в жидком виде реализовано в слоевом газогенераторе BGL (British Gas– Lurgy), разработанном на основе газогенератора Лурги.
4. Разработка фирмой Texaco в 1950-е годы газификаторов для переработки тяжелых нефтяных остатков. Всего построено более 160 таких установок. В 1970-е годы была разработана модификация аппарата Texaco для газификации водо-угольной суспензии. Принцип подачи угля в аппарат в виде водо-угольной суспензии использован и в газогенераторе Destec.
Были попытки использовать и ряд других технических решений для создания новых газогенераторов: использование внешнего теплоносителя, в том числе тепла ядерного реактора; газификация в расплавах солей, железа, шлака; двух — трехступенчатая газификация; газификация в плазме; каталитическая газификация и др.
В 1930-1950 гг. были разработаны теоретические основы физико-химических процессов горения и газификации угля, выполнены фундаментальные исследования, не потерявшие актуальности до настоящего времени. В данном направлении неоспоримо лидерство советских ученых: А.С.Предводителева, Л.Н.Хитрина, Я.Б.Зельдовича, Н.В.Лаврова, Д.А.Франк-Каменецкого, Б.В.Канторовича и др.
Газификации могут быть подвергнуты любые виды твердых топлив от бурых углей до антрацитов.
Активность твердых топлив и скорость газификации в значительной степени зависит от минеральных составляющих, выступающих в роли катализаторов. Относительное каталитическое влияние микроэлементов углей при газификации может быть представлено рядом:
Mn>Ba>>B, Pb, Be>>Y, Co>Ga>Cr>Ni>V>Cu.
К основным параметрам, характеризующим отдельные процессы газификации твердых топлив, могут быть отнесены:
- тип газифицирующего агента;
- температура и давление процесса;
- способ образования минерального остатка и его удаление;
- способ подачи газифицирующего агента;
- способ подвода тепла в реакционную зону.
Все эти параметры взаимосвязаны между собой и во многом определяются конструктивными особенностями газогенераторов.
Обычно газифицирующими агентами служат воздух, кислород и водяной пар. При паро-воздушном дутье отпадает необходимость в установке воздухоразделения, что удешевляет процесс, но получается газ низкокалорийный, поскольку сильно разбавлен азотом воздуха.
Температура газификации в зависимости от выбранной технологии может колебаться в широких пределах 850-2000 0С. диапазон давлений газификации от 0.1 до 10.0 МПа и выше. Газификация под давлением предпочтительна в случаях получения газа, используемого затем его в синтезах, которые проводятся при высоких давлениях (снижаются затраты на сжатие синтез-газа).
В газогенераторах с жидким шлакоудалением процесс проводят при температурах выше температуры плавления золы (обычно выше 1300-1400 0С). ”Сухозольные“ газогенераторы работают при более низких температурах, и зола из него выводится в твердом виде [6].
По способу подачи газифицирующего агента и по состоянию топлива при газификации различают слоевые процессы, при которых слой кускового топлива продувается по противоточной схеме газифицирующими агентами, а также объёмные процессы, в которых большей частью по прямоточной схеме топливная пыль взаимодействует с соответствующем дутьем.
Процесс газификации угля первого поколения: Лурьги, Винклера и Копперс-Тотцека, достаточно хорошо изучены и применяются в промышленности в ряде стран для получения в основном синтез-газа и заменителя природного газа.
Большинство крупных газогенераторов на твердом топливе работают по прямому процессу с газификацией топлива в движущемся слое. При этом движение топлива и дутья происходит навстречу друг другу. По этой схеме подаваемое в газогенератор дутьё происходит через шлковую зону, где оно несколько подогревается, и далее поступает в зону горения топлива при недостатке кислорода. Кислород дутья вступает в реакции с углеродом образуя оксид и диоксид углерода одновременно.
Основными недостатками процесса Лурьги является сравнительно небольшая скорость разложения водяного пара дутья, необходимость использования водяного пара как охлаждающего теплоносителя, предотвращающего сплавления и спекания золы, а также содержания в газе высших углеводородов и фенолов [9].
Повышение температуры реализовано в процессе БГЛ с жидким шлакоудалением, разработанном фирмой “ British gas “ на основе процесса Лурьги. Этим способом можно перерабатывать малореакционные и коксующие угли широкого гранулометрического состава. Выделенные из газа смолы и пыль возвращают в газогенератор, причем количество возврата может доходить до 15% на уголь. Процесс проверен на установки мощностью по углю 350 т/сут. В Ухтфильде. Процесс считается перспективным для применения в США, где ведутся работы по его совершенствованию [10].
Процесс Винклера основан на использовании псевдоожиженного слоя топлива. Принцип газификации мелкозернистого топлива в кипящем слое заключается в том, что при определенной скорости дутья и крупности топлива, лежащей на решетки слой топлива приходит в движение.
Процесс Винклера обеспечивает высокую производительность, возможность переработки различных углей и управлением составом конечных продуктов. Однако в этом процессе велики потери непрореагированного угля до 20-30% (масс.), выносимого из реактора, что ведет к потере теплоты и снижению энергетической эффективности процесса. Псевдоожиженный слой отличается большой чувствительностью к изменению режима процесса, а низкое давление лимитируется производительность газогенераторов [5].
По методу Винклера в разных странах работают 16 заводов ( Испании, Японии, Германии, Кореи и другие). Газогенератор типа Винклера имеет диаметр 5,5 м; высоту 23 м и максимальная единичная мощность действующих газогенераторов этого типа в настоящее время составляет 33 тыс. м3 газа в час [6].
В США разработан процесс газификации угля в аппарате с последующей агломерацией золы- так называемый процесс-V, предназначенный для производства низкокалорийного газа, который может быть использован в качестве сырья для получения водорода, аммиака или метанола, а также как топлива. Газификацию проводят в присутствии кислорода и паров воды в псевдоожиженном слое при давлении 5,7-7 МПа и температуре 980-1100 0С. Угольная пыль отделяется в циклонах, причем из внешнего циклона пыль возвращается в газогенератор. Газ не содержит жидких продуктов, что облегчает его очистку [6].
Вследствие высокой температуры процесса для газификации могут быть использованы угли любого типа включая спекающиеся, а полученный газ беден метаном и не содержит конденсирующиеся углеводородов, что облегчает его последующую очистку. К недостаткам процесса можно отнести низкое давление, повышенный расход кислорода, необходимость тонкого размола топлива [5].
Первый промышленный газогенератор этого типа производительностью 4 тыс. м3 в час синтез газа, был создан в 1954 году. По методу Коппер-Тотцека в мире работают 16 заводов (Япония, Греция и другие). Газогенератор Коппер-Тотцека с двумя форсунками имеет диаметр 3-3,5 м; длину 7,5 м и объём 28 м3 в час [6].
Известны неудачные попытки осуществить прямоточную факельную газификацию в условиях сухого золоудаления. В настоящее время газификацию угольной пыли проводят с жидким шлакоудалением. Для этой цели получили распространение газогенераторы вертикального типа, близкие по конструктивному оформлению к котельным агрегатам с пылеугольным сжиганием (Бабкок-Вилькокс) и газогенераторы с горизонтальной камерой газификации (Копперс-Тотцек).
Большие работы по созданию газогенераторов для газификации пылевидных топлив под высоким давлением с жидким шлакоудолением проводит американская фирма “Тексако”, которая является первопроходцем в применении для газификации водо-угольных суспензий. В газогенератор подают водную суспензию угля с концентрацией до 70% (мас.), что упрощает решение многих технических вопросов и позволяет автоматизировать процесс [5]. В 1984 году японской фирмой “Убе Индастриз” пущен крупнейший в мире газогенератор Тексако мощностью по углю 1500 тонн в сутки, вырабатывающий газ для синтеза аммиака [7]. На заводе Aioi (Япония) в 1987 году была сооружена пилотная установка производительностью 6 т. в сутки угля для газификации водо-угольных су суспензии по процессу Тексако, как наиболее прогрессивному. По проектным данным процесс осуществляется под давлением 1,96-2,94 МПа при температуре 1400 0С с получением смеси газов из оксида углерода, диоксида углерода и водорода, до 1991 года проводились научно-исследовательские работы совместно с “Tokyo Electric Power Co” и было переработано 533 тонны угля. Степень конверсии углерода достигала 100%. В синтез-газе содержалось до 52,3% оксида углерода, 33,2% водорода, 12,7% диоксида углерода. На воздушном дутье при подогреве суспензии до 150 0С степень конверсии достигала 72% [8].
Недостатком этого способа подачи угля является значительный расход тепла на испарение воды в газогенераторе, но уголь не требует предварительной сушки и исключается подача пара в газогенератор. Процесс Тексако характеризуется также повышенным удельным расходом кислорода 400-450 м3 на 1000 м3 синтез-газа. Соотношение уголь: вода в суспензии колеблется в разных пределах от 70:30 до 45:55. Водо-угольные суспензии используются также для газификации под давлением 10 МПа в газогенераторе Би-2эс. Кроме того, при эксплуатации оборудования газогенераторных станций, на которых используются водо-угольные суспензии, выявлены трудности по предотвращению коррозии циркуляционных насосов и инжекционных клапанов. Однако эти недостатки не уменьшают значимости, так как процесс высокоэффективен [9].
Производство газа из твердых горючих ископаемых может осуществляться на основе двух технологических приёмов: в газогенераторах наземного типа и под землёй (подземная газификация угля).
Подземную газификацию углей как метод физико-химического превращения угля в горючий газ непосредственно на месте залегания угольных пластов впервые начали реализовывать в бывшем Советском Союзе в 1933 году. В начале 60-х годов эксплуатировали пять опытно-промышленных станций “Подземгаз”, в том числе в Украине на каменных углях- Лисичанскую в Донбассе.
Основные стадии процесса подземной газификации углей- бурение с поверхности земли на угольный пласт скважин, соединение этих скважин каналами по угольному пласту, и наконец, нагнетание в одни скважины воздушного или кислородного дутья и извлечение из других скважин образовавшегося газа. Газообразование в канале происходит за счет химического взаимодействия свободного и связанного кислорода с углеродом и термического разложения угля.
Недостатки традиционной технологии подземной газификации угля- низкая теплота сгорания получаемого газа, за счет осуществления процесса на воздушном дутье, недостаточная стабильность и управляемость процесса, недостаточная экологическая чистота предприятий подземной газификации углей, прежде всего из-за неполного улавливания соответствующих продуктов, большой объём буровых и подготовительных работ, достигающей в себестоимости газа 30-35%; несмотря на это традиционная подземная газификация является надежной базой для её дальнейшего совершенствования.
продолжение
--PAGE_BREAK--
продолжение
--PAGE_BREAK--
продолжение
--PAGE_BREAK--Природное освещение с любой точки в помещении характеризуется коэффициентом природного освещения (КЕО), %:
EIIIH=EB/EH*100%
где EB,EH — освещение соответственно в середине помещения и вне сооружения.
Так как сооружение находится в IV поясе светового климата, то коэффициент естественного освещения имеет значение:
EIIIH= EIIIH*m*c , (4.7)
EIVH — значение КЕО для домов, расположенных в IV поясе светового климата (г. Днепропетровск);
EIIIH — нормативное значение КПО для сооружений, расположенных в III поясе светового климата, для данного разряда работ EIIIH= 2% (табл. 1.3);
m- коэффициент светового климата, 0.9 (табл. 1.3.);
с- коэффициент солнечного климата, 0.9 (табл. 1.4.).
По формуле (2.7):
EIIIH= 2.0*0.9*0.9=1.62%
Основным видом искусственного освещения это общее. В качестве источника света применяют люминесцентные лампы (ЛД-20).
По характеру светового потока предусмотрено применять светильники рассеянного света, типа ШЛП, в котором защитный угол в поперечной и продольной плоскости 300.
Необходимое количество светильников определяется по формуле:
N=<shape id="_x0000_i1041" type="#_x0000_t75" o:ole="" fillcolor=«window»><imagedata src=«1.files/image031.wmz» o:><img width=«99» height=«43» src=«dopb837.zip» v:shapes="_x0000_i1041"> , (4.8)
где Emin — минимальное нормативное освещение для данного разряда работы, 300 лк (для работы высокой точности);
S- площадь помещения, 300 м2;
к- коэффициент запаса, 1.5;
z- поправочный коэффициент светильника, 1.2;
F- световой поток одной лампы, 1960 лм;
n- количество ламп в светильнике, 2;
u- коэффициент использования осветительной установки, определяется в зависимости от показателя помещения и коэффициента отражения от стен и потолка.
Показатель помещения определяется по формуле:
f=<shape id="_x0000_i1042" type="#_x0000_t75" o:ole="" fillcolor=«window»><imagedata src=«1.files/image033.wmz» o:><img width=«83» height=«44» src=«dopb838.zip» v:shapes="_x0000_i1042"> (4.9)
где a,b-соответственно длина 7,3 и ширена 5 помещения, м
Н- высота подвеса светильника над рабочей поверхностью, 4м.
По формуле (4.9):
f=<shape id="_x0000_i1043" type="#_x0000_t75" o:ole="" fillcolor=«window»><imagedata src=«1.files/image035.wmz» o:><img width=«125» height=«44» src=«dopb839.zip» v:shapes="_x0000_i1043">
На основании показателя помещения, который равен 0.74 и коэффициентов отражения потолка рп=70% и стен рст=50% (т.к. потолок и стены покрашены в светлый цвет) определяем коэффициент использования осветительной установки u= 57% =0.57.
Тогда по формуле (4.8) необходимое количество светильников будет равна:
N=<shape id="_x0000_i1044" type="#_x0000_t75" o:ole="" fillcolor=«window»><imagedata src=«1.files/image037.wmz» o:><img width=«152» height=«44» src=«dopb840.zip» v:shapes="_x0000_i1044"> шт
Остаточное принимаем парное количество светильников 10 штук, которые размещены в 2 ряда.
Метеоусловия в помещении лаборатории в холодный период года:
- температура воздуха 18 0С;
- относительная влага 60%;
Воздух рабочей зоны метеоусловия помещения лаборатории соответствуют допустимым нормам по температуре, относительной влажности и скорости движения воздуха в рабочей зоне для легкой категории работ.
Отопление помещения лаборатории осуществляется с помощью батарей центрального отопления.
Водоснабжение – очищенная речная вода, которая подается через сеть водопроводов.
Канализация с помощью канализационных сетей осуществляется выведение сточных вод.
Порядок сбора, утилизации и удаление с помещений химикатов и ЛВЖ:
- отработанные кислоты и щелочи следует собирать отдельно в специальный сосуд, и после нейтрализации в конце рабочего дня сливать в канализацию или в соответствии с местными условиями в другое, специально предназначенное место;
- запрещается сливать в канализацию концентрированные кислоты и щёлочи;
- отработанные ЛВВ и горючие жидкости следует собирать в герметически закрытую тару, которая в конце рабочего дня удаляется с лаборатории для регенерации или уничтожения этих веществ;
- категорически запрещается сливать горючие жидкости, смолу и ядовитых веществ в канализацию.
4.3. Характеристика помещений по пожаро- и взрывоопасностью
При выполнении исследовательской работе применялись такие вещества как бензин, уголь. По группе горючести они относятся к горючим и легковозгорающим веществам. Основные показатели этих веществ приведены в табл.4.1.
Таблица 4.1. Основные показатели веществ по пожаро- и взрывоопасностью
Вещество
Температура, 0С
Нижняя концентрационная граница,
вспышки
самовозгорания
Бензин
225
-39
0,76 % об.
Метан
650
5.28- 14.1 % об.
Оксид углерода
605
12.5 % об.
Водород
510
4.12- 75 % об.
Уголь
335
495
60 г/м3
Хотя при исследовательской работе в лаборатории использовались горючие и легковозгорающие вещества, но применяются они в малых количествах, и работа с ними проводилась в вытяжных шкафах при работающей вентиляции, поэтому помещение лаборатории относят к категории не взрывоопасных, а пожароопасных помещений. Согласно с классификацией помещений и сооружений по пожаровзрывоопасностью в соответствии с ОНТП 24-86 помещение лаборатории относят к пожароопасной категории В. А в соответствии с правилами установки электроустановок (ПУЭ), помещение лаборатории относят к пожароопасной зоны П-I.
Лаборатория находится в четырёхэтажном здании, который имеет три эвакуационные выходы на случай аварийной ситуации. Степень огнестойкости здания, где находится лаборатория-I.
4.4. Противопожарные меры безопасности
Исследовательская лаборатория по пожарной безопасностью и взрывоопасности относится к категории В.
Для предупреждения пожаров и возгорания в исследовательской лаборатории необходимо выполнять следующие правила пожарной безопасности:
- горючие растворители и моющие вещества следует заменять негорючими;
- запрещается применять самодельные нагревательные спирали, устанавливать термостаты в сушильные шкафы на деревянные, не защищенные от возгорания столы и на расстоянии не ближе 1 м от горючих материалов;
- нагрев легковозгорающих материалов необходимо осуществлять на водяных, масляных, песочных и воздушных банях у небольших количествах;
- нагрев легковозгорающих веществ на открытом огне запрещается;
- работу нагревательных устройств необходимо постоянно контролировать.
Порядок и нормы хранения пожаро-, взрывоопасных веществ:
- легковозгорающие и горючие вещества должны хранится в лабораторному помещении в толстостенных банках с притертыми пробками. Банки помещают в специальные металлические ящики с плотно притертыми крышками, стенки и дно которых выложены из асбеста. На внутренней стороне крышки делают четкую надпись с указанием наименований и общим количеством допустимых норм хранения горючих и легковозгорающих веществ, для данного помещения;
— общий запас в каждом рабочем помещении огнеопасных веществ не должен превышать суточные потребности, но не более 2-3 л на одного работника. Общий запас определяется при утверждении с пожарной охраной в каждом отдельном случае и указывается в специальной инструкции;
- бутылки, в которых содержится не более 50 мл легковозгорающей жидкости, должны хранится в железных ящиках для горючих веществ. Запрещается хранить горючие жидкости в полиэтиленовой, а также в тонкостенной посуде емкостью более 200 мл;
- запрещается хранить топливо в вытяжном шкафу, в котором проводится работа с нагревательными приборами, и рядом с окислителями или рядом от горючих предметов;
- при случайных разливах огнеопасных жидкостей сразу выключить все нагревательные приборы и электросеть. Разлитую жидкость засыпают песком, потом осторожно собирают песок с жидкостью на деревянную лопату или фанеру, алюминиевый лист, применять стальной лист за счет искрообразования при ударах нельзя;
- перед началом работы с ЛВЖ работающий должен приготовить предметы пожаротушения.
Способы пожаротушения в исследовательской лаборатории должно находится на видном месте. Основными способами гашения пожаров это огнетушители. Для гашения пожаров применяют огнетушители разных типов: химические, пенные, углекислотные, порошковые.
Наиболее распространение получили жидкие огнетушители марки ОХП-10 и воздушно-пенные огнетушители марки ОХП-10, которые применяются для гашения твердых предметов и горючих жидкостей, которые не смешиваются с водой.
Углекислотные и порошковые огнетушители применяют главным образом для тушения пожаров на электроустановках, автомашинах, в библиотеках и т.д. При тушении на электроустановках, которые находятся под напряжением лучше применять ручной огнетушитель ОУ-5.
Пенные огнетушители нельзя применять при тушении электрооборудования и электроустановок, а также электропроводов, которые находятся под напряжением, вещества, которые взаимодействуют с водой, щелочные металлы.
Также в домах, где находится лаборатория, предусматривается внутренняя противопожарное водообеспечение, которое осуществляется от внутренних пожарных кранов.
В случае пожара необходимо вызвать пожарную команду по телефону “01”. Указать точный адрес, где горит, наличие людей и их количество, сообщить свою фамилию. Выключить силовую и осветительную линию, приступить к тушению пожара, применяя способами пожаротушения.
5. ЭКОНОМИЧЕССКАЯ ЧАСТЬ
Целью написания данного подраздела дипломной работы с определением расходов на проведения исследовательской работы, а также определения цены опыта.
Сумма расхода будет суммироваться с последующих систем расходов:
- основные и дополнительные материалы;
- заработная плата;
- начисления на заработную плату;
- энергетические расходы;
- амортизационные отчисления;
- накладные расходы.
В дипломной работе проводилась исследования на счет выбора вариантов переработки угля Павлоградского бассейна. Для этого в исследовательской лаборатории была проведена паровоздушная газификация с различным расходом подачей пара.
5.1. Определение длительности исследования
Для определения длительности работы необходимо для каждого эксперимента составить сетевой график, а расчеты длительности работы и план их проведения привести в таблице.
Таблица 5.1 План проведения паровоздушной газификации
Шифр работы
Наименование работы
Длительность работы, мин.
Исполнитель
Оклад
Необходимое количество работы, чел-часов
1
2
3
4
5
6
1
Выдача задания на проведения газификации
1
2
3
4
5
6
2
Подготовка сырья
20
Студент
50
0,33
3
Подготовка оборудования
60
Лаборант
Студент
115
50
1,00
4
Проведения опыта
180
Лаборант
Студент
115
50
2,00
5
Анализ результатов
75
Студент
50
1,25
6
Отключение оборудования
5
Лаборант
115
0,08
<line id="_x0000_s1028" from=«265.05pt,9.7pt» to=«265.05pt,63.7pt» o:allowincell=«f»><img width=«2» height=«74» src=«dopb841.zip» v:shapes="_x0000_s1028"> <oval id="_x0000_s1029" wrapcoords=«8100 0 5850 450 -450 5850 -450 15750 6300 21600 8100 21600 13500 21600 15300 21600 22050 15750 22050 5850 15750 450 13500 0 8100 0» o:allowincell=«f»><img width=«74» height=«74» src=«dopb842.zip» v:shapes="_x0000_s1029">
<line id="_x0000_s1030" from=«292.05pt,12.55pt» to=«373.05pt,57.55pt» o:allowincell=«f»><img width=«114» height=«67» src=«dopb843.zip» v:shapes="_x0000_s1030"><line id="_x0000_s1031" from=«184.05pt,12.55pt» to=«238.05pt,48.55pt» o:allowincell=«f»><img width=«78» height=«55» src=«dopb844.zip» v:shapes="_x0000_s1031"><line id="_x0000_s1032" from=«238.05pt,12.55pt» to=«292.05pt,12.55pt» o:allowincell=«f»><img width=«74» height=«2» src=«dopb845.zip» v:shapes="_x0000_s1032">
<line id="_x0000_s1033" from=«284.4pt,6.2pt» to=«349.2pt,42.2pt» o:allowincell=«f»><img width=«89» height=«50» src=«dopb846.zip» v:shapes="_x0000_s1033"><line id="_x0000_s1034" from=«205.2pt,6.2pt» to=«248.4pt,35pt» o:allowincell=«f»><img width=«59» height=«41» src=«dopb847.zip» v:shapes="_x0000_s1034"><line id="_x0000_s1035" from=«25.2pt,13.1pt» to=«25.2pt,13.1pt» o:allowincell=«f»><img width=«2» height=«2» src=«dopb848.zip» v:shapes="_x0000_s1035"> 180 5
20 <line id="_x0000_s1036" from=«31.05pt,18.25pt» to=«58.05pt,18.25pt» o:allowincell=«f»><img width=«38» height=«2» src=«dopb849.zip» v:shapes="_x0000_s1036"><line id="_x0000_s1037" from=«112.05pt,18.25pt» to=«157.05pt,18.25pt» o:allowincell=«f»><img width=«62» height=«2» src=«dopb850.zip» v:shapes="_x0000_s1037"><oval id="_x0000_s1038" wrapcoords=«8100 0 5850 450 -450 5850 -450 15750 6300 21600 8100 21600 13500 21600 15300 21600 22050 15750 22050 5850 15750 450 13500 0 8100 0» o:allowincell=«f»><img width=«74» height=«72» src=«dopb851.zip» v:shapes="_x0000_s1038"><oval id="_x0000_s1039" wrapcoords=«8100 0 5850 450 -450 5850 -450 15750 6300 21600 8100 21600 13500 21600 15300 21600 22050 15750 22050 5850 15750 450 13500 0 8100 0» o:allowincell=«f»><img width=«74» height=«74» src=«dopb852.zip» v:shapes="_x0000_s1039"><line id="_x0000_s1040" from=«85.05pt,.25pt» to=«85.05pt,54.25pt» o:allowincell=«f»><img width=«2» height=«74» src=«dopb853.zip» v:shapes="_x0000_s1040"><line id="_x0000_s1041" from=«4.05pt,.25pt» to=«4.05pt,54.25pt» o:allowincell=«f»><img width=«2» height=«74» src=«dopb853.zip» v:shapes="_x0000_s1041"><line id="_x0000_s1042" from=«184.05pt,.25pt» to=«184.05pt,54.25pt» o:allowincell=«f»><img width=«2» height=«74» src=«dopb853.zip» v:shapes="_x0000_s1042"><line id="_x0000_s1043" from=«373.05pt,9.25pt» to=«373.05pt,63.25pt» o:allowincell=«f»><img width=«2» height=«74» src=«dopb853.zip» v:shapes="_x0000_s1043"><oval id="_x0000_s1044" wrapcoords=«8100 0 5850 450 -450 5850 -450 15750 6300 21600 8100 21600 13500 21600 15300 21600 22050 15750 22050 5850 15750 450 13500 0 8100 0» o:allowincell=«f»><img width=«74» height=«72» src=«dopb851.zip» v:shapes="_x0000_s1044"><oval id="_x0000_s1045" wrapcoords=«8100 0 5850 450 -450 5850 -450 15750 6300 21600 8100 21600 13500 21600 15300 21600 22050 15750 22050 5850 15750 450 13500 0 8100 0» o:allowincell=«f»><img width=«72» height=«72» src=«dopb854.zip» v:shapes="_x0000_s1045"> 60 80 80
<line id="_x0000_s1046" from=«112.05pt,3.1pt» to=«157.05pt,3.1pt» o:allowincell=«f»><img width=«63» height=«12» src=«dopb855.zip» v:shapes="_x0000_s1046"><line id="_x0000_s1047" from=«58.05pt,3.1pt» to=«112.05pt,3.1pt» o:allowincell=«f»><img width=«74» height=«2» src=«dopb856.zip» v:shapes="_x0000_s1047"><line id="_x0000_s1048" from=«31.05pt,3.1pt» to=«59.85pt,3.1pt» o:allowincell=«f»><img width=«42» height=«12» src=«dopb857.zip» v:shapes="_x0000_s1048"><line id="_x0000_s1049" from="-22.95pt,3.1pt" to=«31.05pt,3.1pt» o:allowincell=«f»><img width=«74» height=«2» src=«dopb856.zip» v:shapes="_x0000_s1049"><line id="_x0000_s1050" from=«157.05pt,3.1pt» to=«209.25pt,3.1pt» o:allowincell=«f»><img width=«72» height=«2» src=«dopb858.zip» v:shapes="_x0000_s1050"><line id="_x0000_s1051" from=«346.05pt,12.1pt» to=«400.05pt,12.1pt» o:allowincell=«f»><img width=«74» height=«2» src=«dopb856.zip» v:shapes="_x0000_s1051">1 0 2 0 3 0
<line id="_x0000_s1052" from=«292.05pt,14.95pt» to=«373.05pt,41.95pt» o:allowincell=«f»><img width=«113» height=«43» src=«dopb859.zip» v:shapes="_x0000_s1052"><line id="_x0000_s1053" from=«184.05pt,5.95pt» to=«238.05pt,41.95pt» o:allowincell=«f»><img width=«78» height=«55» src=«dopb860.zip» v:shapes="_x0000_s1053"><line id="_x0000_s1054" from=«265.05pt,14.95pt» to=«265.05pt,67.15pt» o:allowincell=«f»><img width=«2» height=«72» src=«dopb861.zip» v:shapes="_x0000_s1054"><oval id="_x0000_s1055" wrapcoords=«8100 0 5850 450 -450 5850 -450 15750 6300 21600 8100 21600 13500 21600 15300 21600 22050 15750 22050 5850 15750 450 13500 0 8100 0» o:allowincell=«f»><img width=«74» height=«72» src=«dopb862.zip» v:shapes="_x0000_s1055"> 75
<line id="_x0000_s1056" from=«238.05pt,17.8pt» to=«292.05pt,17.8pt» o:allowincell=«f»><img width=«74» height=«2» src=«dopb845.zip» v:shapes="_x0000_s1056"> 5
Рис 5.1 Сетевой график проведения паровоздушной газификации
Таким образом, длительность проведения газификации составляет 340 мин, но в ходе проведения эксперемента этот циклработ повторяеться четыре раза, поэтому общая длительность будет составлять 1360 минут.
Для расчета сетевого графика табличным методом исходными есть номера предварительных и последующих действий, а также ожидание длительности работы tожij. Ранний срок выполнения действия – Tpi, ранний срок окончания работы- Троij.
Ранний срок выполнения действия находится по формуле:
Трi=t*[L*(j/i)max], (5.1)
где t*[L*(j/i)max] -длительность максимельного из путей от исходного события до данного проишествия.
Поздний срок окончания действия – Tпi, поздний срок окончания работы- Tпзij, поздний срок начала работы- Тпнij. Поздний срок выполнения действия опредиляется по формуде:
Тнi=t*(Lкр)-t*[L*(i/C)max], (5.2)
где t*[L*(i/C)max]-длительность максимальноготиз путей от события к завершению событию С;
t*(Lкр)-длительность критического пути.
Таблица 5.2 Расчет сетевого графика проведения газификации.
действие
параметры
Резерв времени
i
j
Tрпij
tожij
Tроij
Tпнij
Tпоij
tожij
Tij
1
2
0
20
20
0
20
20
0
2
3
20
60
80
20
60
80
0
3
4
80
180
260
80
180
260
0
3
5
80
75
155
125
75
260
185
4
6
260
5
265
260
5
265
0
5
6
155
5
160
260
5
265
185
5.2. Денежные расходы на проведение исследования
5.2.1. Расчет расходов на сырьё и материалы
Исследования проводились в Украинском государственном химико-технологическом университете в исследовательской лаборатории кафедры химической технологии топлива.
Для проведения исследований, необходимы основные и вспомогательные материалы .
К основным материалам относят: уголь (его стоимость и необходимое количество приведено в таблице 5.3). Вспомогательным материалом есть техническая вода (её стоимость и необходимое количество приведено в таблице 5.4)
Таблица 5.3 расчет необходимого количества основных материалов и их стоимость.
Материал
Количество материала пошедшее на исследование
Цена, грн/кг
Сумма, грн
Кг
Уголь
0.05
0.24
0.02
Таблица 5.4 Расчет необходимого количества вспомогательных материалов и их стоимость
материал
Количество материала пошедшего на исследование, л
Цена, грн/л
Сумма, грн
Вода техническая
120
0.01
12.00
Таким образом, расход на сырье и материалы будут составлять 12+0.02=12.01 грн.
5.2.2 Расчет расхода на заработную плату
Для проведения исследований был задействован персонал исследовательской лаборатории кафедры химической технологии топлива. В связи с этим, в числе других расходов на проведение исследований следует учитывать расходы и на заработную плату всех кто принимал участие в исследовании. Расход на заработную плату приведены в таблице 5.5
Таблица 5.5 Расчет расхода на заработную плату
Профессия
Среднечасовая заработная плата, грн
Количество чел.-часов
Сумма, грн
1. Лаборант
0.72
12.32
8.87
2. Студент
0.31
18.32
5.68
продолжение
--PAGE_BREAK--Таким образом, расходы на заработную плату будут составлять
8.87+5.68=14.55
5.2.3 Расчет объёма начисления на заработную плату составляет 37,5% от основной заработной платы и составляется из:
-пенсионный фонд (32%):
-фонд занятости (1,5%);
-фонд социального страхования (4%).
Таким образом, объём начисления на заработную плату будет составлять
(14.55*37,5)/100=5.46 грн.
5.2.4. Расчет расхода на электроэнергию
Некоторые устройства, которые использовались в исследовании, были электрические, т.е. питались от сети переменного тока, напряжением 220 В, частотой 50 Гц. Исходя из этого, каждое устройство потребляет некоторое количество электроэнергии.
Расход электроэнергии (Е) находится по формуле:
Е=М*к*Е*а,
где М-мощность двигателя оборудования, кВт;
к- коэффициент использования мощности, 0,9;
Е- время работы, на данной установки в процессе проведения исследования;
а- тариф за 1 кВт*час электроэнергии, 0,2 грн.
Расход на электроэнергию, которое потребляется в процессе исследования, приведены в таблице 5.6
Таблица 5.6 Расход на электроэнергию
Оборудование
Мощность, кВт
Время работы, часов
Цена, грн
Лабораторная установка
6
3
3,24
Аналитические весы
0,1
0,5
0,009
Хроматограф
0.5
3
0.27
Сумма, грн
3.52
Таким образом, расход на электроэнергию будет составлять 3.52 грн.
5.2.5.Амортизационные отчисления
норма амортизации представляет собой установленный годовой процент погашения стоимости основных фондов, в соответствии с которым предприятие осуществляют амортизационные отчисления. Для оборудования, которое применялось в исследовательской работе и которое относится к третьей группе, среднегодовая норма амортизации составляет 15%, другое оборудование относят ко второй группе и их среднегодовая норма амортизации составляет 25%.
Время отведенное на проведение эксперимента составляет 2 месяца, т. о. расчет амортизации оборудования приводится на весь период.
Расходы на амортизацию оборудования рассчитывается по формуле:
А=Ф*Н*t/12*100 , (5.4)
где А- объём амортизационных отчислений, грн:
Ф- стоимость оборудования, грн;
Н- норма амортизации, %;
t- время работы оборудования, мес.;
12- количество месяцев в году.
Объём амортизационных отчислений приведены в таблице 5.7
Таблица 5.7 Объём амортизационных отчислений Оборудование
Стоимость, грн
Норма амортизации, %
Объём амортизационных отчислений, грн
1. Лабораторная установка
2000
15
25
2. Хроматограф
300
15
3.75
3. Аналитические весы ВЛА-200г-М
98
25
4.08
Итого 32.83
Таким образом, объём амортизационных отчислений будет составлять 32.83 грн.
5.2.6. Накладные расходы
Накладные расходы включают разные расходы, которые связанные с обслуживанием оборудования (ремонт, освещение, отопление помещений, командировочные и др.). сумма накладных расходов принимается в размере 120% от суммы заработной платы исполнителей исследовательской работы.
( 14.55*120)/100=17.46 грн.
Таким образом, накладные расходы будут составлять 17.46 грн.
5.2.7 смета затрат на проведение исследовательской работы
Имея все необходимые данные можно получить общее количество расхода, необходимых для проведения исследования.
Смета затрат на проведение исследовательской работы приведено в таблице 5.8
Таблица 5.8 Смета затрат на проведение исследования
Затраты
Сумма, грн
Процент к итогу
1. Основные материалы
0.02
0.02
2. Вспомогательные материалы
12
14
3. Энергетические расходы
3.52
4.1
4. Заработная плата
14.55
16.95
5. Начисление на заработную плату
5.46
6.36
5. Амортизация оборудования
32.83
38.24
7. Накладные расходы
17.46
20.34
Всего затрат
85.84
100
Таким образом, расход на проведение исследовательской работы составляют 85.84 грн.
5.3. Расчет цены исследования
Цена исследования рассчитывается на основе расхода на исследования и нормативной рентабельности по формуле 5.5
Ц=С+<shape id="_x0000_i1045" type="#_x0000_t75" o:ole="" fillcolor=«window»><imagedata src=«1.files/image061.wmz» o:><img width=«41» height=«41» src=«dopb863.zip» v:shapes="_x0000_i1045"> , (5.5)
Где Ц- цена исследования, грн;
Р- нормативная рентабельность ,30%;
С- расход на исследование, грн.
Таким образом, цена исследования будет равняться:
Ц=<shape id="_x0000_i1046" type="#_x0000_t75" o:ole="" fillcolor=«window»><imagedata src=«1.files/image063.wmz» o:><img width=«172» height=«41» src=«dopb864.zip» v:shapes="_x0000_i1046"><shape id="_x0000_i1047" type="#_x0000_t75" o:ole="" fillcolor=«window»><imagedata src=«1.files/image016.wmz» o:><img width=«12» height=«23» src=«dopb832.zip» v:shapes="_x0000_i1047">грн.
Вывод
Результаты расчетов экономической части дипломной работы свидетельствует про то, что затраты на проведения исследования составило 85.84 грн., а цена исследования составила 111.6 грн. При этом наибольшая часть затрат пошла на амортизационные отчисления, поскольку при проведении исследований было задействована значительное количество денежного оборудования.
6. ВЫВОДЫ
В данной работе применяли метод паровоздушной газификации угля, которая позволяет использовать угли практически всех марок и получать газовую смесь (генераторный газ), который пригоден для замены природного газа.
Технический анализ сырья показал возможность использования выбранного угля.
Разработана и произведена сборка, монтаж установки по переработки низкосортного угля методом паровоздушной газификации.
Таким образом, в результате данного исследования выбраны оптимальные условия процесса паровоздушной газификации в стационарном с
еще рефераты
Еще работы по производству
Реферат по производству
Разработка источников диффузионного легирования для производства кремниевых солнечных элементов
1 Сентября 2013
Реферат по производству
Взаимосвязь общего менеджмента и менеджмента качества
1 Сентября 2013
Реферат по производству
Автоматизация энергетических установок
1 Сентября 2013
Реферат по производству
Модификация котельных топлив отходами спиртопроизводства
1 Сентября 2013