Реферат: Основные и нетрадиционные способы получения электроэнергии

--PAGE_BREAK--2. Гидроэлектростанции.
Гидроэлектрическая станция, гидроэлектростанция (ГЭС), комплекс сооружений и оборудования, посредством которых энергия потока воды преобразуется в электрическую энергию. ГЭС состоит из последовательной цепи гид­ротехнических сооружений, обеспечи­вающих необходимую концентрацию по­тока воды и создание напора, и энергетического. оборудования,   преобразующего энергию движущейся под напором воды в механическую энергию вращения  которая, в свою очередь, преобразуется в электрическую энергию.

По схеме использования водных ре­сурсов и концентрации напоров ГЭС обыч­но подразделяют на русловые, приплотинные, деривационные с напорной и без­напорной деривацией, смешанные, гидроаккумулирующие и приливные.  В русловых и приплотинных ГЭС напор воды создаётся плотиной, пе­регораживающей реку и поднимающей уровень воды в верхнем бьефе. При этом неизбежно некоторое затопление долины реки. В случае сооружения двух плотин на том же участке реки площадь затопле­ния уменьшается. На равнинных реках наибольшая экономически допустимая <img width=«324» height=«420» src=«ref-1_495959525-88038.coolpic» hspace=«12» v:shapes="_x0000_s1031">площадь затопления ограничивает высо­ту плотины. Русловые и приплотинные ГЭС строят и на равнинных многоводных реках и на горных реках, в узких сжатых долинах.

В состав сооружений русловой ГЭС, кроме плотины, входят здание ГЭС и во­досбросные сооружения (рис. 4). Состав гидротехнических сооружений зависит от вы­соты напора и установленной мощности. У русловой ГЭС здание с размещенными в нём гидроагрегатами служит продолже­нием плотины и вместе с ней создаёт напорный фронт. При этом с одной сто­роны к зданию ГЭС примыкает верхний бьеф, а с другой — нижний бьеф. Под­водящие спиральные камеры гидротурбин своими входными сечениями заклады­ваются под уровнем верхнего бьефа, выходные же сечения отсасывающих труб погружены под уровнем нижнего бьефа.

В соответствии с назначением гидроузла в его состав могут входить судоходные шлюзы или судоподъёмник, рыбопро­пускные сооружения, водозаборные соо­ружения для ирригации и водоснабже­ния. В русловых ГЭС иногда единственным сооружением, пропускающим воду, является здание ГЭС. В этих случаях по­лезно используемая вода последовательно проходит входное сечение с мусорозадерживающими решётками, спиральную камеру, гидротурбину, отсасывающую тру­бу, а по специальным водоводам между сосед­ними турбинными камерами произво­дится сброс паводковых расходов реки. Для русловых ГЭС характерны напоры до 30—40 м,  к простейшим русловым ГЭС относятся также ранее строившиеся сель­ские ГЭС небольшой мощности. На круп­ных равнинных реках основное русло пере­крывается земляной плотиной, к которой примыкает бетонная водосливная пло­тина и сооружается здание ГЭС. Такая компоновка типична для многих отечественных ГЭС на больших равнинных реках. Волж­ская ГЭС им. 22-го съезда КПСС— наиболее крупная среди станций русло­вого типа.

При более высоких напорах оказывает­ся нецелесообразным передавать на зда­ние ГЭС гидростатичное давление воды. В этом случае применяется тип плотиной ГЭС, у которой напорный фронт на всём протяжении перекрывается плотиной, а здание ГЭС располагается за пло­тиной, примыкает к нижнему бьефу. В состав гидравлической трассы меж­ду верхним и нижним бьефом ГЭС тако­го типа входят глубинный водоприёмник с мусорозадерживающей решёткой, тур­бинный водовод, спиральная камера, гидротурбина, отсасывающая труба. В качестве дополнит, сооружений в состав узла могут входить судоходные сооруже­ния и рыбоходы, а также дополнительные водо­сбросы Примером подобного типа станций на многоводной реке служит Братская ГЭС на реке Ангара.

Несмотря на снижение доли ГЭС в общей выработке, абсолютные значения производства электроэнергии и мощности ГЭС непрерывно растут вследствие строительства новых крупных электростанций. В 1969 в мире насчитывалось свыше 50 дей­ствующих и строящихся ГЭС единичной мощностью 1000 Мвт и выше, причём 16 из них — на территории бывшего Советского Союза.

Важнейшая особенность гидроэнергетических ресурсов по сравнению с топливно-энергетическими ресурсами — их непрерывная возобновляемость. Отсутствие потребности в топливе для ГЭС определяет низ­кую себестоимость вырабатываемой на ГЭС электроэнергии. Поэтому сооруже­нию ГЭС, несмотря на значительные, удельные капиталовложения на 1 квт установлен­ной мощности и продолжительные сроки строи­тельства, придавалось и придаётся боль­шое значение, особенно когда это связано с размещением электроёмких производств.


3. Атомные электростанции.

Атомная электростанция (АЭС) — электростанция, в которой атомная (ядер­ная) энергия преобразуется в элект­рическую. Генератором энергии на АЭС является атомный реактор. Тепло, которое выделя­ется в реакторе в результате цепной реакции деления ядер некоторых тяжёлых элементов, затем так же, как и на обыч­ных тепловых электростанциях (ТЭС), преобразуется в электроэнергию. В отли­чие от ТЭС, работающих на органическом топливе, АЭС работает на ядерном горю­чем (в основе 233U, 235U, 239Pu). Установлено, что мировые энергетические ресурсы ядерного горючего (уран, плутоний и др.)  существенно превышают энергоресурсы природных запасов органического топлива (нефть, уголь, природный газ и др.). Это открывает широкие перспективы для удовлетворе­ния быстро растущих потребностей в топ­ливе. Кроме того, необходимо учиты­вать всё увеличивающийся объём потреб­ления угля и нефти для технологических целей мировой химической промышленности, которая становится серьёзным конкурентом тепло­вых электростанций. Несмотря на откры­тие новых месторождений органического топ­лива и совершенствование способов его добычи, в мире наблюдается тенденция к относительному, увеличению его стоимости. Это создаёт наиболее тяжёлые условия для стран, имеющих ограниченные запасы топлива органического происхождения. Очевидна необходимость быстрейшего развития атомной энергетики, которая уже занимает заметное место в энергетическом балансе ряда промышленных стран мира.

Первая в мире АЭС опытно-промышленного на­значения (рис. 1) мощностью 5 Мвт была пущена в СССР 27 июня 1954 г. в г. Обнинске. До этого энергия атомного ядра использовалась  в военных це­лях. Пуск первой АЭС ознаменовал от­крытие нового направления в энергети­ке, получившего признание на 1-й Международной научно-технической конференции по мирному использованию атомной энер­гии (август 1955, Женева).

<img width=«255» height=«229» src=«ref-1_496047563-28581.coolpic» hspace=«12» v:shapes="_x0000_s1032"> Принципиальная схема АЭС с ядерным реактором, имеющим водяное охлаждение, приведена на рис. 2. Тепло, выделяется в активной зоне реактора, теплоносителем,  вбирается водой (теплоносителем 1-го контура), которая прокачивается  через реактор циркуляционным насосом 2. Нагретая вода из реактора поступав в теплообменник (парогенератор) 3, где передаёт тепло, полученное в реакторе воде 2-го контура. Вода 2-го контура испаряется в парогенераторе, и образованный пар поступает в турбину 4.

Наиболее часто на АЭС применяют 4 типа реакторов на тепловых нейтронах 1) водо-водяные с обычной водой в качестве замедлителя и теплоносителя; 2) графито-водные с водяным теплоносителем и графитовым замедлителем; 3) тяжеловодные с водяным теплоносителем и тяжёлой водой в качестве замедлителя 4) графито-газовые с газовым теплоноси­телем и графитовым замедлителем.

В России строят главным образом графито-водные и водо-водяные реакторы. На АЭС США наибольшее распространение получили водо-водяные реакторы. Графито-газо­вые реакторы применяются в Англии. В атомной энергетике Канады преобла­дают АЭС с тяжеловодными реакторами.

<img width=«308» height=«327» src=«ref-1_496076144-52134.coolpic» hspace=«12» v:shapes="_x0000_s1033">В зависимости от вида и агрегатного со­стояния теплоносителя создается тот или иной термодинамический цикл АЭС. Выбор верх­ней температурной границы термодинамического цикла определяется максимально допусти­мой температурой оболочек тепловыделяющих элементов (ТВЭЛ), содержащих ядерное го­рючее, допустимой темп-рой собственно ядер­ного горючего, а также свойствами теплоноси­теля, принятого для данного типа реактора. На АЭС тепловой реактор, которой охлаждает­ся водой, обычно пользуются низкотемпера­турными паровыми циклами. Реакторы с газовым теплоносителем позволяют применять относительно более экономичные циклы водяного пара с повышенными начальными дав­лением и температурой. Тепловая схема АЭС в этих двух случаях выполняется 2-контурной: в 1-м контуре циркулирует теплоноситель, 2-й контур — пароводяной. При реакторах  с кипящим водяным или высокотемпературным газовым теплоносителем возможна одно­контурная тепловая  АЭС. В кипящих реак­торах вода кипит в активной зоне, полученная пароводяная смесь сепарируется, и насыщенный пар направляется или непосредственно в турбину, или предварительно возвращается в активную зону для перегрева.(рис. 3).

В высокотемпературных графито-газовых реакторах возможно применение обычного газотурбинного цикла. Реактор в этом случае выполняет  роль камеры сго­рания.

При работе реактора концентрация де­лящихся изотопов в ядерном топливе постепенно уменьшается, и топливо  выгорает. Поэтому со временем их заме­няют свежими. Ядерное горючее пере­загружают с помощью механизмов и при­способлений с дистанционным управлением. Отработавшее топливо переносят в бас­сейн выдержки, а затем направляют на переработку.

К реактору и обслуживающим его си­стемам относятся: собственно реактор с биологической защитой, теплообменни­ки, насосы или газодувные установки, осуществляющие циркуляцию теплоноси­теля; трубопроводы и арматура циркуляции контура; устройства для перезагруз­ки ядерного горючего; системы спец. вентиляции, аварийного расхолаживания и др.

В зависимости от конструктивного ис­полнения реакторы имеют отличительные, осо­бенности: в корпусных реакторах топливо и замедлитель расположены внутри корпу­са, несущего полное давление теплоно­сителя; в канальных реакторах топливо, охлаждаемые теплоносителем, устанавли­ваются в спец. трубах-каналах, пронизы­вающих замедлитель,  заключённый в тонкостенный кожух. Такие реакторы применяются в России (Сибирская, Белоярская АЭС и др.),

Для предохранения персонала АЭС от радиационного облучения реактор окружают биологической защитой, основным материалом для которой служат бетон, вода, песок. Оборудование реакторного контура должно быть полностью герме­тичным. Предусматривается система конт­роля мест возможной утечки теплоноси­теля, принимают меры, чтобы появление не плотностей и разрывов контура не приводило к радиоактивным выбросам и загрязнению помещений АЭС и окружаю­щей местности. Оборудование реакторно­го контура обычно устанавливают  в герметичных боксах, которые отделены от остальных помещений АЭС биологической защитой и при работе реактора не обслу­живаются, Радиоактивный воздух и не­большое количество паров теплоносителя, обусловленное наличием протечек из контура, удаляют из необслуживаемых помещений АЭС спец. системой вентиляции, в которой для исключения возможно­сти загрязнения атмосферы предусмот­рены очистные фильтры и газгольдеры выдержки. За выполнением правил ра­диационной безопасности персоналом АЭС сле­дит служба дозиметрического контроля.

При авариях в системе охлаждения реактора для исключения перегрева и нарушения   герметичности   оболочек ТВЭЛов предусматривают быстрое (в течение несколько секунд) глушение ядер­ной реакции; аварийная система расхо­лаживания имеет автономные источники питания.

Наличие  биологической защиты, систем специальной вентиляции и аварийного расхо­лаживания и службы дозиметрического контро­ля позволяет полностью обезопасить обслуживающий персонал АЭС от вред­ных воздействий радиоактивного облу­чения.

Оборудование машинного зала АЭС аналогично оборудованию  машинного зала ТЭС. Отличительная, особенность боль­шинства   АЭС — использование   пара сравнительно низких параметров, на­сыщенного или слабо перегретого.

При этом для исключения эрозионного повреждения лопаток последних ступеней турбины частицами влаги, содержащейся в пару, в турбине устанавливают сепари­рующие устройства. Иногда необходимо применение выносных сепараторов   и промежуточных  перегревателей пара. В связи с тем, что теплоноситель и со­держащиеся в нём примеси при прохож­дении через активную зону реактора активируются, конструктивное решение оборудования машинного зала и системы охлаждения конденсатора турбины од­ноконтурных АЭС должно полностью исключать возможность утечки теплоно­сителя. На двухконтурных АЭС с высо­кими параметрами пара подобные требо­вания к оборудованию машинного зала не предъявляются.

В число специфичных требований к компоновке оборудования  АЭС входят: минимально возможная протяжённость коммуникаций, связанных с радиоак­тивными средами, повышенная жёст­кость фундаментов и несущих конст­рукций реактора, надёжная организа­ция вентиляции помещений. В реакторном зале размещены: реактор с биологической защитой, запасные ТВЭЛы и аппаратура контроля. АЭС скомпонована по блочному принципу реактор—турбина. В машинном зале рас­положены турбогенераторы и обслужи­вающие их системы. Между машинным и реакторным залами размещены вспомогательные оборудование и системы управле­ния станцией.

В большинстве промышленно развитых стран (Россия, США, Англия, Фран­ция, Канада, ФРГ, Япония, ГДР и др.)  мощность действующих и строящихся АЭС к 1980  доведена до десятков Гвт. По данным Международного атомного агентства ООН, опубликован­ным в 1967, установленная мощность всех АЭС в мире к 1980 достигла 300 Гвт.

За годы, прошедшие со времени пуска в эксплуатацию пер­вой АЭС, было создано несколько конструкций ядерных реак­торов, на основе которых началось широкое развитие атомной энергетики в нашей стране.

АЭС являющиеся наиболее современным видом электростанций, имеют ряд существенных преимуществ перед другими видами электростанций: при нормальных условиях функционирования они абсолютно не загрязняют окружающую среду, не требуют привязки к источнику сырья и соответственно могут быть размещены практически везде, новые энергоблоки имеют мощность практически равную мощности средней ГЭС, однако коэффициент использования установленной мощности на АЭС (80%) значительно превышает этот показатель у ГЭС или ТЭС.  Об экономичности и эффективности атомных электростанций может говорить тот факт, что  из 1 кг урана можно получить столько же теплоты, сколь­ко при сжигании примерно 3000 т каменного угля.

  Значительных недостатков АЭС при нормальных условиях функционирования практически не имеют. Однако нельзя не заметить опасность АЭС при возможных форсмажорных обстоятельствах: землетрясениях, ураганах, и т. п. — здесь старые модели энергоблоков представляют потенциальную опасность радиационного заражения территорий из-за неконтролируемого перегрева реактора.


    продолжение
--PAGE_BREAK--II. Нетрадиционные источники энергии


   Ученые предостерегают: разведанных запасов органического топлива при нынешних темпах роста энергопотребления хватит всего на 70-130 лет. Конечно, можно перейти и на другие невозобновляемые источники энергии. Например, ученые уже многие годы пытаются освоить управляемый термоядерный синтез…

1. Ветровая энергия

Огромна энергия движущихся воздушных масс. Запасы энергии ветра более чем в сто раз превышают запасы гидроэнергии всех рек планеты. Постоянно и повсюду на земле дуют ветры – от легкого ветерка, несущего желанную прохладу в летний зной, до могучих ураганов, приносящих неисчислимый урон и разрушения. Всегда неспокоен воздушный океан, на дне которого мы живем. Ветры, дующие на просторах нашей страны, могли бы легко удовлетворить все ее потребности в электроэнергии! Климатические условия позволяют развивать ветроэнергетику на огромной территории – от наших западных границ до берегов Енисея. Богаты энергией ветра северные районы страны вдоль побережья Северного Ледовитого океана, где она особенно необходима мужественным людям, обживающим эти богатейшие края. Почему же столь обильный, доступный да и экологически чистый источник энергии так слабо используется? В наши дни двигатели, использующие ветер, покрывают всего одну тысячную мировых потребностей в энергии.

По оценкам различных авторов, общий ветроэнергетический потенциал Земли равен1200 ГВт, однако возможности использования этого вида энергии в различных районах Земли неодинаковы. Среднегодовая скорость ветра на высоте20–30 м над поверхностью Земли должна быть достаточно большой, чтобы мощность воздушного потока, проходящего через надлежащим образом ориентированное вертикальное сечение, достигала значения, приемлемого для преобразования. Ветроэнергетическая установка, расположенная на площадке, где среднегодовая удельная мощность воздушного потока составляет около500 Вт/м2 (скорость воздушного потока при этом равна7 м/с), может преобразовать в электроэнергию около175 из этих500 Вт/м2.

Энергия, содержащаяся в потоке движущегося воздуха, пропорциональна кубу скорости ветра. Однако не вся энергия воздушного потока может быть использована даже с помощью идеального устройства. Теоретически коэффициент полезного использования (КПИ) энергии воздушного потока может быть равен59,3 %. На практике, согласно опубликованным данным, максимальный КПИ энергии ветра в реальном ветроагрегате равен приблизительно50 %, однако и этот показатель достигается не при всех скоростях, а только при оптимальной скорости, предусмотренной проектом. Кроме того, часть энергии воздушного потока теряется при преобразовании механической энергии в электрическую, которое осуществляется с КПД обычно75–95 %. Учитывая все эти факторы, удельная электрическая мощность, выдаваемая реальным ветроэнергетическим агрегатом, видимо, составляет30–40 % мощности воздушного потока при условии, что этот агрегат работает устойчиво в диапазоне скоростей, предусмотренных проектом. Однако иногда ветер имеет скорость, выходящую за пределы расчетных скоростей. Скорость ветра бывает настолько низкой, что ветроагрегат совсем не может работать, или настолько высокой, что ветроагрегат необходимо остановить и принять меры по его защите от разрушения. Если скорость ветра превышает номинальную рабочую скорость, часть извлекаемой механической энергии ветра не используется, с тем чтобы не превышать номинальной электрической мощности генератора. Учитывая эти факторы, удельная выработка электрической энергии в течение года, видимо, составляет15–30% энергии ветра, или даже меньше, в зависимости от местоположения и параметров ветроагрегата.

Новейшие исследования направлены преимущественно на получение электрической энергии из энергии ветра. Стремление освоить производство ветроэнергетических машин привело к появлению на свет множества таких агрегатов. Некоторые из них достигают десятков метров в высоту, и, как полагают, со временем они могли бы образовать настоящую электрическую сеть. Малые ветроэлектрические агрегаты предназначены для снабжения электроэнергией отдельных домов.

Сооружаются ветроэлектрические станции преимущественно постоянного тока. Ветряное колесо приводит в движение динамо-машину – генератор электрического тока, который одновременно заряжает параллельно соединенные аккумуляторы. Аккумуляторная батарея автоматически подключается к генератору в тот момент, когда напряжение на его выходных клеммах становится больше, чем на клеммах батареи, и также автоматически отключается при противоположном соотношении.

В небольших масштабах ветроэлектрические станции нашли применение несколько десятилетий назад. Самая крупная из них мощностью1250 кВт давала ток в сеть электроснабжения американского штата Вермонт непрерывно с1941 по1945 г. Однако после поломки ротора опыт прервался – ротор не стали ремонтировать, поскольку энергия от соседней тепловой электростанции обходилась дешевле. По экономическим причинам прекратилась эксплуатация ветроэлектрических станций и в европейских странах.

Сегодня ветроэлектрические агрегаты надежно снабжают током нефтяников; они успешно работают в труднодоступных  районах,  на  дальних  островах, в Арктике, на тысячах сельскохозяйственных ферм, где нет поблизости крупных населенных пунктов и электростанций общего пользования. Американец Генри Клюз в штате Мэн построил две мачты и укрепил на них ветродвигатели с генераторами.20 аккумулятором по6 В и60 по2 В служат ему в безветренную погоду, а в качестве резерва он имеет бензиновый движок. За месяц Клюз получает от своих ветроэлектрических агрегатов250 кВт·ч энергии; этого ему хватает для освещения всего хозяйства, питания бытовой аппаратуры (телевизора, проигрывателя, пылесоса, электрической пишущей машинки), а также для водяного насоса и хорошо оборудованной мастерской.

Широкому применению ветроэлектрических агрегатов в обычных условиях пока препятствует их высокая себестоимость. Вряд ли требуется говорить, что за ветер платить не нужно, однако машины, нужные для того, чтобы запрячь его в работу, обходятся слишком дорого.

Сейчас созданы самые разнообразные прототипы ветроэлектрических генераторов (точнее, ветродвигателей с электрогенераторами). Одни из них похожи на обычную детскую вертушку, другие – на велосипедное колесо с алюминиевыми лопастями вместо спиц. Существуют агрегаты в виде карусели или же в виде мачты с системой подвешенных друг над другом круговых ветроуловителей, с горизонтальной или вертикальной осью вращения, с двумя или пятьюдесятью лопастями.

В проектировании установки самая трудная проблема состояла в том, чтобы при разной силе ветра обеспечить одинаковое число оборотов пропеллера. Ведь при подключении к сети генератор должен давать не просто электрическую энергию, а только переменный ток с заданным числом циклов в секунду, т. е. со стандартной частотой50 Гц. Поэтому угол наклона лопастей по отношению к ветру регулируют за счет поворота их вокруг продольной оси: при сильном ветре этот угол острее, воздушный поток свободнее обтекает лопасти и отдает им меньшую часть своей энергии. Помимо регулирования лопастей весь генератор автоматически поворачивается на мачте против ветра.

При использовании ветра возникает серьезная про­блема: избыток энергии в ветреную погоду и недоста­ток ее в периоды безветрия. Как же накапливать и сохранить впрок энергию ветра? Простейший способ состоит в том, что ветряное колесо движет насос, кото­рый накачивает воду в расположенный выше резервуар, а потом вода, стекая из него, приводит в действие во­дяную турбину и генератор постоянного или перемен­ного тока. Существуют и другие способы и проекты: от обычных, хотя и маломощных аккумуляторных батарей до раскручивания гигантских маховиков или нагнета­ния сжатого воздуха в подземные пещеры и вплоть до производства водорода в качестве топлива. Особенно перспективным представляется последний способ. Элек­трический ток от ветроагрегата разлагает воду на кис­лород и водород. Водород можно хранить в сжиженном виде и сжигать в топках тепловых электростанций по мере надобности.

2. Геотермальная энергия

Энергетика земли – геотермальная энергетика базируется на использова­нии природной теплоты Земли. Верхняя часть земной ко­ры имеет термический градиент, равный20–30 °С в рас­чете на1 км глубины, и, ко­личество теплоты, содержащейся в земной коре до глу­бины10 км (без учета температуры поверхности), равно приблизительно12,6.1026Дж. Эти ресурсы эквивалент­ны теплосодержанию4,6·1016 т угля (принимая среднюю теплоту сгорания угля равной27,6.109 Дж/т), что бо­лее чем в70 тыс. раз превышает теплосодержание всех технически и экономически извлекаемых мировых ресур­сов угля. Однако геотермальная теплота в верхней части земной слишком рассеяна, что­бы на ее базе решать мировые энергетические проблемы. Ресурсы, пригодные для промышленного использования, представляют собой отдельные месторождения геотермальной энергии, сконцентрированной на доступной для разработки глубине, имеющие определенные объемы и температуру, достаточные для использования их в целях производства электрической энергии или теплоты.

         С геологической точки зрения геотермальные энерго­ресурсы можно разделить на гидротермальные конвективные системы, горячие сухие системы вулканического происхождения и системы с высоким тепловым потоком.

         К категории гидротермальных конвективных систем относят подземные бассейны пара или горячей воды, ко­торые выходят на поверхность земли, образуя гейзеры, сернистые грязевые озера. Образование та­ких систем связано с наличием источника теплоты -  го­рячей или расплавленной скальной породой, располо­женной относительно близко к поверхности земли. Гидротермальные конвективные системы обычно размещаются по границам тектонических плит земной коры, которым свойственна вулканическая активность.

В принципе для производства электроэнергии на месторождениях с горячей водой применяется метод, основанный на использовании пара, образовавшегося при испарении горячей жидкости на поверхности. Этот метод использует то явление, что при приближении го­рячей воды (находящейся под высоким давлением) по скважинам из бассейна к поверхности давление падает и около20 % жидкости вскипает и превращается в пар. Этот пар отделяется с помощью сепаратора от воды и направляется в турбину. Вода, выходящая из сепарато­ра, может быть подвергнута дальнейшей обработке в зависимости от ее минерального состава. Эту воду можно закачивать обратно в скальные породы сразу или, если это экономически оправдано, с предварительным извле­чением из нее минералов.

        Другим методом производства электроэнергии на базе высоко- или среднетемпературных геотермальных вод является использование процесса с применением двух­контурного (бинарного) цикла. В этом процессе вода, полученная из бассейна, используется для нагрева теплоносителя второго контура (фреона или изобутана), имеющего низкую температуру кипения. Пар, образовав­шийся в результате кипения этой жидкости, использует­ся для привода турбины. Отработавший пар конденси­руется и вновь пропускается через теплообменник, создавая тем самым замкнутый цикл.

            Ко второму типу геотермальных ресурсов (горячие системы вулканического происхождения) относятся маг­ма и непроницаемые горячие сухие породы (зоны за­стывшей породы вокруг магмы и покрывающие ее скаль­ные породы). Получение геотермальной энергии непо­средственно из магмы пока технически неосуществимо. Технология, необходимая для использования энергии горячих сухих пород, только начинает разрабатываться. Предварительные технические разработки методов использования этих энергетических ресурсов предусматри­вают устройство замкнутого контура с циркулирующей по нему жидкостью, проходящего через горячую породу. Сначала пробуривают скважину, достигающую области залегания горячей породы; затем через нее в породу под большим давлением закачивают холодную воду, что приводит к образованию в ней трещин. После этого через образованную таким образом зону трещино­ватой породы пробуривают вторую скважину. Наконец, холодную воду с поверхности закачивают в первую скважину. Проходя через горячую породу, она нагрева­ется, извлекается через вторую скважину в виде пара или горячей воды, которые затем можно использовать для производства электроэнергии одним из рассмотрен­ных ранее способов.

         Геотермальные системы третьего типа существуют в тех районах, где в зоне с высокими значениями теплово­го потока располагается глубокозалегающий осадочный бассейн. В таких районах, как Парижский или Венгерский бассейны, температура воды, поступающая из сква­жин, может достигать100 °С.
3. Тепловая энергия океана

      Известно, что запасы энергии в Мировом океане колоссальны, ведь две трети земной поверхности(361 млн. км2) занимают моря и океаны – акватория Тихого океана составляет180 млн. км2. Атлантического – 93 млн. км2, Индийского– 75 млн. км2.Так, тепловая (внутренняя) энергия, соответствующая перегреву поверхностных вод океана по сравнению с донными, скажем, на 20 градусов, имеет величину порядка 1026 Дж. Кинетическая энергия океанских течений оценивается величиной порядка 1018 Дж. Однако пока что люди умеют использовать лишь ничтожные доли этой энергии, да и то ценой больших и медленно окупающихся капиталовложений, так что такая энергетика до сих пор казалась малоперспективной.

       Последние десятилетие характеризуется определенными успехами в использовании тепловой энергии океана. Так, созданы установки мини-ОТЕС и ОТЕС-1 (ОТЕС– начальные буквы английских слов ОсеаnТhеrmalEnergyConversion, т.e. преобразование тепловой энергии океана– речь идет о преобразовании в электрическую энергию). В августе1979 г. вблизи Гавайских островов начала работать теплоэнергетическая установка мини-ОТЕС. Пробная эксплуатация установки в течение трех с поло­виной месяцев показала ее достаточную надежность. При непрерывной круглосуточной работе не было срывов, если не считать мелких технических неполадок, обычно возникающих при испытаниях любых новых установок. Ее полная мощность составляла в среднем48,7 кВт, максимальная–53 кВт;12 кВт (максимум15) установка отдавала во внешнюю сеть на полезную нагрузку, точ­нее– на зарядку аккумуляторов. Остальная вырабаты­ваемая мощность расходовалась на собственные нужды установки. В их число входят затраты анергии на работу трех насосов, потери в двух теплообменниках, турбине и в генераторе электрической энергии.

Три насоса потребовались из следующего расчета: один– для подачи теплой виды из океана, второй– для подкачки холодной воды с глубины около700 м, третий– для перекачки вторичной рабочей жидкости внутри самой системы, т. е. из конденсатора в испаритель. В качестве вторичной рабочий жидкости применяется аммиак.

Установка мини-ОТЕС смонтирована на барже. Под ее днищем помещен длинный трубопровод для забора холодной воды. Трубопроводом служит полиэтиленовая труба длиной700 м с внутренним диаметром50 см. Трубопровод прикреплен к днищу судна с помощью особого затвора, позволяющегов случае необходимости ого быстрое отсоединение. Полиэтиленовая труба одновременно используется и для заякоривания системы труба–судно. Оригинальность подобного решения не вызывает сомнений, поскольку якорные постановки для разрабатываемых ныне более мощных систем ОТЕС являются весьма серьезной проблемой.

        Впервые в истории техники установка мини-ОТЕС смогла отдать во внешнюю нагрузку полезную мощность, одновременно покрыв и собственные нужды. Опыт, полученный при эксплуатации мини-ОТЕС, позволил быстро построить более мощную теплоэнергетическую установку ОТЕС-1 и приступить к проектированию еще более мощных систем подобного типа.

        Новые станции ОТЕС на мощность во много десятков и сотен мегаватт проектируются без судна. Это– одна грандиозная труба, в верхней части которой находится круглый машинный зал, где размещены все необходимые устройства для преобразования энергии.
4. Энергия приливов и отливов.

Веками люди размышляли над причиной морских приливов и отливов. Сегодня мы достоверно знаем, что могучее природное явление – ритмичное движение морских вод вызывают силы притяжения Луны и Солнца. Поскольку Солнце находится от Земли в400 раз дальше, гораздо меньшая масса Луны действует на земные воды вдвое сильнее, чем масса Солнца. Поэтому решающую роль играет прилив, вызванный Луной (лунный прилив). В морских просторах приливы чередуются с отливами теоретически через6 ч12 мин30 с. Если Луна, Солнце и Земля находятся на одной прямой, Солнце своим притяжением усиливает воздействие Луны, и тогда наступает сильный прилив. Когда же Солнце стоит под прямым углом к отрезку Земля-Луна (квадратура), наступает слабый прилив (квадратурный, или малая вода). Сильный и слабый приливы чередуются через семь дней.

Однако истинный ход прилива и отлива весьма сложен. На него влияют особенности движения небесных тел, характер береговой линии, глубина воды, морские течения и ветер.

        Самые высокие и сильные приливные волны возникают в мелких и узких заливах или устьях рек, впадающих в моря и океаны. Приливная волна Индийского океана катится против течения Ганга на расстояние250 км от его устья. Приливная волна Атлантического океана распространяется на900 км вверх по Амазонке. В закрытых морях, например Черном или Средиземном, возникают малые приливные волны высотой50-70 см.

Максимально возможная мощность в одном цикле прилив– отлив, т. е. от одного прилива до другого, выражается уравнением

<img width=«114» height=«33» src=«ref-1_496128278-366.coolpic» v:shapes="_x0000_i1025">

где р – плотность воды, g– ускорение силы тяжести, S–площадь приливного бассейна, R–разность уровней при приливе.

Как видно из формулы, для использования приливной энергии наиболее подходящими можно считать такие места на морском побережье, где приливы имеют большую амплитуду, а контур и рельеф берега позволяют устроить большие замкнутые «бассейны». Мощность электростанций в некоторых местах могла бы составить2–20 МВт.

Первая морская приливная электростанция мощностью635 кВт была построена в1913 г. в бухте Ди около Ливерпуля. В1935 г. приливную электростанцию начали строить в США. Американцы перегородили часть залива Пассамакводи на восточном побережье, истратили7 млн. долл., но работы пришлось прекратить из-за неудобного для строительства, слишком глубокого и мягкого морского дна, а также из-за того, что построенная неподалеку крупная тепловая электростанция дала более дешевую энергию.

        Аргентинские специалисты предлагали использовать очень высокую приливную волну в Магеллановом проливе, но правительство не утвердило дорогостоящий проект.
5. Энергия морских течений

Неисчерпаемые запасы кинетической энергии морских течений, накопленные в океанах и морях, можно превращать в механическую и электрическую энергию с помощью турбин, погруженных в воду (подобно ветряным мельницам, «погруженным» в атмосферу).

Важнейшее и самое известное морское течение– Гольфстрим. Его основная часть проходит через Флоридский пролив между полуостровом Флорида и Багамскими островами. Ширина течения составляет60 км, глубина до800 м, а поперечное сечение28 км2. Энергию Р, которую несет такой поток воды со скоростью 0,9 м/с, можно выразить формулой (в ваттах)

<img width=«167» height=«51» src=«ref-1_496128644-456.coolpic» v:shapes="_x0000_i1026">

где т–масса воды (кг), рплотность воды (кг/м3), А–сечение (м2),v– скорость (м/с). Подставив цифры, получим

<img width=«450» height=«51» src=«ref-1_496129100-868.coolpic» v:shapes="_x0000_i1027">

Если бы мы смогли полностью использовать эту энергию, она была бы эквивалентна суммарной энергии от50 крупных электростанций по1000 МВт, Но эта цифра чисто теоретическая, а практически можно рассчитывать на использование лишь около10% энергии течения.

В настоящее время в ряде стран, и в первую очередь в Англии, ведутся интенсивные работы по использованию энергии морских волн. Британские острова имеют очень длинную береговую линию, к во многих местах море остается бурным в течение длительного времени. По оценкам ученых, за счет энергии морских волн в английских территориальных водах можно было бы получить мощность до120 ГВт, что вдвое превышает мощность всех электростанций, принадлежащих Британскому Центральному электроэнергетическому управлению.

       Один из проектов использования морских волн основан на принципе колеблющегося водяного столба. В гигантских «коробах» без дна и с отверстиями вверху под влиянием волн уровень воды то поднимается, то опускается. Столб воды в коробе действует наподобие поршня: засасывает воздух и нагнетает его в лопатки турбин. Главную трудность здесь составляет согласование инерции рабочих колес турбин с количеством воздуха в коробах, так чтобы за счет инерции сохранялась постоянной скорость вращения турбинных валов в широком диапазоне условий на поверхности моря.
6. Энергия солнца.

Почти все источники энергии, о которых мы до сих пор говорили, так или иначе используют энергию Солнца: уголь, нефть, природный газ суть не что иное, как «законсервированная» солнечная энергия. Она заключена в этом топливе с незапамятных времен; под действием солнечного тепла и света на Земле росли растения, накапливали в себе энергию, а потом в результате длительных процессов превратились в употребляемое сегодня топливо. Солнце каждый год даст человечеству миллиарды тонн зерна и древесины. Энергия рек и горных водопадов также происходит от Солнца, которое поддерживает кругооборот воды на Земле.

Во всех приведенных примерах солнечная энергия используется косвенно, через многие промежуточные превращения. Заманчиво было бы исключить эти превращения и найти способ непосредственно преобразовывать тепловое и световое излучение Солнца, падающее на Землю, в механическую или электрическую энергию. Всего за  три  дня Солнце посылает на Землю   столько   энергии, сколько ее содержится во всех разведанных запасах ископаемых топлив, а за 1 с – 170 млрд. Дж. Большую часть этой энергии рассеивает или   поглощает атмосфера, особенно облака, и только треть ее достигает земной поверхности. Вся энергия, испускаемая    Солнцем, больше той ее части, которую получает Земля, в5000000000 раз. Но даже такая «ничтожная» величина в1600 раз больше энергии, которую дают все остальные источники, вместе взятые. Солнечная энергия, падающая на поверхность одного озера, эквивалентна мощности крупной электростанции.

Согласно легенде Архимед, находясь на берегу, уничтожил неприятельский римский флот под Сиракузами. Как? При помощи зажигательных зеркал. Известно, что подобные зеркала делались также в VI веке. А в серединеXVIII столетия французский естествоиспытатель Ж. Бюффон производил опыты с большим вогнутым зеркалом, состоящим из множества маленьких плоских. Они были подвижными и фокусировали в одну точку отраженные солнечные лучи. Этот аппарат был способен в ясный летний день с расстояния68 м довольно быстро воспламенить пропитанное смолой дерево. Позднее во Франции было изготовлено вогнутое зеркало диаметром 1,3 м, в фокусе которого можно было за16 секунд расплавить чугунный стержень. В Англии же отшлифовали большое двояковыпуклое стекло, с его помощью удавалось расплавлять чугун за три секунды и гранит– за минуту.

В концеXIX века на Всемирной выставке в Париже изобретатель О. Мушо демонстрировал инсолятор– в сущности первое устройство, превращавшее солнечную энергию в механическую. Но принцип был тем же: большое вогнутое зеркало фокусировало солнечные лучи на паровом котле, который приводил в движение печатную машину, делавшую по 500 оттисков газеты в час. Через несколько лет в Калифорнии построили действующий по такому же принципу конический рефлектор в паре с паровой машиной мощностью15 л. с.

И хотя с той поры то в одной, то в другой стране появляются экспериментальные рефлекторы-нагреватели, а в публикуемых статьях все громче напоминают о неиссякаемости нашего светила, рентабельнее они от этого не становятся и широкого распространения пока не получают: слишком дорогое удовольствие это даровое солнечное излучение.

Сегодня для преобразования солнечного излучения в электрическую энергию мы располагаем двумя возможностями: использовать солнечную энергию как источник тепла для выработки электроэнергии традиционными способами (например, с помощью турбогенераторов) или же непосредственно преобразовывать солнечную энергию в электрический ток в солнечных элементах. Реализация обеих возможностей пока находится в зачаточной стадии. В значительно более широких масштабах солнечную энергию используют после ее концентрации при помощи зеркал– для плавления веществ, дистилляции воды, нагрева, отопления и т. д.

Поскольку энергия солнечного излучения распределена по большой площади (иными словами, имеет низкую плотность), любая установка для прямого использования солнечной энергии должна иметь собирающее устройство (коллектор) с достаточной поверхностью.

Простейшее устройство такого рода–плоский коллектор; в принципе это черная плита, хорошо изолированная снизу. Она прикрыта стеклом или пластмассой, которая пропускает свет, но не пропускает инфракрасное тепловое излучение. В пространстве между плитой и стеклом чаще всего размещают черные трубки, через которые текут вода, масло, ртуть, воздух, сернистый ангидрид и т. п. Солнечное излучение, проникая через стекло или пластмассу в коллектор, поглощается черными трубками и плитой и нагревает рабочее вещество в трубках. Тепловое излучение не может выйти из коллектора, поэтому температура в нем значительно выше (па200–500°С), чем температура окружающего воздуха. В этом проявляется так называемый парниковый эффект. Обычные садовые парники, по сути дела, представляют собой простые коллекторы солнечного излучения. Но чем дальше от тропиков, тем менее эффективен горизонтальный коллектор, а поворачивать его вслед за Солнцем слишком трудно и дорого. Поэтому такие коллекторы, как правило, устанавливают под определенным оптимальным углом к югу.

Более сложным и дорогостоящим коллектором является вогнутое зеркало, которое сосредоточивает падающее излучение в малом объеме около определенной геометрической точки– фокуса. Отражающая поверхность зеркала выполнена из металлизированной пластмассы либо составлена из многих малых плоских зеркал, прикрепленных к большому параболическому основанию. Благодаря специальным механизмам коллекторы такого типа постоянно повернуты к Солнцу–это позволяет собирать возможно большее количество солнечного излучения. Температура в рабочем пространстве зеркальных коллекторов достигает 3000°С и выше.

          Солнечная энергетика относится к наиболее материалоемким видам производства энергии. Крупномасштабное использование солнечной энергии влечет за собой гигантское увеличение потребности в материалах, а следовательно, и в трудовых ресурсах для добычи сырья, его обогащения, получения материалов, изготовление гелиостатов, коллекторов, другой аппаратуры, их перевозки. Подсчеты показывают, что для производства 1 МВт в год электрической энергии с помощью солнечной энергетики потребуется затратить от 10 000 до 40 000 человеко-часов. В традиционной энергетике на органическом топливе этот показатель составляет 200-500 человеко-часов.

<img width=«326» height=«287» src=«ref-1_496129968-21211.coolpic» v:shapes="_x0000_s1050 _x0000_s1051 _x0000_s1052 _x0000_s1053">            Пока еще электрическая энергия, рожденная солнечными лучами, обходится намного дороже, чем получаемая традиционными способами. Ученые надеются, что эксперименты, которые они проведут на опытных установках и станциях, помогут решить не только технические, но и экономические проблемы. Но, тем не менее, станции-преобразователи солнечной энергии строят и они работают.

С1988 года на Керченском полуострове работает Крымская солнечная электростанция. Кажется, самим здравым смыслом определено ее место. Уж если где и строить такие станции, так это в первую очередь в краю курортов, санаториев, домов отдыха, туристских маршрутов; в краю, где надо много энергии, но еще важнее сохранить в чистоте окружающую среду, само благополучие которой, и прежде всего чистота воздуха, целебно для человека.

Крымская СЭС невелика– мощность  всего 5 МВт. В определенном смысле она– проба сил. Хотя, казалось бы, чего еще надо пробовать, когда известен опыт строительства гелиостанций в других странах.

На острове Сицилия еще в начале 80-х годов дала ток солнечная электростанция мощностью1 МВт. Принцип ее работы тоже башенный. Зеркала фокусируют солнечные лучи на приемнике, расположенном на 50-метровой высоте. Там вырабатывается пар с температурой более600 °С, который приводит в действие традиционную турбину с подключенным к ней генератором тока. Неоспоримо доказано, что на таком принципе могут работать электростанции мощностью10–20 МВт, а также и гораздо больше, если группировать подобные модули, подсоединяя их друг к другу.

Несколько иного типа электростанция в Алькерии на юге Испании. Ее отличие в том, что сфокусированное на вершину башни солнечное тепло приводит в движение натриевый круговорот, а тот уже нагревает воду до образования пара. У такого варианта ряд преимуществ. Натриевый аккумулятор тепла обеспечивает не только непрерывную работу электростанции, но дает возможность частично накапливать избыточную энергию для работы в пасмурную погоду и ночью. Мощность испанской станции имеет всего0,5 МВт. Но на ее принципе могут быть созданы куда более крупные– до300 МВт. В установках этого типа концентрация солнечной анергии настолько высока, что КПД паротурбинного процесса здесь ничуть не хуже, чем на традиционных тепловых электростанциях.

По мнению специалистов, наиболее привлекательной идеей относительно преобразования солнечной энергии является использование фотоэлектрического эффекта в полупроводниках.

Но, для примера, электростанция на солнечных батареях вблизи экватора с суточной выработкой500 МВт·ч (примерно столько энергии вырабатывает довольно крупная ГЭС) при к.п.д. 10% потребовала бы эффективной поверх­ности около500000 м2. Ясно, что такое огромное коли­чество солнечных полупроводниковых элементов может. окупиться только тогда, когда их производство будет действительно дешево. Эффективность солнечных элек­тростанций в других зонах Земли была бы мала из-за неустойчивых атмосферных условий, относительно сла­бой интенсивности солнечной радиации, которую здесь даже в солнечные дни сильнее поглощает атмосфера, а также колебаний, обусловленных чередованием дня и ночи.

       Тем не менее солнечные фотоэлементы уже сегодня находят свое специфическое применение. Они оказались практически незаменимыми источниками электрического тока в ракетах, спутниках и автоматических межпланетных станциях, а на Земле– в первую очередь для питания телефонных сетей в не электрифицированных районах или же для малых потребителей тока (радио­аппаратура, электрические бритвы и т.п.). Полупроводниковые солнечные батареи впервые были установлены на третьем советском искусственном спут­нике Земли (запущенном на орбиту15 мая1958 г.).

      Идет работа, идут оценки. Пока они, надо признать, не в пользу солнечных электростанций: сегодня эти сооружения все еще относятся к наиболее сложным и самым дорогостоящим техническим методам использования гелиоэнергии. Нужны новые варианты, новые идеи. Недостатка в них нет. С реализацией хуже.
    продолжение
--PAGE_BREAK--
еще рефераты
Еще работы по производству