Реферат: Исследование применения сплавов системы Al-Mg-Si для производства поршней гоночных автомобилей

--PAGE_BREAK--2.2 Сплавы системы
Al

Mg

Si



Введение кремния в сплавы типа магналий способствует уменьше­нию чувствительности к образованию трещин, увеличению жидкоте-кучести и плотности литья, а также повышению жаропрочности. По­следнее объясняется сравнительно слабым взаимодействием а-твердого раствора с фазой Mg2Si, присутствие которой в структуре понижает интенсивность диффузионных процессов.

Фаза Mg2Siчасто кристаллизуется в этих сплавах в разветвлен­ной (паукообразной) форме, способствующей снижению их механи­ческих свойств при комнатной температуре. Вместе с тем фаза Mg2Siснижает пластичность сплавов, поэтому содержание кремния в спла­вах типа магналий не должно превышать 1,5 %.
Таблица   2.4

Влияние кремния на жискотекучесть сплавов типа магналий с содержанием железа 0,09—0,2%   при температуре заливки 700" С  [164]



Введение марганца в сплавы типа магналий повышает их жаро­прочность и улучшает коррозионную стойкость.

В табл. 4 приведены данные по жидкотекучести сплавов типа магналий в зависимости от содержания кремния. Максимальная вели­чина жидкотекучести у всех сплавов с содержанием 9, 11 и 13% Mgнаблюдается при 1,2% Si. Для сплавов с 5% Mgмаксимум жидкотеку­чести смещается к 1,6% Si. Повышение жидкотекучести в сплавах при содержании в них 1,2% Siможно объяснить увеличением коли­чества тройной эвтектики: а + Mg2Si+ Р (Al3Mg2), aпоследующее снижение жидкотекучести связано с увеличением количества первич­ных кристаллов фазы Mg2Siв расплаве.

В табл. 5 приведены механические свойства сплавов системы Al—Mg—Siв зависимости от содержания в них магния и кремния при разных температурах, из которых видно, что сплав типа АЛ22 имеет преимущество перед другими сплавами.

В сороковых годах немецкие исследователи, особенно Мейер и Росслер, уделяли большое внимание изучению жаропрочности спла­вов типа магналий с кремнием и пытались применить их для изготов­ления поршней авиационных двигателей. При этом была поставлена цель уменьшить плотность до 2,5—2,6 г/см3, повысить твердость и теплопроводность сплавов. Однако испытания показали, что этого достичь невозможно при использовании сплава типа магналий. Был предложен сплав алюминия с содержанием 5—7% Mgи 1,—1,5% Si, обладающий повышенной жаропрочностью. Этому сплаву была при­своена марка Hg51.

В Советском Союзе такой сплав известен под маркой АЛ13. Недо­статок его — сравнительно низкая прочность при комнатной темпе­ратуре.

В настоящее время нашли промышленное применение три сплава типа магналий с кремнием: АЛ13, АМгТЛ (АЛ29). Соединение Mg2Siобразует двойную эвтектику с а-твердым раствором (8,25% Mg; 4,75% Si; остальное Al) с темпера­турой плавления 595° С. При малом содержании магния в сплаве эвтектика располагается по границам зерен твердого раствора (строе­ние ее грубеет с увеличением содержания магния в сплаве), такой характер расположения частиц фазы Mg2Siповышает жаропрочность сплавов.

Растворимость фазы Mg2Siв твердом алюминии во много раз меньше растворимости магния. Следовательно, все промыш­ленные тройные сплавы (АЛ 13, АЛ29, АЛ22) в закаленном состоя­нии имеют гетерогенную структуру. Поэтому у них не может быть высоких механических свойств, присущих закаленным двойным сплавам АЛ8, АЛ8М, АЛ27-1.

Один из путей повышения прочности сплава — увеличение ско­рости кристаллизации, которое может способствовать получению плотной мелкозернистой структуры и более дисперсных частиц фаз Mg2Si. Al3Fe, Al3Ti. Поэтому при литье деталей из этого сплава в песчаные формы особенно желательно применять холодильники или отливать детали в металлические формы.

Исследование механических свойств литых термически не обра­ботанных сплавов (табл. 6) показывает, что предел прочности почти не зависит от содержания магния, а относительное удлинение по мере повышения содержания магния, особенно начиная с 9%, значительно снижается.

Т а б л и ц а   2.5

Механические свойства сплавов при повышенных температурах (образцы, отлитые в  песчаные формы)


Таблица   2.6

Механические свойства сплавов
Al
Mg—Siв литом и закаленном состояниях (отдельно   отлитые  в  песчаные  формы  образцы)



Сплавы с содержанием более 9% Mgи 0,3% Siне рекомендуется при­менять без термической обработки.

В табл. 7 приведены сравнительные типичные механические и технологические свойства четырех сплавов. Коррозионная стойкость сплава АЛ22 в сравнении с коррозионной стойкостью других сплавовследующая. При испытании сплавов в течение 30 дней в пресной воде потеря в массе сплава АЛ22 составила 2,5, а сплава АЛ4 8,8 г/ж2.

При испытании в течение 45 дней методом распыления 3%-ного. раствора NaClпотеря в массе сплава АЛ22 составила 4,9, сплава АЛЗ 16,9, а сплава АЛ1 24,7 г/л;2. При испытании в течение 20 дней в особо жестких условиях (раствор 3% NaCl+ 0,2% Н2О2) потеря, в массе неанодированного сплава АЛ22 составила 1,5, а анодированного 0,1 г/л2.

Из приведенных в табл. 6 и 7 данных видно, что для получения высокой прочности сплава АЛ22 содержание магния при шихтовке должно быть на верхнем пределе (до 11%), а кремния — на нижнем пределе (не больше 0,8%). Результаты сравнения жаропрочности сплавов АЛ8, АЛ13 и АЛ22 приведены в табл. 8. По жаропрочности сплавы распола­гаются в следующий восходящий ряд: АЛ8 —> АЛ 13 —> АЛ22. Сплав АЛ8 по жаропрочности очень сильно уступает сплавам АЛ13 и АЛ22 в связи с тем, что процессы распада твердого раствора протекают в нем наиболее сильно.

                 Таблица  2.7
    продолжение
--PAGE_BREAK--Типичные свойства литейных  алюминиевых  сплавов,   отлитых  под  давлением
 Для сложного литья под давлением содержание магния может быть понижено до 8%.

Таблица  2.8

Длительная   прочность   сплавов   АЛЗ, АЛ 13 и АЛ22   при температуре   300о С





В структуре сплава ВАЛ1 еще явное преобладание продук­тов зонной стадии распада твердого раствора. При дальнейшем повышении температуры на 25 град значительно изменяется структура сплава АЛ 19. Увеличиваются участки зерен твердого раствора без продуктов его распада, тогда как на других участках зерен твердого раствора наблюдается группировка продук­тов распада вокруг частиц стабильной фазы Т (А112Мп., Си). Фаза Т также коагулирует.

Изменение в структуре сплава А19 после З-ч выдержки при тем­пературе 300° С приводит к дальнейшему развитию процессов рас­творения мелких выделений фазы 0' и коагуляции частиц фазы Т, но в зернах твердого раствора еще частично хорошо видны скопления продуктов его распада. Увеличение длительности выдержки при 300оС до 10ч приводит к интенсивному процессу коагуляции частиц фазы Т и образования частиц стабильной фазы CuAl2. В структуре твердого раствора сплава ВАЛ1, несмотря на дли­тельное (10 ч) старение при температуре 275° С, наблюдаются до­вольно мелкие, равномерно расположенные в виде цепочек. При этом частицы фазы Т несколько коагулируют.

Структура сплава ВАЛ1 после 10-ч выдержки при температуре 300° С резко отличается от структуры сплава АЛ19. В твердом растворе с высокой плотностью распределены точечные и мелкие пластинчатые продукты распада. Заторможенность распада твердого рас­твора и присутствие тугоплавких фаз Al6Cu3Niи А112Мп.2Си обеспе­чивают сплаву ВАЛ1 высокую жаропрочность. С изменением тонкой структуры соответственно изменяются и механические свойства, поэтому жаропрочность сплава ВАЛ1 на 30% выше, чем у АЛ 19.

2
.3 Жаропрочность поршневых литейных


 алюминиевых сплавов.

На поршни в различных двигателях действуют знакопеременные нагрузки при постоянном их контакте с агрессивными жидкими и газовыми средами. При этом нагрузки бывают очень большие (10 000—18 000 т) и температура пламени повышается до 800° С. Поэтому к сплавам для поршней предъявляются следующие требо­вания:

1.   Пониженная   плотность,   снижающая   нагрузку  на   шатун.

2.   Пониженный   коэффициент   термического   расширения,    так как   цилиндры   двигателей   стальные,    коэффициент   термического расширения которых в два раза меньше, чем у алюминия. При низком коэффициенте у алюминиевого поршня необходимо делать минималь­ный зазор между поршнем и цилиндром, что будет способствовать повышению мощности двигателя, меньшему расходу смазывающего вещества   и   горючего,   а   также   увеличению   срока   эксплуатации цилиндров, поршневых колец и поршней. Таким образом, коэффи­циент термического расширения — одна из важнейших характери­стик поршня.

3.   Повышенная теплопроводность, обеспечивающая быстрый отвод тепла от камеры сгорания двигателя.

4.   Повышенная твердость. Это определяет износостойкость порш­ней.

5.   Высокая плотность (проникновение газа в поры и микротре­щины приводит к быстрому разрушению поршней).

6.  Стабильность   структуры   поршня.   Структурные   изменения могут привести к объемному изменению поршня (к явлениям «роста») к заклиниванию его и быстрому выходу из строя.

7.   Коррозионная стойкость в среде горячих агрессивных газов. Воздействуя на днище поршня, газы могут привести его к быстрому разрушению.

До   последнего  времени   поршни  отечественных   автомобильных и тракторных двигателей в большинстве своем отливали из вторич­ного алюминиевого сплава АЛ10В. Несмотря на лучшую, чем у других сплавов типа силумин, обрабатываемость резанием, сплав АЛ10В имеет   ряд   недостатков:   повышенный   коэффициент   термического; расширения, склонность к объемным изменениям в процессе эксплуатации и пониженную коррозионную стойкость. Это приводит к образованию на поршнях «задиров» и трещин.

В других странах для литья поршней широко применяют сплавы

типа Лоу-Экс или АЛ25 с 10—14% Si, aтакже сплавы с высоким содержанием кремния (до 26%), имеющие большие преимущества перед сплавом АЛ 10В (высокая жидкотекучесть, пониженная линейная усадка, малая склонность к образова­нию горячих трещин), что позволяет получать из них ажурные от­ливки с большой разностенностыо. Кроме того, высококремниевые сплавы более коррозионностойки, что позволяет увеличивать ре­сурс использования поршней и двигателя, работающих на различных видах топлива.

Чем выше содержание кремния в этих сплавах, тем ниже коэффи­циент термического расширения. С увеличением содержания кремния понижается пластичность сплавов и ухудшается их обрабатывае­мость резанием. Для устранения этих недостатков необходимо раз­работать более совершенные методы модифицирования сплавов.

Высококремниевые алюминиевые сплавы наиболее перспективны для изготовления поршней, поэтому в настоящей главе уделяется большое внимание подробному исследованию влияния легирующих элементов и примесей на жаропрочность этих сплавов.

2.3.1. Влияние легирующих элементов на

жаропрочность поршневых сплавов
Поршневые сплавы отличаются довольно сложным химическим составом, потому что для повышения жаро­прочности их обычно легируют медью, марганцем, никелем, хромом, кобальтом и другими элементами.

В литературе мало данных о влиянии основных легирующих элементов и примесей на жаропрочность сплавов типа силумин. Во всех случаях сплавы приготовляли по единой методике как из чистых металлов и лигатур, так и с добавкой 35—100% вторичных сплавов, чтобы выяснить сте­пень их влияния на жаропрочность исследуемых сплавов. Для выявления степени вредности цинка, олова и свинца в наиболее важные сплавы специально вводили металлические цинк и олово, а свинец — в виде хлористого свинца. С целью измель­чения первичных кристаллов кремния высококремниевые сплавы типа АЛ26 модифицировали фосфором в виде фосфористой меди [8—10% Сu3Р], 1,5% которой вводили в алюминиево-кремниевую лигатуру.

Были определены механические свойства при растяжении, горячая твердость при температурах 200, 250, 300 и 350о С и длитель­ная прочность при 300° С.

Механические свойства сплавов при комнатной температуре опре­деляли на образцах диам. 12 мм, выточенных из кокильных загото­вок диам. 20 мм, и на отдельно отлитых вземлю образцах диам. 10 мм с литейной коркой. Длительную прочность сплавов определяли по продолжительности испытания образцов до разрушения при опре­деленном напряжении на таких образцах. Горячую твердость спла­вов определяли с использованием шарика диам. 10 мм при нагрузке 100 кГ и продолжительности нагружения 30 мин. Образцы высотой 12 мм вырезали из кокильной заготовки диам. 20 мм.



и подвергали 100-ч стабилизации при температурах испытания. Кроме того, определяли так называемую остаточную твердость при комнатной температуре после определения горячей твердости.

Литые образцы всех сплавов испытывали после старения. Режим старения для сплавов типа АЛ25 и АЛ26: нагрев при 200° С в тече­ние 12 ч с последующим охлаждением на воздухе; для высококрем­ниевых сплавов: нагрев при 230' С в течение 12 ч с последующим охлаждением на воздухе. Режимы старения были выбраны на осно­вании данных, полученных В. М. Бусаровым при исследовании влияния различных режимов старения на твердость сплавов АЛ25 и АЛ26, а температура старения подобрана такая, которая обеспе­чивала получение необходимой твердости сплава ц снижала литейные напряжения.

В табл.  9  приведен  химический состав  исследуемых сплавов.

Примеси олова и свинца в указанных пределах заметно не влияют на механические свойства при комнатной температуре и длительную прочность при 300: сплавов типа ЖЛС (сплав 2) и АЛ10В. Следова­тельно, можно считать допустимыми примеси до 0,02% Snи до 0,10% РЬ.

Изменение содержания кремния в пределах 10—14% существенно не влияет на свойства сплава.

Изменение содержания меди в пределах 0,5—4,5% мало отра­жается на прочности сплава при комнатной температуре, но повыше­ние содержания меди способствует повышению длительной прочно­сти при 300 С. Это объясняется тем, что медь при высоком содержа­нии участвует в повышении межатомной связи твердого раствора, содержащего марганец, магний и другие аналогичные элементы. Кроме того, при распаде твердого раствора сложного по составу сплава образуются дисперсные частицы, которые участвуют в создания микрогетерогенности внутри зерен твердого раствора, что затрудняет их деформацию. Избыточная медь участвует в образовании никельсодержащей фазы, которая кри­сталлизуется в разветвленной форме, ее частицы, располагаясь по границе зерен твердого раствора, блокируют их и тем самым обеспе­чивают значительное повышение жаропрочности сплава. Содержание меди в сплаве следует ограничить 3,0%, так как при ее избытке в структуре сплава появится фаза CuAl, способствующая охрупчиванию сплава, понижению коррозионной стойкости и повышению склонности к объемным изменениям («росту» поршней).

Введение магния повышает прочность сплава при комнатной температуре, но мало сказывается на жаропрочности. Оптимальные свойства сплав имеет при содержании магния 0,75—1,3%.

Таблица   2.9
    продолжение
--PAGE_BREAK--Химический состав поршневых сплавов

Введение 0,5—2,0% никеля мало изменяет механические свойства сплава при комнатной температуре, но заметно повышает его жаро­прочность. Это объясняется тем, что никельсодержащая фаза спо­собствует упрочнению границ зерен твердого раствора. В сплаве необходимо иметь 0,8—1,3% никеля.

Примесь олова (до 0,08%) заметно не отразилась на изменении механических свойств. Однако содержание его следует ограничить 0,02%, так как в массивных сечениях отливок возможно скопление легкоплавкой эвтектики (Al+ Sn), резко снижающей жаропрочность сплава.

Введение свинца (до 0,15%) не сказалось на свойствах сплава, но содержание его следует ограничить 0,1% вследствие повышенной склонности к ликвации, которая способствует снижению жаропроч­ности сплава.

Таким образом, содержание легирующих элементов и примесей в сплаве АЛ25 (ЖЛС1) установлено следующее: 11,0—13,0% Si, 1,5—3,0% Си, 0,8—1,3% Mg, 0,8—1,3% Ni, 0,3—0,6% Mn, 0,05— 0,2% Ti, до 0,8% Fe, до 0,5% Zn, до 0,02% Sn, до 0,1% Pb, осталь­ное — алюминий.

2.3.2. Жаропрочность высококремниевых

 легированных сплавов

Для исследования были изготовлены высококремнневые сплавы типа KS280 с кобальтом (условная марка АК21), типа KS280 с хромом (условная марка АЛ26) и другие сплавы.

Испытания проводились на отдельно отлитых (в песчаные формы) образцах диам. 10 мм с литейной коркой. Сплавы АК21 и АЛ26 имеют практически одинаковые механические свойства при комнатной температуре и длительную прочность при 300о С.

Исследования показали, что комплексное легирование медью, никелем и марганцем (или кобальтом) значительно повышает жаро­прочность сплавов типа силумин (АЛ25 и АЛ26). По жаропрочности сплав АЛ25 превосходит сплав АЛ10В, жаропрочность сплава АЛ26 еще выше. Повышенная жаропрочность сплава АЛ26 обеспечивается увеличением степени легирования твердого раствора элементами с низким коэффициентом диффузии, а также упрочнением границ зерен твердого раствора частицами вторых фаз которые до 300о С мало взаимодействуют с а-твердым раствором. Кроме того, мелких частиц кремния, склонных к коагу­ляции, в сплаве АЛ26 меньше. Сплавы АЛ25 и АЛ26 отличаются меньшим (в два раза) содержанием меди по сравнению со сплавом АЛ10В, поэтому они имеют небольшие величины коэффициента термического расширения, объемного изме­нения во время работы поршней и более высокие жаропрочность и литейные свойства. Следовательно, можно давать меньший зазор между поршнем из новых сплавов и цилин­дром. Этот фактор играет важную роль в снижении расхода масла и горючего.

Были установлены верхние пределы при­месей олова и свинца, что позволяет при­готовлять сплавы АЛ25 и АЛ26 с приме­нением большего количества вторичных ме­таллов.

К недостаткам сплава АЛ26 следует от­нести грубокристаллическую структуру (со­держание большого количества крупных первичных кристаллов кремния), что снижает относительное удлине­ние до 0,2%. Повысить эту величину можно модифицированием. Суще­ствующие в настоящее время способы модифицирования заэвтектических (особенно, содержащих более 20% Si) силуминов весьма разнообразны. Модифицирование осуществляют фосфористой медью, красным фосфором, различными неорганическими соединениями фосфора, термитными смесями и т. д. За рубежом для модифицирова­ния заэвтектических силуминов применяют сложные препараты, содержащие фтортитанат и фторцирконат калия и другие вещества.

Однако имеющиеся в настоящее время модификаторы не позво­ляют получить нужные структуру и механические свойства заэвтек­тических силуминов. Общий недостаток всех известных модифика­торов — это то, что при измельчении кристаллов первичного крем­ния огрубляется структура эвтектики a– Al3Si, вследствие чего относительное удлинение даже хорошо модифицированных сплавов, содержащих более 22% кремния, очень низкое (не превышает 0,5%). Сцелью устранения этого недостатка И. Ф. Колобневым и В. А. Ро-тенбергом для заэвтектических силуминов предложены комбиниро­ванные модификаторы, содержащие фосфор и углерод (в виде фосфорорганнческих соединений).

Эксперименты по модифицированию заэвтектических силуминов трифениловым эфиром ортофосфорной кислоты (трифенилфосфатом) (С10Н3О3) РО, хлорофосом С4Н8О4РС19 и другими фосфорорганическими соединениями показали, что введение фосфора и углерода (в виде фосфорорганического соединения) в расплав позволяет резко измельчить кристаллы первичного кремния и одновременно модифи­цировать эвтектику, тогда как существующие в настоящее время модификаторы измельчают первичный кремний, но при этом способствуют огрублению эвтектики.

Исследованный сплав имел следующий химический состав: 21,75% Si; 2,93% Си; 2,04% Ni; 0,52% Мп; 0,38% Сг; 0,24% Ti; 0,68% Mg-0,1% Zr; 0,56% Fe.

Предел прочности при растяжении и относительное удлинение заэвтектических силуминов, модифицированных фосфорорганическими соединениями (в частности, хлорофосом и трифинилфосфатом), выше этих же характеристик сплавов, модифицированных другими способами, в среднем соответственно на 10—15% и на 40—50%. Интересно отметить, что относительное удлинение модифицирован­ных фосфорорганическими соединениями сплавов достигало на целом ряде образцов 2,0—2,5%.

Механизм модифицирования заэвтектических силуминов фосфор-органическими соединениями можно представить следующим обра­зом. Как было показано прямыми экспериментами по фильтрации расплавов, при введении в заэвтектические силумины фосфора обра­зуется фосфид алюминия, параметры кристаллической решетки которого (структурный тип сфалерита ZnS) очень близки к параметрам кристаллической решетки кремния (тот же структурный тип). Вследствие этого, согласно принципу структурного и размерного соответствия, мельчайшие частицы фосфида алюминия служат за­родышами для кристаллов кремния. Вместе с тем при введении угле­рода в расплаве, по-видимому, образуются частицы карбида кремния и карбидов других металлов (TiC, ZrCи др.), которые являются готовой кристаллической подкладкой для кристаллизующегося из расплава первичного кремния. Таким образом, измельчение кристал­лов первичного кремния связано с увеличением числа центров кри­сталлизации.

Проведенные эксперименты показали более высокую эффектив­ность комбинированных фосфорорганических модификаторов по сравнению с другими известными в настоящее время модификато­рами, в том числе зарубежными препаратами «Alphosit», «Phoral» и др. Помимо наиболее важного достоинства фосфорорганических модификаторов — одновременное измельчение и кристаллов пер­вичного кремния и эвтектики, эти модификаторы имеют еще следу­ющие достоинства. Операция модифицирования не связана с изменением состава сплава и не требует высокого перегрева расплава.

              Введение  в   расплав  правильно  подобранных  фосфорорганических соединений не сопровождается пироэффектами и выбросами металла, часто происходит при модифицировании заэвтектических силуминов термитными смесями.


2.4. Кратковременные испытания литейных

 алюминиевых сплавов при

 повышенных температурах

Литые детали из алюминиевых сплавов широко применяются в конструкциях разового назначения, претерпевающих воздействие высоких температур и напряжений. Для таких условий работы требуются не столько жаропрочные сплавы, сколько сплавы с высо­кой исходной прочностью, так как литые детали можно кратковре­менно нагревать до высоких температур без существенных измене­ний их свойств.

В литературе имеется много данных, характеризующих жаро­прочность литейных алюминиевых сплавов, однако о сплавах, пред­назначенных для деталей разовых назначений, сведений не имеется. Поэтому в этой главе приводятся результаты кратковре­менных испытаний на разрыв (от 10 сек до 60 мин) при температурах 100, 200, 300, 400о С. Эти данные имеют исключительно важное значение для конструкторов и технологов, создающих изделия разового назначения.

2.4.1.Кратковременные испытания сплавов на

растяжение по обычной методике

Данные исследования механических свойств сплавов АЛ4, АЛ5, АЛ7, АЛ9, АЛ20 и АЛ24 в зависимости от условий испытания заим­ствованы из работы О. Б. Лотаревой и Л. И. Локтионовой. Испыта­ния при повышенных температурах разделялись на кратковременные и длительные и проводились на образцах диам. 10 мм с литейной коркой. Перед испытанием сплавы подвергали термической обра­ботке по обычно применяемым в промышленности режимам. Сплав АЛ24 испытывали в литом состоянии. Кратковременные испытания проводили при температурах 100, 150, 175, 200 и 250' С по обще­принятой методике, заключающейся в прогреве образца без нагрузки в течение 30 мин и в постепенном его нагружении до разрушения.

Полученные результаты  показали, что при тем­пературе 100° С предел прочности сплавов АЛ5 и АЛ7 (Т5) практи­чески не изменился, а у сплава АЛ7 (Т4) прочность снизилась. Некоторое повышение предела прочности при этой температуре можно отметить у сплава АЛ24, очевидно, за счет склонности этого сплава к старению. Снижение предела прочности остальных сплавов началось с температуры 100: С. Относительное удлинение всех сплавов до 200е С повышается незначительно, но при более высоких температурах оно резко увеличивается. Результаты испытания сплава АЛ7 (Т5) показывают, что предел прочности можно повысить за счет старения.

Ряд деталей, изготовляемых литьем под давлением, из сплавов АЛ22, АЛ20 и АЛ5 работает при повышенных температурах. На квазибинарном разрезе Al—Mg3Sb2имеется эвтектика, содержащая примерно 0,5% Mg3Sb2(0,38% Sbи 0,12% Mg), с температурой плавления 658°С [3]. Максимальная растворимость в твердом состоянии составляет порядка 14% Mg, растворимость сурьмы в алюминии пренебрежимо мала (менее 0,0 *%Sb). Высокотемпературная форма, по-видимому, кубическая.

Параметр решетки твердого раствора сплавов, богатых алюминием, зависит главным образом от содержания магния. Добавка сурьмы уменьшает поверхностное натяжение на границе раздела жидкость — газ сплавов системы Al—Mg; сурьма способствует улучшению коррозион­ной стойкости в морской воде. Подробности приведены в ч. II.
2.5. Диаграмма
Al

Mg

Si


Эта простая по строению диаграмма состояния тщательно изучена. Хо­роший обзор по системе А1—Mg—Siвыполнен авторами работ. В рав­новесии с алюминиевым твердым раствором находится соединение Mg2Si. Оно лежит на квазибинарном разрезе Аl—Mg2Si, отвечающем отношению концентраций Mg: Si=l,73. В табл. 10 приведены двойные и тройные нонвариантные реакции в области, богатой алюминием.

Таблица 2.10

НОНВАРИАНТНЫЕ   РЕАКЦИИ   В   АЛЮМИНИЕВОМ   УГЛУ  ДИАГРАММЫ   Al-Mg-Si



Химический состав фаз Si, Мg5Аl8 и Mg2Si, участвующих в реакциях по-видимому, незначительно отличается от стехиометрического. Атомы магния и кремния в алюминиевом твер­дом растворе стремятся к образованию «молекул» Mg2Si. Раствори­мость Mg2Siв твердом алюминии в твердом состоянии несколько уменьшается, если содержание кремния превышает отношение концентраций Mg: Si=l,73





Алюминиевый угол диаграммы Аl—Mg—Si:

а — проекция поверхности ликвидус; б — распределение фазовых областей в твердом состоянии. Концентрации, отвечающие точкам А, В, С, Dи Е, приведены в табл. 11— линия квази-бинарного разреза
Соединение   Mg2Si   (63,2% Mg  и   36,8% Si)   обладает  кубической  решет­кой   (12   атомов  в  элементарной  ячейке)   с  параметром а = 6,35н-6,40 А.Оно изоморфно фазам MgsGe, Mg2Pb, MgsSri, но имеет очень узкую область существования. Его температура плавления составляет 1087°С, плотность — 1,88 г/см3.
Таблица 2.11

ИЗМЕНЕНИЕ КОНЦЕНТРАЦИИ АЛЮМИНИЕВОГО ТВЕРДОГО РАСТВОРА, В ЗАВИСИМОСТИ ОТ ТЕМПЕРАТУРЫ 




--PAGE_BREAK--Экстракция расплава


Этот способ имеет два варианта: экстракция расплава из тиг­ля и экстракция расплава из висящей капли, отличающиеся принци­пом подачи жидкого металла на охлажденную подложку. Металл сцеп­ляется на короткое время с кромкой диска, затем затвердевает, от­деляется от нее и падает в виде волокна. Изменив кромку диска, можно получать отдельные волокна, которые можно обрабатывать как порошок. Скорости охлаждения такие же, как в способе наморажива­ния на холодную подложку.

В процессе экстракции расплава из висящей капли отсутствует проблема тигля, а при экстракции расплава из тигля для исключена реакции между тиглем и расплавом можно применять гарнисажную плавку. Оба способа можно рекомендовать для химически активных металлов.

Толщина волокон равна, как правило, 10-20 мкм и зависит от сплава и скорости охлаждения.

В процессе экстракции расплава при помощи водоохлаадаемого вращащегося диска с зубчатой кромкой достигается скорость охлаж­дения 104 — 106 град/с.

Подобный способ сравнительно дешев, надежен и может быть усовершенствован для большинства сплавов.

Сплавы, полученные способом экстракции из расплава, превра­щают в компакт, используя различные способы деформации. Первона­чальный компакт может быть изготовлен непосредственно из спрес­сованных «вхолодную» частиц, либо частицы измельчаются до нужного гранулометрического размера.

В целом, анализируя материалы по получению быстрозаристалли-зованных частиц, можно сделать вывод, что при использовании мето­дов распыления достигается скорость охлаждения при кристаллизации порядка 104...106   град/с. Для получения более высокой скорости необходимо уменьшить размер порошка до 20...30 мкм, что делает его очень взрывоопасным. Для достижения более высоких скоростей охлаждения необходимо осуществлять охлаждение на подложке. Для чешуек или пластинок толщиной 0,1-1,0 мкм достигнуты скорости кристаллизации 108 –109   град/с. В печати сообщалось о скорости кристаллизации 1010  град/с, которую следует считать максимальной для данного способа охлаждения чешуек и пластинок.
3.ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

3.1 Обоснование выбора сплавов для

исследования

Сплавы системы Al– Siшироко используются для производства поршней. Как правило, они классифицируются как:

1)     доэвтектические (содержание Si6…9 %)

2)     эвтектические (10…12 %)

3)     заэвтектические сплавы (17…21 %)

Например: Mahle124, АК 12 D, Mahle138,1379 и т.д.

Также используются поршни из сплавов системы Al– Cu– Mg– Fe– Ni(RR58, АК 4-1 и т.д.). Эти сплавы обеспечивают повышенную жаропрочность при высоких температурах 200…250 oC, но по сравнению со сплавами системы Al– Siимеют более высокий коэффициент линейного расширения и более низкую износостойкость.

Для производства поршней используются различные технологические методы: литьё, штамповка, твёрдо – жидкая штамповка и т.д.

Существует ярко выраженная тенденция улучшения свойств, характеристик поршневых материалов путём использования гранулируемых сплавов (RSR/PM) и композиционных материалов с металлической матрицей (MMC).

Например, гранулируемый сплав RSR/PM1379 (17…19 % Si) выпускается в российской промышленности.

Этот сплав имеет коэффициент линейного расширения ~ 17…18 ppm/oC, плотность 2,70 г/см3, теплопроводность около 120…130 W/moC, очень высокую износостойкость и высокую размерную стабильность.

Уменьшение плотности алюминиевого сплава может способствовать его легированию элементами, имеющими меньшую по сравнению с алюминием плотность, например, Mg.

Магний хорошо растворим в твёрдом растворе и понижает теплопроводность и жаропрочность. Для сохранения положительного влияния Mgна плотность и удаления негативного влияния на  теплопроводность, он должен находиться во всех фазах в виде соединений, например, Mg2Si. Растворимость Mg2Siв алюминии намного ниже, чем у Mg.

Разработка сплава с высоким содержанием Mg2Siфазы является главной идеей дальнейшего исследования.

Соединение сплавов системы Al– Mgс Siспособствует повышению жаропрочности серии алюминиевых сплавов, что достигается в результате плохого взаимодействия a— твердого раствора с Mg2Siфазой. Это понижает интенсивность процесса диффузии. В то же время, Mg2Siфаза уменьшает вязкость сплавов и, согласно литературным данным, содержание Siв Mg2Siсплавах не должно превышать 1,5…2 %.

В 40-х годах немецкие учёные Майер и Росслер изучали Al– Mg– Siсплавы и пытались применить их для производства поршней для авиадвигателя. Задача заключалась в понижении плотности до 2,5 – 2,6 г/см3 и повышении жесткости и теплопроводности. Тем не менее, согласно результатам исследований, они не достигли такого уровня. Был разработан сплав: 5-7% Mgи 1,0 – 1,5 % Si. Этот сплав получил название Mg51. Позднее был разработан сплав Magsimal59 (~ 5% Mg, 2% Si) для производства автомобильных деталей путём литья и реокастинга. Промышленные сплавы типа AD31 (по зарубежным стандартам серия 6000) содержат Mgи Siне более 1,5 %. В этом случае всё количество фазы Mg2Siво время охлаждения оказывается в растворённом виде (пропитка раствором) и, после искусственного старения, выпавшие в осадок фазы укрепляли сплав. Соотношение Mgк Siв Mg2Siсоставляет  1,73. Растворимость Mg2Siпри 520о С около 2%.
3.2           Исследование гранулированных сплавов

Одним из главных эффектов высокоскоростной кристаллизации является уменьшенный размер всех структурных компонентов сплава, включая нерастворимые в матрице интерметаллиды (первичные кристаллы, эвтектики). Следовательно, существует возможность трансформировать избыточные кристаллы
Mg
2
Si
в дисперсные фазы. Это должно упрочнить сплав.

Выбор сплавов для исследования был сделан согласно квази – бинарному сечению равновесной диаграммы
Al

Mg

Si
(рис.1). Для исследования были выбраны сплавы с фазовыми составами
Al

Mg
2
Si
и
Al

Mg
2
Si

Si
(таблица 1).


Таблица 3.1. Химические составы выбранных гранулируемых сплавов.
    продолжение
--PAGE_BREAK--<img width=«588» height=«568» src=«ref-1_780386603-75071.coolpic» v:shapes="_x0000_s1026 _x0000_s1027 _x0000_s1028 _x0000_s1029 _x0000_s1030 _x0000_s1031 _x0000_s1032 _x0000_s1033 _x0000_s1034 _x0000_s1035 _x0000_s1036 _x0000_s1037 _x0000_s1038 _x0000_s1039 _x0000_s1040 _x0000_s1041 _x0000_s1042 _x0000_s1043 _x0000_s1044 _x0000_s1045">
Рис.1 Квази-бинарное сечение равновесной диаграммы Al– Mg– Si      ·  -   расположение  исследуемых сплавов
Сплавы Al– Mg2Si– Siбыли выбраны в попытке улучшить свойства благодаря измельчению Mg2Siи первичных кристаллов Si.    Сплавы были созданы методом высокоскоростной кристаллизации расплава. Скорость охлаждения во время кристаллизации была 103…104K/c. Гранулы были помещены в технологические контейнеры,  подвергнуты вакуумной дегазации и компактированию. Затем уплотнённые гранулы подверглись прессованию в прутки. Предварительные результаты показали, что твёрдость всех сплавов достаточно высока в прессованном состоянии (Таблица 2).


Таблица 3.2. Твёрдость исследуемых сплавов до и после термообработки



Сплав №

После прессования

525оС, вода + 175оС в течение 12 ч

1R

95,5

-

1R (чешуйки)

178

-

2R

91

120

3R

83

150

4R

98,3

157

5R

89,7

152

6R

101

162


Высокая твёрдость при таком прессовании (без термообработки) очень важна, потому что она сохранилась неизменённой после 100 часов выдержки при температуре 350оС.  Микроструктурный анализ сплава 1Rпоказал, что уровень охлаждения недостаточно высок для формирования псевдоэвтектической структуры. Первичные кристаллы Siдостигали размеров около 3…5 мкм. Сплав 1Rв целом имеет хороший комплекс свойств (таблица 3), но вязкость и теплопроводность сплава очень низки. Для улучшения свойств сплава 1Rуровень охлаждения во время затвердевания был поднят до 106…107 К/с.  Сплав был сделан в виде чешуек толщиной около 20 мкм, которые были получены путём кристаллизации на медном диске. Более быстрая кристаллизация упрочнила сплав.
Таблица 3.3. Прочностные характеристики сплава 1R в зависимости от способа                                   получения.

Сплав



Температура исследования, оС



20

250

300


1R (гранулы)

UTS, MPa

320

155

117

YS, MPa

278

138

96

d, %

0,5

1,0

2,0

s 20



110





1R (чешуйки)

UTS, MPa

530

211

135

YS, MPa

503

170

105

d, %

0,5

1,5

2,5



В микроструктуре сплава первичных кристаллов не наблюдалось. При увеличении  х1600 на сером фоне наблюдались отдельные кристаллы Mg2Si  звездообразной формы.

Наиболее важные физические свойства (твёрдость, сопротивление текучести, прочность при комнатной и высокой температуре) сплава 1Rнамного выше, чем сплав фирмы Mahle–  мирового лидера в области изготовления поршней гоночных автомобилей (RR58, Mahle 124 – в российской номенклатуре АК4-1 и АК 12 Dсоответственно).

Однако теплопроводность повысилась незначительно. Очевидно, для повышения теплопроводности требуется увеличить объём a-твёрдого раствора, что можно достичь путём снижения содержания легирующих элементов. Анализ остаточной твёрдости показал, что все сплавы систем Al– Mg2Siи Al— Mg2Si– Siобладают более высокой твёрдостью после  воздействия высоких температур (300, 350оС), чем АК4-1(таблица 4).
Таблица 3.4. Остаточная твёрдость исследуемых сплавов после 100 часов выдержки

при разных температурах.


Исследование  сплавов №№ 2R – 6R  было проведено, главным образом, в условиях высоких температур: искусственное старение.

По этой причине все сплавы, кроме № 2R, обладают высокой твёрдостью – HB~ 150…160 МПа (таблица 4). После нагрева да 150 и 200оС твёрдость понизилась в результате распада твёрдого раствора.

Структура сплавов при высокой температуре очень стабильна – остаточная твёрдость после 250, 300 и 350оС почти такая же, как в состоянии после прессования. Высокая жаропрочность сплавов подтвердилась  результатами исследования «длительной прочности» (таблица 5).
Таблица 3.5. Длительная прочность сплавов, в течение 20 часов при температуре

250оС

Сплав №

s 20, МПа

1R (гранулы)

110

2R

110

3R

100

4R

105

5R

100

6R

110



Таблица 3.6. Прочностные свойства прутков, полученных путём прессования         

 исследуемых гранулированных сплавов.

Сплав №



Комнатная температура

250оС

300оС

350оС

1R

UTS, MPa

320

155

135

-

YS, MPa

278

138

105

-

d, %

0,5

1,0

2,5



2R

UTS, MPa

358

324

2,6

185

176

17,2

130

122

20,8

77

75

28,4

YS, MPa

d, %

3R

UTS, MPa

378

185

119

-

YS, MPa

359

173

115

-

d, %

1,0

2,0

1,2

-

4R

UTS, MPa

383

195

132

-

YS, MPa

372

189

129

-

d, %

0,4

3,4

2,4

-

5R

UTS, MPa

345

215

133

80

YS, MPa

326

203

110

70

d, %

2,8

2,8

9,6

18,4

6R

UTS, MPa

393

241



83

YS, MPa

342

218



72

d, %

1,2

1,2



16,8

         
Таблица 3.7. Теплопроводность изучаемых гранулированных сплавов, W/mK



Температура,

оС

1R

чешуйки   гранулы

2R

3R

4R

5R

6R

20

88,8

93

115

100

108

133

110

50

89,2

93

119

96,1

110

136

110

100

90,8

93

125

95,8

113

141

110

150

92,9

94

131

101

116

145

111

200

95,1

94

134

109

119

149

112

250

96,8

93

135

118

122

150

114

300

97,6

92

135

124

122

148

116

350

97,0

90

134

124

122

144

119

400

94,5

-

135

115

122

137

122



Таблица 3.8. Плотность и модуль Юнга исследуемых гранулированных сплавов



Сплав №

Плотность, г/см3

E, ГПа

1R(чешуйки)

2,60

-

2R

2,63

81

3R

2,62

81,5

4R

2,55

82

5R

2,62

86

6R

2,61

83



Микроструктура сплавов 2R, 3Rи 4R  состояла из звездообразных частиц Mg2Siфазы, размером около 2…3 мкм, которые однородно распределены в твёрдом растворе. На микроструктуре сплава 6Rвдобавок были видны частицы первичного Si. Результаты испытаний показали, что сплавы №№ 3R– 6Rобладают низкой пластичностью при комнатной температуре. В итоге, лучшим комплексом свойств обладал сплав 2R. Все сплавы обладали высоким модулем Юнга, низким коэффициентом линейного расширения, но теплопроводность оказалась ниже, чем ожидалось, причину этого в ходе данного этапа исследования выявить не удалось. Наибольшую теплопроводность имеет сплав № 5R– 144…150 W/mKпри температуре 250…350оС .

Однако, сплав № 2R, содержащий больше алюминия, чем сплав № 5R, имеет теплопроводность ~ 135 W/mKпри той же температуре. Очевидно, одной из причин этого является наличие в сплаве свободного магния. Соотношение Mg: Siв этом сплаве больше, чем 1,73. На кривой графика коэффициента линейного расширения для этого сплава где изменения зависят от температуры, наблюдается значительное отклонение (рис.2 пункта 3.3). Возможно, всякие примеси тоже оказывают негативное влияние на теплопроводность. Электропроводность сплава № 2Rпочти такая же, как у сплава Д16Т. Рекомендуется подробное исследование всех факторов.

Плотность сплавов достаточно низкая (2,55…2,63 г/см3), очевидно, что она может быть ещё более снижена с помощью оптимизирования содержания тяжелых металлов – Zr, Ni, Feв сплаве (в сплавах №№ 1R– 6Rсодержание этих компонентов около 4…5 %).

Итак,  в ходе проведённой исследовательской работы стало очевидно, что состав сплава № 2Rможет стать базой для дальнейшего исследования.

 
    продолжение
--PAGE_BREAK--3.3        
Коэффициент линейного расширения исследуемых сплавов

Таблица 3.9. Коэффициент линейного расширения исследуемых сплавов в зависимости от температуры.



Сплав №

a x106 К-1 для следующих температурных интервалов, оС

20-100

100-200

200-300

300-400

20-200

20-300

20-400

1R

16,7

17,9

19,36

21,94

17,3

18,0

18,98

2R

19,7

21,11

22,27

25,49

20,41

21,03

22,14

3R

18,4

19,8

22.42

23,65

19,1

20,21

21,07

4R

17,6

19,00

21,43

25,32

18,3

19,34

20,84

5R

17,7

19,1

22,94

23.33

18,4

19,91

20,77

6R

17,2

17,3

20,7

22,0

17,24

18.4

19,3


    <img width=«642» height=«793» src=«ref-1_780461674-4461.coolpic» v:shapes="_x0000_i1035">
    <img width=«642» height=«793» src=«ref-1_780466135-4147.coolpic» v:shapes="_x0000_i1036">  
    <img width=«642» height=«793» src=«ref-1_780470282-4370.coolpic» v:shapes="_x0000_i1037">
           3.4. Выводы

                                                                                                                                                                  

В результате проведённой исследовательской работы можно сделать следующие выводы:

1)     Исследование на текущем этапе можно считать успешным, так как среди выбранных для исследования сплавов многие обладали хорошим комплексом технологических свойств. Анализ остаточной твёрдости показал, что все сплавы систем Al– Mg2Siи Al— Mg2Si– Siобладают более высокой твёрдостью после  воздействия высоких температур (300, 350оС), чем промышленный сплав АК4-1. Структура сплавов при высокой температуре очень стабильна – остаточная твёрдость после 250, 300 и 350оС почти такая же, как в состоянии после прессования. Высокая жаропрочность сплавов подтвердилась  результатами исследования «длительной прочности». Все сплавы обладали высоким модулем Юнга, низким коэффициентом линейного расширения, но теплопроводность оказалась ниже, чем ожидалось, причину этого в ходе данного этапа исследования выявить не удалось.

2)     Выбранный для литья сплавов метод высокоскоростной кристаллизации оправдал себя, предварительные результаты показали, что твёрдость всех сплавов достаточно высока в прессованном состоянии, высокая скорость кристаллизации упрочнила сплавы.

3)     Сплав №2Rобладает наилучшим комплексом свойств, что можно увидеть на основании табличных данных, и он рекомендован для дальнейшего исследования.

4.
ЭКОНОМИКА


4.1 Технико — экономическое обоснование НИР.


В современном мире индустрия спортивных состязаний гоночных автомобилей прочно внедрилась во многие отрасли экономики. Для некоторых государств проведение гонок класса Formula– 1  является огромным источником доходов (например, гран-при Монако). В XXIвеке всё более остро становится вопрос использования новых материалов для двигателей гоночных автомобилей, мощности которых достигают 700 лошадиных сил и количество тактов в секунду доходит до 650 (пример для соревнований Формула – 1), скорости превышают 300 км/час. После проведения гонки некоторые части двигателя гоночного болида приходится полностью заменять из-за того, что за такой короткий промежуток времени соревнования (1-2 часа) они полностью приходят в негодность из-за развития микротрещин в структуре двигателя в следствие огромных термических и циклических механических нагрузок. Наиболее изнашиваемой частью двигателя гоночного автомобиля является поршень цилиндра. По утверждению специалистов немецкой фирмы Mahle, являющейся лидером в производстве поршней гоночных автомобилей, «стоимость поршня болида Formula–1 практически можно приравнять к цене золота». Основными материалами, используемыми в двигателях Формулы-1, являются алюминиевые магниевые, титановые и стальные сплавы.

Целью данной работы является получение более высокого уровня свойств промышленных алюминиевых сплавов, являющихся основным материалом в производстве современных поршней гоночных автомобилей,  за счёт использования мало изученных ранее соотношений составов сплавов и легирующих компонентов, использования современных методов литья (высокоскоростное затвердевание), когда скорость охлаждения сплава достигает 106 К/с. Результатом такого оптимизирования должны стать  низкий коэффициент линейного расширения, высокая прочность и жаропрочность, износостойкость и, соответственно, высокая технологичность и эффективность при производстве.  В данной работе исследовались 6 сплавов на основе алюминий – магний – кремний (Al– Mg–Si), полученные путём высокоскоростного затвердевания расплава в виде гранул с последующим их прессованием в прутки с целью последующего изучения различного комплексов их свойств для выбора наиболее оптимального соотношения. Сплавы подвергались различным технологическим процедурам типа дегазации, отжига и искусственного старения. Затем изучалась микроструктура прутков, а также их непосредственного «сырья» — гранул, с целью выявить источники, влияющие на физические свойства образцов. Магний хорошо растворим в твёрдом растворе и понижает теплопроводность и жаропрочность. Для сохранения положительного влияния Mgна плотность и удаления негативного влияния на  теплопроводность, он должен находиться во всех фазах в виде соединений, например, Mg2Si. Растворимость Mg2Siв алюминии намного ниже, чем у Mg.

Соединение сплавов системы Al– Mgс Siспособствует повышению жаропрочности серии алюминиевых сплавов, что достигается в результате плохого взаимодействия a— твердого раствора с Mg2Siфазой. Это понижает интенсивность процесса диффузии. В то же время, Mg2Siфаза уменьшает вязкость сплавов. При использовании метода высокоскоростного затвердевания  расплава всё количество фазы Mg2Siво время охлаждения оказывается в растворённом виде (пропитка раствором) и, после искусственного старения, выпавшие в осадок фазы укрепляют сплав.

Итак, разработка сплава с высоким содержанием Mg2Siфазы является главной идеей данного исследования.

Технико – экономическая эффективность результатов данной научно – исследовательской работы состоит в следующем:

-                           исследование технических характеристик мало изученных ранее сплавов приведёт к возможности их дальнейшего исследования и использования в других областях техники, например, в авиа космической  отрасли, так как требования, предъявляемые к частям двигателей гоночных автомобилей, сходны с требованиями к авиа технике;

-                           применение метода высокоскоростного литья позволит уменьшить технологический цикл производства,  увеличить прочностные характеристики и уменьшить себестоимость процесса производства готовой продукции.
4.2. Организация и планирование НИР.

Таблица 4.1.

Этапы выполнения НИР.





Наименование

этапов

Содержание

работы

Трудоёмкость

этапа,

В раб.днях

отд. испол.

Исполнители





внутренние

внешние







1

2

3

4

5

6

1

Подготови-тельный

этап



1 Получение

и изучение

задания

2 Подробное

изучение

литературы

3 Написание

раздела «Лит. Обзор»

0.5

0.5
2

40
40

научный рук

инж-исслед
научный рук

инж-исслед
инж-исслед





















2

Теоретическая
разработка

1.Составление, обсуждение и

согласование

плана проведения работ

2. Разработка

методики про-

ведения

эксперимента

2
2
2
8

научный рук
инж-исслед
научный рук
инж-исслед
































3

Эксперимен-

тальные работы

и испытания

1 Изготовление

образцов

2 Термообра-

ботка

3 Приготовле-

ние шлифов

4. Фотографи-

рование

шлифов

5. Отпечатка

фотографий

6. Определение

твердости



2
12
80
2
2
4


лаборант
инж-исслед
инж-исслед
инж-исслед
инж-исслед
лаборант

рабочий





























4

Разработка организационно экономической

часта НИР и

задания по охра-

не труда

1 Выполнение задания по

экономике

2. Выполнение

задания по

охране труда

80

инж-исслед













32

инж-исслед



















5

Корректиров­ка

теоретичес-

кой

разработки по

результатам

испытании

1 Анализ полученных данных

2  Построение

графиков

2
20
15

Научный

рук

инж-
исслед

инж-исслед















6

Обобщение   и

выводы по теме

Обобщение

2
42

научный рук

инж-

исслед





результатов работы



7

Техническая отчетность

1.Составление технического

отчета

2.Выполнение

графической

части

2
42
15.5

научный рук
инж-исслед
инж-исслед



















8

Заключительный этап

Оформление  и утверждение результатов работы

25
80

Научный рук.
инж-исслед




--PAGE_BREAK--Ведомость затрат на вспомогательные материалы


Наименование материала

Количество, кг

Цена, руб/кг

Сумма затрат, руб

Фотопленка Шлифовальная бумага

1кассета

1 м2

50

20

50 20

Фотобумага

3 пачки

40

120

Фотореактивы

4 пачки

65

140

Кислоты;







плавиковая

0.12см2

64

7.68

азотная

0.7см2

50

35

хлорная

0.14см2

60

8.4

уксусная

0.35см2

35

1225

глицерин

020см2

30

6

Итого.

399.33руб.





--PAGE_BREAK--Таблица 4.7. Расчет параметров сетевого графика




Наименование работ

i

j

tij

tpH(ij)

TP0(ij)

tnH(ij)

tno(ij)

Rn(ij)

Rc(ij)

1

2

3

4

5

6

7

8

9

10

11

1.

Получение задания

1

2

1

0

1

0

1

0

0

2.

Изучение литературы

2

4

5

1

6

54

59

53

0



Разработка методики проведения НИР

2

3

3

1

4

1

4

0

0

4.

Написание раздела   «Лит. Обзор»

4

12

12

6

18

59

71

53

53

5.

Изготовление образцов

3

5

7

4

11

4

11

0

0

6.

Изготовление шлифов

6

7

6

36

32

38

44

12

0

7.

Термическая обработка

5

6

35

11

26

11

26

0

0

8.

Изготовление шлифов

10

7

4

40

44

40

44

0

0

9.

Травление шлифов

7

8

2

44

46

44

46

0

0

10.

Фотографи­рование         и печатание фотографий

8

9

10

46

56

46

56

0

0

11.

Испытания  на разрыв

6

10

14

26

40

26

40

0

0

12.

Анализ результатов

9

11

5

56

61

56

61

0

0

13.

Построение графиков        и таблиц

11

12

10

61

71

61

71

0

0

--PAGE_BREAK--


--PAGE_BREAK--

Таблица 5.3.

Микроклимат (ГОСТ 12.1.005-76)



п/п

Наименова-

ние операции

(раб. место,

профессия)

номер по табл.1
Характеристика
помещений

по избыткам

тепла

Категория

тяжести

Параметры микроклимата

Температура

оС

Влаж-

ность

Скорость движения воздуха

1

1,2,3,4,5,6,7,8

холодное время

года

Незначит.

избыток тепла 23,2 Дж/м3с

Средней тяжести

150*250

ккал/час

17-23(18-20)

75 (40-60)



До 0,3

2

1,2,3,4,5,6,7,8

теплое время

года

Незначит.

избыток тепла 23,2 Дж/м3с

Средней тяжести

150*250

ккал/час

18-27(21-23)

65 (40- 60)



0,2 – 04




Таблица 5.4.

Освещённость (СНиП 11-4-79)



Наименова-

ние операции

(раб. место,

профессия)

номер по табл.1
Мини- мальн. размер
объекта

разли-чения,

мм
Фон
Контраст

Разряд

работ

Освещённость ПДЗ

Общее ЛК

Местное ЛК

Естеств %

Совмещен-

ное

%

1

2

3

4

5

6

7

8

9

10

1

1

Более 0,5

Неза-висимо

Неза-висимо

VII

200

-

3

1,8

2

2

Более 0,5

Неза-висимо

Неза-висимо

VII

200

-

3

1,8

3

3а, б, в, г

0,5 — 1

Светл.

средний

IV

200

-

4

2,4

4



0,15 –0,3

Светл.

малый

II

500

200

-

4,2

1

2

3

4

5

6

7

8

9

10

5

4

0,15 – 0,3

Светл.

малый

II

500

200

-

-

6

5

0,3 – 0,5

Светл.

средний

III

200

200

-

3

7

6

1 — 5

Светл.

малый

V

200

-

3

1,8

8

7

0,5 — 1

Светл.

средний

IV

200

-

4

2,4

9

8

0,5 — 1

Светл.

средний

IV

200

-

4

2,4


Примечание.

Фактические значения параметров освещения были рассчитаны

и определены при проектировании рабочих помещений здания, в котором  и проводятся данного рода исследования.
Таблица 5.5.

Воздух рабочей зоны (ГОСТ 12.1.005-76)

№ п/п

Наименова-

ние операции

(раб. место,

профессия)

номер по табл.1

Выделяющиеся вещества

Класс опасности

Фактическое значение, мг/м3

Предельно допустимая концентрация

мг/м3

1

3а, б

Металлическая пыль Al

4

2

4

2



Наждачная пыль

2

2

2

3



Хлороуксусная кислота

2

0,01

1

4



Кислоты: плавиковая, азотная

2

0,01

0,5

1

1


Таблица 5.6.

Производственный шум (ГОСТ 12.1.003-76)

№ п/п

Наименова-

ние операции

(раб. место,

профессия)

номер по табл.1

Хар-ка

фактора

(по виду, источ. возниконовения, длит. действ.)

Предельно- допустимое / действующее значение

Частота, Гц

63

125

250

500

1000

2000

4000

8000

1

2

1

2

Непостоянный

шум

94/91

87/84

82/79

78/75

75/71

73/69

71/67

70/66

94/91

87/84

82/79

78/75

75/71

73/69

71/67

70/66

3

3а, б.в, г

-

94/91

87/84

82/79

78/75

75/71

73/69

71/67

70/66

4



-

71/68

61/58

54/51

49/46

45/42

42/39

40/37

38/35

5

4

-

71/68

61/58

54/51

49/46

45/42

42/39

40/37

38/35

6

5,6

-

71/68

61/58

54/51

49/46

45/42

42/39

40/37

38/35

7

7

-

94/91

87/84

82/79

78/75

75/71

73/69

71/67

70/66

8

8

-

94/91

87/84

82/79

78/75

75/71

73/69

71/67

70/66


Таблица 5.7.

Производственные вибрации (ГОСТ 12.1.012-90)



№ п/п

Наименова-

ние операции

(раб. место,

профессия)

номер по табл.1

Хар-ка

фактора

(по виду, источ. возниконовения, длит. действ.)

Предельно – допустимое значение

Частота, Гц

8

16

32

63

125

250

500

1000

1



локальная

115

109

109

109

109

109

109

109

100

100

100

100

100

100

100

100


        По    результатам    общего    анализа    условий    труда    при    проведении исследовании (табл.1-7) были выявлены следующие ОПФ и ВПФ:

1.   повышенная температура поверхности материалов (операция 2)

2.                            Запылённость воздуха рабочей зоны (операция За).

3.      опасный уровень напряжения и тока в сети (операции 1,2,3в,6 ,7)

4.                            Загазованность воздуха рабочей зоны (операции 3в, 3г).

5.                            Производственные вибрации (операция 3а).

6.                            Производственный шум (операция 3а).

Из них представлены следующие опасные производственные факторы, фактическое значение которых превышает регламентированное значение. Это:

а)        Повышенная температура поверхности материалов (операция 2).

     б)        Опасный уровень напряжения и тока в сети (операции 1,2,3в,6,7).


5.2 Разработка инженерных мероприятий по

защите от ОПФ и ВПФ.


Для обеспечения нормального состояния воздушной среды в помещении лаборатории предусмотрена общеобменная (L=2000м3/ч) и местная вентиляция (L=200 м3/ч).

Для предотвращения термического ожога применяются щипцы и рукавицы.

Для обеспечения электробезопасности при эксплуатации производственного оборудования в результате проведения исследований, проведено защитное заземление, то есть устранена опасность поражения людей электрическим током при появлении напряжения на конструктивных частях электрооборудования, то есть при замыкании на корпус (R3.3. до 40м    при питающем    до 1000В согласно требованиям ПУЭ-76).

Уровень производственного шума и вибраций не превосходит значений ПДУ.

5.3.Обеспечение пожарной безопасности при

проведении исследований.


Основными источниками пожара в лаборатории могут быть:

Неисправность электрооборудования; нарушение технологического процесса;огнеопасного вещества (алюминиевая  пыль).

Причина воспламенения в электроустановках машин заключаться в коротком замыкании, перегрузке проводов, искрении.

В таблице 8 представлены количественные показатели пожаро-взрывоопасных веществ и материалов.

Таблица 5.8.

Количественные показатели пожаро-взрывоопасных веществ и материалов.



№ п/п

Наименова-

ние операции

(раб. место,

профессия)

номер по табл.1

Наименование вещества

Показатели пожаро-, взрыво-опасности

Кол-во работающих в зоне возможного пожара, взрыва

Причины возникновения пожара (вероятность пожара)

1

3а, б

Пыль алюминия

НКПВ=60 г/м3

Wmin= 25мДж

Тсв.= 510оС

Pmax=371 кПа

dP/di = 23800 кПа/с

МВСК=+Y:I, % по объёму

1

10-6  в год, установлено в ходе испытаний
    продолжение
--PAGE_BREAK--



еще рефераты
Еще работы по производству