Реферат: Привод с червячной передачей




--PAGE_BREAK--1               Введение
Инженер-конструктор является творцом новой техники, и уровнем его творческой работы в большей степени опредеделяются темпы научно-технического прогресса. Деятельность конструктора принадлежит к числу наиболее сложных проявлений человеческого разума. Решающая роль успеха при создании новой техники определяется тем, что заложено на чертеже конструктора. С развитием науки и техники проблемные вопросы решаются с учетом все возрастающего числа факторов, базирующихся на данных различных наук. При выполнении проекта используются математические модели, базирующиеся на теоретических и экспериментальных исследованиях, относящихся к объемной и контактной прочности, материаловедению, теплотехнике, гидравлике, теории упругости, строительной механике. Широко используются сведения из курсов сопротивления материалов, теоретической механики, машиностроительного черчения и т. д. Все это способствует развитию самостоятельности и творческого подхода к поставленным проблемам.

При выборе типа редуктора для привода рабочего органа (устройства) необходимо учитывать множество факторов, важнейшими из которых являются: значение и характер изменения нагрузки, требуемая долговечность, надежность, КПД, масса и габаритные размеры, требования к уровню шума, стоимость изделия, эксплуатационные расходы.

Из всех видов передач зубчатые передачи имеют наименьшие габариты, массу, стоимость и потери на трение. Коэффициент потерь одной зубчатой пары при тщательном выполнении и надлежащей смазке не превышает обычно 0,01. Зубчатые передачи в сравнении с другими механическими передачами обладают большой надежностью в работе, постоянством передаточного отношения из-за отсутствия проскальзывания, возможностью применения в широком диапазоне скоростей и передаточных отношений. Эти свойства обеспечили большое распространение зубчатых передач; они применяются для мощностей, начиная от ничтожно малых (в приборах) до измеряемых десятками тысяч киловатт.

К недостаткам зубчатых передач могут быть отнесены требования высокой точности изготовления и шум при работе со значительными скоростями.

Косозубые колеса применяют для ответственных передач при средних и высоких скоростях. Объем их применения — свыше 30% объема применения всех цилиндрических колес в машинах; и этот процент непрерывно возрастает. Косозубые колеса с твердыми поверхностями зубьев  требуют повышенной защиты от загрязнений во избежание неравномерного износа по длине контактных линий и опасности выкрашивания.

Одной из целей выполненного проекта является развитие инженерного мышления, в том числе умение использовать предшествующий опыт, моделировать используя аналоги. Для курсового проекта предпочтительны объекты, которые не только хорошо распространены и имеют большое практическое значение, но и не подвержены в обозримом будущем моральному старению.

   Существуют различные типы механических передач: цилиндрические и конические, с прямыми зубьями и косозубые, гипоидные, червячные, глобоидные, одно- и многопоточные и т. д. Это рождает вопрос о выборе наиболее рационального варианта передачи. При выборе типа передачи руководствуются показателями, среди которых основными являются КПД, габаритные размеры, масса, плавность работы и вибронагруженность, технологические требования, предпочитаемое количество изделий.

При выборе типов передач, вида зацепления, механических характеристик материалов необходимо учитывать, что затраты на материалы составляют значительную часть стоимости изделия: в редукторах общего назначения — 85%, в дорожных машинах — 75%, в автомобилях — 10% и т. д.

Поиск путей снижения массы проектируемых объектов является важнейшей предпосылкой дальнейшего прогресса, необходимым условием сбережения природных ресурсов. Большая часть вырабатываемой в настоящее время энергии приходится на механические передачи, поэтому их КПД в известной степени определяет эксплуатационные расходы.

Наиболее полно требования снижения массы и габаритных размеров удовлетворяет привод с использованием электродвигателя и редуктора с внешним зацеплением.

2               Выбор электродвигателя и кинематический расчёт
По табл. 1.1[1] примем следующие значения КПД:

— для закрытой червячной передачи:  h1 = 0,8
Общий КПД привода будет:
h = h1x… xhnxhподш.2xhмуфты2

    = 0,8 x 0,992x 0,982 = 0,753
где hподш. = 0,99 — КПД одного подшипника.

      hмуфты = 0,98 — КПД одной муфты.
Угловая скорость на выходном валу будет:
wвых. = = = 7,749 рад/с
Требуемая мощность двигателя будет:
Pтреб. = =   =  5,312 кВт
В таблице 24.7[2] по требуемой мощности выбираем электродвигатель 132S4 (исполнение IM1081), с синхронной частотой вращения 1500 об/мин, с параметрами: Pдвиг.=7,5 кВт. Номинальная частота вращения с учётом скольжения nдвиг. = 1440 об/мин, угловая скорость
wдвиг. = = = 150,796 рад/с.
Oбщее передаточное отношение:
U = = = 19,46
Руководствуясь таблицами 1.2[2] и 1.3[2], для передач выбрали следующие передаточные числа:
U1 = 20
Рассчитанные частоты и угловые скорости вращения валов сведены ниже в таблицу :



    Вал 1-й

  n1 = nдвиг. = 1440 об./мин.

  w1 = wдвиг. = 150,796 рад/c.

    Вал 2-й

  n2 = = = 72 об./мин.

  w2 = = = 7,54 рад/c.



Мощности на валах:
P1 = Pтреб.xhподш. =

       5,312 x 106x 0,99 = 5258,88 Вт
P2 = P1xh1xhподш. =

       5258,88 x 0,8 x 0,99 = 4165,033 Вт
Вращающие моменты на валах:
T1 = = = 34874,135 Нxмм
T2 = = = 552391,645 Нxмм


По таблице 24.7(см. приложение учебника Дунаева/Леликова) выбран электродвигатель 132S4 (исполнение IM1081), с синхронной частотой вращения 1500 об/мин, с мощностью Pдвиг.=7,5 кВт. Номинальная частота вращения с учётом скольжения nдвиг. = 1440 об/мин.
Передаточные числа и КПД передач

Передачи

Передаточное число

КПД

1-я червячная передача

20

0,8



Рассчитанные частоты, угловые скорости вращения валов и моменты на валах

Валы

Частота вращения,
об/мин

Угловая скорость,
рад/мин

Момент,
Нxмм

1-й вал

1440

150,796

34874,1352-й вал

72

7,54

552391,645





    продолжение
--PAGE_BREAK--3               Расчёт 1-й червячной передачи


<img width=«425» height=«312» src=«ref-2_1437856233-15508.coolpic» v:shapes="_x0000_i1025">

3.1         Проектный расчёт


Так как выбор материала для колеса связан со скоростью скольжения, то предварительно определяем её значение:
Vск = 0.45 x 10-3x n(черв. кол.)x U x = 0.45 x 10-3x 72 = 5,317 м/с.
Выбираем для червяка сталь 45 с закалкой менее 350 HB и последующим шлифованием.

Для червячного колеса по предварительно найденной скорости скольжения выбираем по табл. 2.14[2] материал 1-й группы БрО10Ф1 (отливка в песчаную форму).

Для данного материала допускаемое контактное напряжение будет:
[s]H = KHLx Cvx [s]Ho
где [s]Ho = 0.75 xsв — для червяков при твёрдости <= 350HB. sв = 215 МПа — из табл. 2.14[2]. Тогда:
[s]Ho = 0.75 x 215 = 161,25 МПа.
KHL — коэффициент долговечности.
KHL = ,
где NHO = 107 — базовое число циклов нагружения;
NHE = 60 x n(кол.)x tSx KHE
здесь: n(кол.) = 72 об/мин. — частота вращения червячного колеса;

tS = 365 x Lгx C x tcx kгx kс — продолжительность работы передачи в расчётный срок службы, ч.
— Lг=5 г. — срок службы передачи;

— С=2 — количество смен;

— tc=8 ч. — продолжительность смены;

— kг=0,65 — коэффициент годового использования.

— kс=0,7 — коэффициент суточного использования.
tS = 365 x 5 x 2 x 8 x 0,65 x 0,7 = 13286 ч.
KHE — дополнительный множитель для эквивалентной циклической долговечности.
KHE = S =
          + = 0,409
Тогда:
NHE = 60 x 72 x 13286 x 0,409 = 23474767,68
В итоге получаем:
КHL = = 0,899
Коэффициент Сv, учитывающий интенсивность изнашивания материала колеса, находим в зависимости от скорости скольжения Vск (см. стр. 34[2]) по формуле:
Сv = 1.66 x Vск-0.352 = 1.66 x 5,317-0.352 = 0,922
Допустимое контактное напряжение:
[s]H = 0,899 x 0,922 x 161,25 = 133,657 МПа.
Допускаемые напряжения изгиба вычисляются для материала зубьев червячного колеса:
[s]F = KFLx [s]Fo
где:
[s]Fo = 0.25 xsт + 0.08 xsв
Для выбранного материала червячного колеса sт = 135 МПа, sв = 215 МПа, тогда:
[s]Fo = 0.25 x 135 + 0.08 x 215 = 50,95 МПа, KFL — коэффициент долговечности.
KFL = ,
где NFO = 106 — базовое число циклов нагружения;
NFE = 60 x n(кол.)x tSx KFE
здесь: n(кол.) = 72 об/мин. — частота вращения червячного колеса;

tS = 365 x Lгx C x tcx kгx kс — продолжительность работы передачи в расчётный срок службы, ч.
— Lг=5 г. — срок службы передачи;

— С=2 — количество смен;

— tc=8 ч. — продолжительность смены;

— kг=0,65 — коэффициент годового использования.

— kс=0,7 — коэффициент суточного использования.
tS = 365 x 5 x 2 x 8 x 0,65 x 0,7 = 13286 ч.
KFE — дополнительный множитель для эквивалентной циклической долговечности.
KFE = S =
          + = 0,4
Тогда:
NFE = 60 x 72 x 13286 x 0,4 = 22958208
В итоге получаем:
КFL = = 0,706
В итоге получаем:
[s]F = 0,706 x 50,95 = 35,971 МПа.
Предельно допускаемые напряжения при проверке на максимальную статическую или единичную пиковую нагрузку для материала червячного колеса:

предельно допускаемые контактные напряжения:
[s]Hmax = 4 xsт = 4 x 135 = 540 МПа.
предельно допускаемые напряжения изгиба:
[s]Fmax = 0.8 xsт = 0.8 x 135 = 108 МПа.
Для полученной выше скорости скольжения выбираем число витков червяка z1 = 2.

Межосевое расстояние червячной передачи:
aw³  Kax
где Ka = 610 — для архимедового червяка; KHb — коэффициент концентрации нагрузки, при переменном режиме нагружения:
KHb = 0.5 x (KHbo + 1)
По графику (рис. 2.12[2]) для z1 = 2 принимаем KHbo = 1,112. Тогда:
KHb = 0.5 x (1,112 + 1) = 1,056
Получаем:
aw³ 610 x = <metricconverter productid=«194,972 мм» w:st=«on»>194,972 мм
Полученное расчётом межосевое расстояние округляем в большую сторону: для стандартной червячной пары — до стандартного числа: aw = <metricconverter productid=«200 мм» w:st=«on»>200 мм

Число зубьев червячного колеса:
z2 = z1x U = 2 x 20 = 40
Предварительно вычислим значение модуля червячной передачи:
m = (1,4...1,7) x = (1,4...1,7) x = 7...8,5 мм
Выбираем из стандартного ряда m = <metricconverter productid=«8 мм» w:st=«on»>8 мм.

Минимальное значение коэффициента диаметра червяка:
qmin = 0,212 x z2 = 0,212 x 40 = 8,48.
Коэффициент диаметра червяка:
q = = = 10
Полученное значение округляем до ближайшего стандартного q = 10.
Коэффициент смещения инструмента по условию неподрезания и незаострения зубьев по ГОСТу:
x = 0
Угол подъёма линии витка червяка:

на делительном цилиндре:
g = arctgarctg11,31o
на начальном цилиндре:
gw = arctgarctg11,31o
Фактическое передаточное число:
Uф = = 20
Фактическое значение передаточного числа отличается на 0%, что меньше, чем допустимые 5% для одноступенчатого редуктора.
Размеры червяка:

диаметр делительный:
d1 = q x m = 10 x 8 = 80 мм
диаметр начальный червяка:
dw1 = m x (q + 2 x x) = 8 x (10 + 2 x 0) = 80 мм
диаметр вершин витков:
da1 = d1 + 2 x m = 80 + 2 x 8 = 96 мм
диаметр впадин:
df1 = d1 — 2,4 x m = 80 — 2,4 x 8 = 60,8 мм
Длина b1 нарезанной части червяка:
b1 = (10 + 5,5 x |x| + z1) x m = (10 + 5,5 x 0 + 2) x 8 = 96 мм
Для шлифованного червяка при m<10 мм полученную длину увеличиваем на 25 мм:
b1 = 96 + 25 = 121 мм
Полученную величину округляем в ближайшую сторону до числа из табл. 24.1[2]: b1 = 120 мм.
Размеры червячного колеса:

диаметр делительный:
d2 = z2x m = 40 x 8 = 320 мм
диаметр вершин зубьев:
da2 = d2 + 2 x m x (1 + x) = 320 + 2 x 8 x (1 + 0) = 336 мм
диаметр впадин:
df2 = d2 — 2 x m x (1,2 — x) = 320 — 2 x 8 x (1,2 + 0) = 300,8 мм
диаметр колеса наибольший:
daM2£ da2 +
где для данного типа червяка k = 2, тогда:
daM2£ 336 +
Принимаем daM2 = 348 мм.

При z1 = 2 ширина венца червячного колеса:
b2 = 0,355 x aw = 0,355 x 200 = 71 мм
Окружная скорость на начальном диаметре червяка:
Vw1 = 6,032 м/с
Скорость скольжения в зацеплении:
Vск = 6,151 м/с
Для червячной передачи выбираем степень точности 7.

Окружная скорость червячного колеса:
V2 = 1,206 м/с


    продолжение
--PAGE_BREAK--3.2         Проверочный расчёт по контактным напряжениям


Расчётное контактное напряжение:
sH =      £     [s]H
где Zs = 5350 — для данного типа червяка; коэффициент нагрузки:
K = KHvx KHb
При полученной окружной скорости червячного колеса V2<=3 м/с принимаем значение KHv = 1. Коэффициент концентрации напряжений:
KHb = 1 +  x (1 — X)
здесь q = 86 — коэффициент деформации червяка по табл. 2.16[2]. Коэффициент X, учитывающий влияние режима работы передачи на приработку зубьев червячного колеса и витков червяка. Коэффициент X вычисляют по формуле:
X = S
      0,61
KHb = 1 +  x (1 — 0,61) = 1,039
K = 1 x 1,039 = 1,039
Тогда расчётное контактное напряжение:
sH = =
        126,659 МПа     £     [s]H = 133,657 МПа
Приведённый угол трения (стр. 38[2]): r = 1,094o.

Коэффициент полезного действия червячной передачи:
h = 0,909
Силы в зацеплении:

окружная сила на колесе, равная осевой силе на червяке:
Ft2 = Fa2 = = = 3452,448 Н
окружная сила на червяке, равная осевой силе на колесе:
Ft1 = Fa2 = 759,614 Н
Радиальная сила:
Fr = 1281,474 Н


3.3         Проверка зубьев передачи на изгиб


Расчётное напряжение изгиба:
sF =      £     [s]F
где YF2 — коэффициент формы зуба, который выбирается в зависимости от:
zv2 = 42,424
По полученному значению выбираем (стр. 39[2]) YF2 = 1,516. Тогда:
sF = 6,409 МПа     £     [s]F = 35,971 МПа
Произведём проверку зубьев колеса на контактную прочность при кратковременном действии пикового момента Tпик. Действие пиковых нагрузок оценивают коэффициентом перегрузки Kпер = Tпик / T, где T = Tmax — максимальный из длительно действующих (номинальный) момент.

Проверка на контактную прочность при кратковременном действии пикового момента:
sHmax = sHx = 126,659 x = 138,748 МПа     £     [s]Hmax = 540 МПа
Проверка зубьев червячного колеса на прочность по напряжениям изгиба при действии пикового момента:
sFmax = sFx Kпер = 6,409 x 1,2 = 7,691 МПа     £     [s]Hmax = 108 МПа


Механические характеристики материалов червячной передачи

Элемент передачи

Марка материала

Способ отливки



st

[s]H

[s]F

H/мм2

Червяк

сталь 45 с закалкой менее 350 HB и последующим шлифованием

-

570

290

-

-

Колесо

БрО10Ф1

отливка в песчаную форму

215

135

133,657

35,971



Параметры червячной передачи, мм

Проектный расчёт

Параметр

Значение

Параметр

Значение

Межосевое расстояние aw

200

Ширина зубчатого венца колеса b2

71

Модуль зацепления m

8

Длина нарезаемой части
червяка b1

96

Коэффициент диаметра червяка q

10

Диаметры червяка



делительный d1

начальный dw1

вершин витков da1

впадин витков df1

80

80

96

300,8

Делительный угол витков
червяка g, град.

11,31

Угол обхвата червяка 2d, град.

50,51

Диаметры колеса:



делительный d2 = dw2

вершин зубьев da2

впадин зубьев df2

наибольший daM2

320

336

300,8

348

Число витков червяка z1

2

Число зубьев колеса z2

40

Проверочный расчёт

Параметр

Допускаемые значения

Расчётные значения

Примечание

Коэффициент полезного действияh

-

0,909



Контактные напряжения sH, H/мм2

133,657

127



Напряжения изгиба sF, H/мм2

35,971

6



 


    продолжение
--PAGE_BREAK--4               Предварительный расчёт валов
Предварительный расчёт валов проведём на кручение по пониженным допускаемым напряжениям.

Диаметр вала при допускаемом напряжении [tк] = 25 МПа вычисляем по формуле 8.16[1]:
dв³

4.1         Ведущий вал.


dв  ³  = 19,224 мм.
Под 1-й элемент (подшипник) выбираем диаметр вала: 45 мм.

Под 2-й элемент (червяк) выбираем диаметр вала: 50 мм.

Под 3-й элемент (подшипник) выбираем диаметр вала: 45 мм.

Под свободный (присоединительный) конец вала выбираем диаметр вала: 32 мм.

4.2         Выходной вал.


dв  ³  = 48,279 мм.
Под свободный (присоединительный) конец вала выбираем диаметр вала: 52 мм.

Под 2-й элемент (подшипник) выбираем диаметр вала: 55 мм.

Под 3-й элемент (ведомый) выбираем диаметр вала: 60 мм.

Под 4-й элемент (подшипник) выбираем диаметр вала: 55 мм.
Диаметры участков валов назначаем исходя из конструктивных соображений.


Диаметры валов, мм

Валы

Расчетный диаметр

Диаметры валов по сечениям

1-е сечение

2-е сечение

3-е сечение

4-е сечение

Ведущий вал.

19,224

Под 1-м элементом (подшипником) диаметр вала:
45

Под 2-м элементом (червяком) диаметр вала:
50

Под 3-м элементом (подшипником) диаметр вала:
45

Под свободным (присоединительным) концом вала:
32

Выходной вал.

48,279

Под свободным (присоединительным) концом вала:
52

Под 2-м элементом (подшипником) диаметр вала:
55

Под 3-м элементом (ведомым) диаметр вала:
60

Под 4-м элементом (подшипником) диаметр вала:
55



Длины участков валов, мм

Валы

Длины участков валов между

1-м и 2-м сечениями

2-м и 3-м сечениями

3-м и 4-м сечениями

Ведущий вал.

190

190

120

Выходной вал.

130

85

85



5               Конструктивные размеры шестерен и колёс 5.1         Червячное колесо 1-й передачи


Диаметр ступицы: dступ = (1,5...1,8) x dвала = 1,5 x 60 = 90 мм.

Длина ступицы: Lступ = (1,2...1,7) x dвала = 1,2 x 60 = 72 ммТолщина обода напрессовываемой (рабочей) части червячного колеса:

d = 2 x mn + 0,05 x b2 = 2 x 8 + 0,05 x 71 = 19,55 мм = 20 мм.

где mn = 8 мм — модуль зацепления, b2 = 71 мм — ширина зубчатого венца червячного колеса.

Толщина обода центральной части червячного колеса:

dо = 1,25 xd = 1,25 x 20 = 25 мм = 25 мм.

Толщина диска: С = (1,2...1,3) xdo = 1,2 x 20 = 24 мм

Внутренний диаметр обода:

Dобода = df2 — 2 x (do + d) = 300,8 — 2 x (20 + 25) = 210,8 мм = 210 мм.

Диаметр центровой окружности:

DC отв. = 0,5 x (Doбода + dступ.) = 0,5 x (210 + 90) = 150 мм

где Doбода = 210 мм — внутренний диаметр обода.
Диаметр отверстий: Dотв. =

67,5 мм = 22 мм.

Параметры для стопорных винтов: Dвинт = (1,2...1,4) x m = 1,3 x 8 = 10,4 мм.

Подбираем стандартный болт M12.

    продолжение
--PAGE_BREAK--6               Выбор муфты на входном валу привода
В виду того, что в данном соединении валов требуется невысокая компенсирующая способность муфт, то допустима установка муфты упругой втулочно-пальцевой. Достоинство данного типа муфт: относительная простота конструкции и удобство замены упругих элементов. Выбор муфты упругой втулочно-пальцевой производится в зависимости от диаметров соединяемых валов, расчётного передаваемого крутящего момента и максимально допустимой частоты вращения вала. Диаметры соединяемых валов:
d(эл. двиг.) = 38 мм;

d(1-го вала) = 32 мм;
Передаваемый крутящий момент через муфту:
T = 34,874 Нxм
Расчётный передаваемый крутящий момент через муфту:
Tр = kрx T = 1,5 x 34,874 = 52,311 Нxм

здесь kр = 1,5 — коэффициент, учитывающий условия эксплуатации; значения его приведены в таблице 11.3[1].
Частота вращения муфты:
n = 1440 об./мин.
Выбираем муфту упругую втулочно-пальцевую 250-38-I.1-32-I.1-У2 ГОСТ 21424-93 (по табл. К21[3]).

Упругие элементы муфты проверим на смятие в предположении равномерного распределения нагрузки между пальцами.
sсм. = 0,454 МПа     £     [sсм] = 1,8МПа,
здесь zc=6 — число пальцев; Do=98 мм — диаметр окружности расположения пальцев; dп=14 мм — диаметр пальца; lвт=28 мм — длина упругого элемента.

Рассчитаем на изгиб пальцы муфты, изготовленные из стали 45:
sи =

      11,672 МПа     £     [sи] = 80МПа,
здесь c=4 мм — зазор между полумуфтами.
Условие прочности выполняется.


Муфты

Муфты

Соединяемые валы

Ведущий

Ведомый

Муфта упругая втулочно-пальцевая 250-38-I.1-32-I.1-У2 ГОСТ 21424-93 (по табл. К21[3]).

Вал двигателя

d(эл. двиг.) = 38 мм;

1-й вал

d(1-го вала) = 32 мм;



7               Проверка прочности шпоночных соединений 7.1         Червячное колесо 1-й червячной передачи


Для данного элемента подбираем две шпонки, расположенные под углом 180o друг к другу.Шпонки призматические со скруглёнными торцами 18x11. Размеры сечений шпонки и пазов и длины шпонок по ГОСТ 23360-78 (см. табл. 8,9[1]).

Материал шпоноки — сталь 45 нормализованная.

Напряжение смятия и условие прочности проверяем по формуле 8.22[1].
sсм =
          51,147 МПа  £  [sсм]
где Т = 552391,645 Нxмм — момент на валу; dвала = 60 мм — диаметр вала; h = 11 мм — высота шпонки; b = 18 мм — ширина шпонки; l = 63 мм — длина шпонки; t1 = 7 мм — глубина паза вала. Допускаемые напряжения смятия при переменной нагрузке и при стальной ступице [sсм] = 75 МПа.

Проверим шпонку на срез по формуле 8.24[1].
tср =
         11,366 МПа  £ [tср]
Допускаемые напряжения среза при стальной ступице [tср] = 0,6 x [sсм] = 0,6 x 75 = 45 МПа.

Все условия прочности выполнены.




Соединения элементов передач с валами

Передачи

Соединения

Ведущий элемент передачи

Ведомый элемент передачи

1-я червячная передача

Заодно с валом.





8               Конструктивные размеры корпуса редуктора
Для редукторов толщину стенки корпуса, отвечающую требованиям технологии литья, необходимой прочности и жёсткости корпуса, вычисляют по формуле:
d = 1.3 x = 1.3 x = 6,302 мм

Так как должно быть d ³ 8.0 мм, принимаем d = 8.0 мм.
В местах расположения обработанных платиков, приливов, бобышек, во фланцах толщину стенки необходимо увеличить примерно в полтора раза:
d1 = 1.5 xd = 1.5 x 8 = 12 мм
Плоскости стенок, встречающиеся под прямым углом, сопрягают радиусом
r = 0.5 xd = 0.5 x 8 = 4 мм. Плоскости стенок, встречающиеся под тупым углом, сопрягают радиусом R = 1.5 xd = 1.5 x 8 = 12 мм.

Толщина внутренних ребер из-за более медленного охлаждения металла должна быть равна 0,8 xd = 0,8 x 8 = 6,4 мм.

Учитывая неточности литья, размеры сторон опорных платиков для литых корпусов должны быть на 2...4 мм больше размеров опорных поверхностей прикрепляемых деталей.

Обрабатываемые поверхности выполняются в виде платиков, высота h которых принимается h = (0,4...0,5) xd. Принимаем h = 0,5 x 8 = 4 мм.

Толщина стенки крышки корпуса d3 = 0,9 xd = 0,9 x 6,302 = 5,672 мм.Так как должно быть d3³ 6.0 мм, принимаем
d3 = 6.0 мм.

Диаметр винтов крепления крышки корпуса вычисляем в зависимости от вращающего момента на выходном валу редуктора:
d = 1,25 x = 1,25 x = 10,256 мм

Принимаем d = 12 мм.
Диаметр штифтов dшт = (0,7...0,8) x d = 0,7 x 12 = 8,4 мм. Принимаем dшт = 9 мм.
Диаметр винтов крепления редуктора к плите (раме):
dф = 1.25 x d = 1.25 x 12 = 15 мм. Принимаем dф = 16 мм.
Высоту ниши для крепления корпуса к плите (раме) принимаем:
h= 2,5 x d = 2,5 x 16 = 40 мм.

    продолжение
--PAGE_BREAK--9               Расчёт реакций в опорах 9.1         1-й вал


Силы, действующие на вал и углы контактов элементов передач:

Fx2 = 759,614 H

Fy2 = -1281,474 H

Fz2 = Fa2 = 3452,448 H
Из условия равенства суммы моментов сил относительно 1-й опоры:

Rx1 =

      =

      = -379,807 H

Ry1 =

      =

      = 277,321 H
Из условия равенства суммы сил относительно осей X и Y:

Rx3 =

      =

      = -379,807 H

Ry3 =

      =

      = 1004,153 H
Суммарные реакции опор:

R1 = = = 470,277  H;

R2 = = = 1073,581  H;

9.2         2-й вал


Силы, действующие на вал и углы контактов элементов передач:

Fx3 = -3452,448 H

Fy3 = 1281,474 H

Fz3 = Fa3 = -759,614 H
Из условия равенства суммы моментов сил относительно 1-й опоры:

Rx2 =

      =

      = 1726,224 H

Ry2 =

      =

      = -1355,668 H
Из условия равенства суммы сил относительно осей X и Y:

Rx4 =

      =

      = 1726,224 H

Ry4 =

      =

      = 74,194 H
Суммарные реакции опор:

R1 = = = 2194,922  H;

R2 = = = 1727,818  H;



10           Построение эпюр моментов валов 10.1     Расчёт моментов 1-го вала


1 — е    с е ч е н и е
Mx = 0 Н x мм

My = 0 Н x мм

M = = = 0 H x мм
2 — е    с е ч е н и е
Mx1 =  =

          = 52691,07 H x мм

Mx2 = =

          = 190788,99 H x мм

My1 =  =

          = -72163,33 H x мм

My2 = =

          = -72163,33 H x мм

M1 = = = 89352,644 H x мм

M2 = = = 203980,354 H x мм
3 — е    с е ч е н и е
Mx = 0 Н x мм

My = 0 Н x мм

M = = = 0 H x мм
4 — е    с е ч е н и е
Mx = 0 Н x мм

My = 0 Н x мм

M = = = 0 H x мм

10.2     Эпюры моментов 1-го вала
<img width=«88» height=«99» src=«ref-2_1437871741-297.coolpic» v:shapes="_x0000_s2085 _x0000_s2086 _x0000_s2087 _x0000_s2088 _x0000_s2089 _x0000_s2090"> <img width=«276» height=«141» src=«ref-2_1437872038-1078.coolpic» v:shapes="_x0000_s2091 _x0000_s2092 _x0000_s2093 _x0000_s2094 _x0000_s2095 _x0000_s2096 _x0000_s2097 _x0000_s2098 _x0000_s2099 _x0000_s2100 _x0000_s2101 _x0000_s2102 _x0000_s2103 _x0000_s2104 _x0000_s2105 _x0000_s2127 _x0000_s2128 _x0000_s2129 _x0000_s2130 _x0000_s2131 _x0000_s2132 _x0000_s2133 _x0000_s2134 _x0000_s2135 _x0000_s2136 _x0000_s2137 _x0000_s2138 _x0000_s2139 _x0000_s2140 _x0000_s2141"> <img width=«21» height=«29» src=«ref-2_1437873116-157.coolpic» v:shapes="_x0000_s2106 _x0000_s2107 _x0000_s2108 _x0000_s2109"> <img width=«294» height=«63» src=«ref-2_1437873273-612.coolpic» v:shapes="_x0000_s2110 _x0000_s2111 _x0000_s2112 _x0000_s2113 _x0000_s2114 _x0000_s2115 _x0000_s2116 _x0000_s2117 _x0000_s2118 _x0000_s2119 _x0000_s2120 _x0000_s2121 _x0000_s2122 _x0000_s2123 _x0000_s2124 _x0000_s2125 _x0000_s2126"> <img width=«262» height=«99» src=«ref-2_1437873885-597.coolpic» v:shapes="_x0000_s2143 _x0000_s2144 _x0000_s2145 _x0000_s2146 _x0000_s2147 _x0000_s2148 _x0000_s2149 _x0000_s2150 _x0000_s2151 _x0000_s2152 _x0000_s2153 _x0000_s2154">  
 
<img width=«272» height=«49» src=«ref-2_1437874482-367.coolpic» v:shapes="_x0000_s2156 _x0000_s2157 _x0000_s2159 _x0000_s2160 _x0000_s2161 _x0000_s2162 _x0000_s2163 _x0000_s2164 _x0000_s2165 _x0000_s2166 _x0000_s2167">
<img width=«262» height=«98» src=«ref-2_1437874849-635.coolpic» v:shapes="_x0000_s2169 _x0000_s2170 _x0000_s2171 _x0000_s2172 _x0000_s2173 _x0000_s2174 _x0000_s2175 _x0000_s2176 _x0000_s2177 _x0000_s2178 _x0000_s2179 _x0000_s2180">  
<img width=«262» height=«36» src=«ref-2_1437875484-292.coolpic» v:shapes="_x0000_s2182 _x0000_s2183 _x0000_s2184 _x0000_s2185 _x0000_s2186 _x0000_s2187 _x0000_s2188">  



    продолжение
--PAGE_BREAK--10.3     Расчёт моментов 2-го вала


1 — е    с е ч е н и е
Mx = 0 Н x мм

My = 0 Н x мм

M = = = 0 H x мм
2 — е    с е ч е н и е
Mx = 0 Н x мм

My = 0 Н x мм

M = = = 0 H x мм
3 — е    с е ч е н и е
Mx1 =  =

          = -115231,765 H x мм

Mx2 = =

           = 6306,475 H x мм

My1 =  =

          = 146729,04 H x мм

My2 = =

          = 146729,04 H x мм

M1 = = = 186568,408 H x мм

M2 = = = 146864,505 H x мм
4 — е    с е ч е н и е
Mx = 0 Н x мм

My = 0 Н x мм

M = = = 0 H x мм

10.4     Эпюры моментов 2-го вала
<img width=«88» height=«99» src=«ref-2_1437875776-299.coolpic» v:shapes="_x0000_s2189 _x0000_s2190 _x0000_s2191 _x0000_s2192 _x0000_s2193 _x0000_s2194"> <img width=«331» height=«234» src=«ref-2_1437876075-1932.coolpic» v:shapes="_x0000_s2195 _x0000_s2196 _x0000_s2197 _x0000_s2198 _x0000_s2199 _x0000_s2200 _x0000_s2201 _x0000_s2202 _x0000_s2203 _x0000_s2204 _x0000_s2209 _x0000_s2210 _x0000_s2211 _x0000_s2212 _x0000_s2213 _x0000_s2214 _x0000_s2215 _x0000_s2216 _x0000_s2217 _x0000_s2218 _x0000_s2219 _x0000_s2220 _x0000_s2221 _x0000_s2222 _x0000_s2223 _x0000_s2224 _x0000_s2225 _x0000_s2226 _x0000_s2227 _x0000_s2228 _x0000_s2229 _x0000_s2230 _x0000_s2231 _x0000_s2232 _x0000_s2233 _x0000_s2234 _x0000_s2235 _x0000_s2236 _x0000_s2237 _x0000_s2238 _x0000_s2239 _x0000_s2240"> <img width=«21» height=«29» src=«ref-2_1437878007-158.coolpic» v:shapes="_x0000_s2205 _x0000_s2206 _x0000_s2207 _x0000_s2208">
<img width=«262» height=«102» src=«ref-2_1437878165-576.coolpic» v:shapes="_x0000_s2242 _x0000_s2243 _x0000_s2244 _x0000_s2245 _x0000_s2246 _x0000_s2247 _x0000_s2248 _x0000_s2249 _x0000_s2250 _x0000_s2251 _x0000_s2252 _x0000_s2253">  
<img width=«274» height=«77» src=«ref-2_1437878741-482.coolpic» v:shapes="_x0000_s2255 _x0000_s2256 _x0000_s2257 _x0000_s2258 _x0000_s2259 _x0000_s2260 _x0000_s2261 _x0000_s2262 _x0000_s2263 _x0000_s2264 _x0000_s2265 _x0000_s2266">  
<img width=«262» height=«98» src=«ref-2_1437879223-657.coolpic» v:shapes="_x0000_s2268 _x0000_s2269 _x0000_s2270 _x0000_s2271 _x0000_s2272 _x0000_s2273 _x0000_s2274 _x0000_s2275 _x0000_s2276 _x0000_s2277 _x0000_s2278 _x0000_s2279">  
<img width=«262» height=«36» src=«ref-2_1437879880-294.coolpic» v:shapes="_x0000_s2281 _x0000_s2282 _x0000_s2283 _x0000_s2284 _x0000_s2285 _x0000_s2286 _x0000_s2287">  



    продолжение
--PAGE_BREAK--11           Проверка долговечности подшипников 11.1     1-й вал

Выбираем подшипник роликовый конический однорядный (по ГОСТ 333-79) 7609 средней широкой серии со следующими параметрами:
d = 45 мм — диаметр вала (внутренний посадочный диаметр подшипника);

D = 100 мм — внешний диаметр подшипника;

C = 114 кН — динамическая грузоподъёмность;

Co = 90,5 кН — статическая грузоподъёмность.
a = 14 Н.

Радиальные нагрузки на опоры:

Pr1 = 470,277 H;

Pr2 = 1073,581 H.
Отношение 0,038; этой величине (по табл. 9.18[1]) соответствует e = 0,29. Здесь Fa = 3452,448 Н — осевая сила, действующая на вал.
В радиально-упорных подшипниках при действии на них радиальных нагрузок возникают осевые составляющие S, определяемые по формулам:
S1 = 0.83 x e x Pr1 = 0.83 x 0,29 x 470,277 = 113,196 H;

S2 = 0.83 x e x Pr2 = 0.83 x 0,29 x 1073,581 = 258,411 H.
Тогда осевые силы действующие на подшипники, установленные враспор, будут равны (см. стр. 216[1]):
Pa1 = S1 = 113,196 H;

Pa2 = -(S1 + Fa) = -(113,196 + 3452,448) = -3565,644 H.
Эквивалентная нагрузка вычисляется по формуле:
Рэ = (Х x V x Pr1 + Y x Pa1) x Кбx Кт,
где — Pr1 = 470,277 H — радиальная нагрузка; V = 1 (вращается внутреннее кольцо подшипника);  коэффициент безопасности Кб = 1,6 (см. табл. 9.19[1]); температурный коэффициент Кт = 1 (см. табл. 9.20[1]).
Отношение 0,241 £ e; тогда по табл. 9.18[1]: X = 1; Y = 0.
Тогда: Pэ = (1 x 1 x 470,277 + 0 x 113,196) x 1,6 x 1 = 9347,684 H.

Расчётная долговечность, млн. об. (формула 9.1[1]):
L = 4175,124 млн. об.
Расчётная долговечность, ч.:
Lh = 48323,194 ч,
что больше 10000 ч. (минимально допустимая долговечность подшипника), установленных ГОСТ 16162-85 (см. также стр.307[1]), здесь n1 = 1440 об/мин — частота вращения вала.
Рассмотрим подшипник второй опоры:
Отношение 3,321 > e; тогда по табл. 9.18[1]: X = 0,4; Y = 2,06.
Тогда: Pэ = (0,4 x 1 x 1073,581 + 2,06 x 3565,644) x 1,6 x 1 = 12439,454 H.

Расчётная долговечность, млн. об. (формула 9.1[1]):
L = 1610,689 млн. об.
Расчётная долговечность, ч.:
Lh = 18642,234 ч,
что больше 10000 ч. (минимально допустимая долговечность подшипника), установленных ГОСТ 16162-85 (см. также стр.307[1]), здесь n1 = 1440 об/мин — частота вращения вала.

11.2     2-й вал

Выбираем шарикоподшипник радиальный однорядный (по ГОСТ 8338-75) 311 средней серии со следующими параметрами:
d = 55 мм — диаметр вала (внутренний посадочный диаметр подшипника);

D = 120 мм — внешний диаметр подшипника;

C = 71,5 кН — динамическая грузоподъёмность;

Co = 41,5 кН — статическая грузоподъёмность.
Радиальные нагрузки на опоры:

Pr1 = 2194,922 H;

Pr2 = 1727,818 H.

Будем проводить расчёт долговечности подшипника по наиболее нагруженной опоре 1.

Эквивалентная нагрузка вычисляется по формуле:
Рэ = (Х x V x Pr1 + Y x Pa) x Кбx Кт,
где — Pr1 = 2194,922 H — радиальная нагрузка; Pa = Fa = 759,614 H — осевая нагрузка; V = 1 (вращается внутреннее кольцо подшипника);  коэффициент безопасности Кб = 1,6 (см. табл. 9.19[1]); температурный коэффициент Кт = 1 (см. табл. 9.20[1]).
Отношение 0,018; этой величине (по табл. 9.18[1]) соответствует e = 0,199.
Отношение 0,346 > e;£ e; тогда по табл. 9.18[1]: X = 0,56; Y = 2,205.
Тогда: Pэ = (0,56 x 1 x 2194,922 + 2,205 x 759,614) x 1,6 x 1 = 4646,202 H.

Расчётная долговечность, млн. об. (формула 9.1[1]):
L =  =  = 3644,382 млн. об.
Расчётная долговечность, ч.:
Lh = 843606,944 ч,
что больше 10000 ч. (минимально допустимая долговечность подшипника), установленных ГОСТ 16162-85 (см. также стр.307[1]), здесь n2 = 72 об/мин — частота вращения вала.


Подшипники

Валы

Подшипники

1-я опора

2-я опора

Наименование

d, мм

D, мм

Наименование

d, мм

D, мм

1-й вал

подшипник роликовый конический однорядный (по ГОСТ 333-79) 7609 средней широкой серии

45

100

подшипник роликовый конический однорядный (по ГОСТ 333-79) 7609 средней широкой серии

45

100

2-й вал

шарикоподшипник радиальный однорядный (по ГОСТ 8338-75) 311средней серии

55

120

шарикоподшипник радиальный однорядный (по ГОСТ 8338-75) 311средней серии

55

120



    продолжение
--PAGE_BREAK--
еще рефераты
Еще работы по производству