Реферат: Расчет кожухотрубного теплообменного аппарата

--PAGE_BREAK--

Кафедра  АТПП.

                                                                 
КУРСОВАЯ РАБОТА
По дисциплине:                              Гидроаэромеханика и тепломассообмен­­­­______________                                  

(наименование учебной дисциплины согласно учебному плану)
ЗАДАНИЕ
студенту группы         АПМ-07-2                               Лебедику Н.В.

                                       (шифр группы)                                                        (Ф.И.О.)



1. Тема работы:  Расчет кожухотрубного теплообменного аппарата
_




2. Исходные данные к работе: Рассчитать и выбрать кожухотрубчатый испаритель для испарения 2000 кг/ч уксусной кислоты начальной с температурой 35 градусов при давлении 1,5*105 Па.


3. Содержание пояснительной  записки: Требования к содержанию пояснительной записки изложены в методических указаниях.
4. Срок сдачи законченной работы:     4   мая  2010 г.
Руководитель проекта:   _______        ________________               /Иванов П.В./

                                          (должность)                         (подпись)                                             (Ф.И.О.)
Дата выдачи задания:  25 февраля 2010г.
Аннотация

.

Пояснительная записка представляет собой отчет о выполнении курсовой работы  на тему: «Расчет кожухотрубного теплообменного аппарата».

Описанная в работе методика и формулы дают возможность рассчитать скорость теплоносителей в трубах теплообменника, критерии Рейнольдса (Re), средние температуры теплоносителей, критерии Нуссельта (Nu), коэффициенты теплоотдачи обоих теплоносителей. Далее при помощи полученных числовых данных производится расчет геометрических параметров кожухотрубного теплообменника.

Для написания курсовой работы использовались: расчеты произведены в среде Mathcad, чертеж выполнен в Компас 3D график, а отчет -  в Microsoft Word.

Страниц23, таблиц1, рисунков2.
Оглавление

Аннотация… 3

Введение… 5

1. Общие сведения о теплообменных аппаратах… 6

Поверхностные теплообменники… 6

Смесительные теплообменники… 7

Кожухотрубный теплообменный аппарат… 8

2. Расчетная часть… 14

2.1.Содержательная формулировка задачи… 14

2.2. Условие задания… 14

2.3. Расчет теплообменного аппарата… 14

3. Результаты расчета… 21

Заключение… 22

Библиографический список… 23

                                                                        
Введение

Теплообменными аппаратами, или теплообменниками, называются устройства для передачи тепла от одних сред (горячих теплоносителей) к другим (холодным теплоносителям). Теплообменные аппараты применяются для нагревания и охлаждения веществ в различных агрегатных состояниях, испарения жидкостей и конденсации паров, перегонки и сублимации, абсорбции и адсорбции, расплавления твердых тел и кристаллизации, отвода и подвода тепла при проведении экзо- и эндотермических реакций и т.д. Соответственно своему назначению теплообменные аппараты называют подогревателями, холодильниками, испарителями, конденсаторами, дистилляторами, сублиматорами, плавителями и т.п.

Рассмотрим один из теплообменных аппаратов — испаритель.

Испаритель — это теплообменный аппарат, в котором хладагент кипит за счет теплоты, отнимаемой от хладоносягеля.

Кожухотрубные испарители используются в торговых и промышленных установках. Кожухотрубные испарители состоят из цилиндрического стального кожуха, в котором установлены трубы. Трубы удерживаются в кожухе перегородками, расположенными по всей длине. Концы труб смонтированы на толстых стальных дисках, которые называются трубными решетками, приваренных к кожуху. Концы труб вставлены в саму трубу. У таких испарителей относительно высокая производительность, они требуют минимальной площади и высоты, легко обслуживаются и приспосабливаются почти для любого охлаждения жидкости. Благодаря этому кожухотрубные испарители применяются наиболее широко.

Существует несколько типов таких испарителей. Устройство трубы зависит от подачи хладагента и типа хладагента. Если испаритель затопленный, охлаждаемая жидкость проходит по трубе, а хладагент содержится в кожухе. Уровень жидкого хладагента в кожухе поддерживает поплавковый регулятор. Если испаритель змеевиковый, хладагент подается в трубы распределителем, а охлаждаемая жидкость проходит через кожух. В большинстве случаев охлаждаемая жидкость проходит через испаритель и соединительный трубопровод при помощи одного или более насоса центробежного типа.




1. Общие сведенияо теплообменных аппаратах
Теплообменники по способу передачи теплоты подразделяют на поверхностные, где отсутствует непосредственный контакт теплоносителей, а передача тепла происходит через твёрдую стенку, и смесительные где теплоносители контактируют непосредственно. Поверхностные теплообменники в свою очередь подразделяются на рекуперативные и регенеративные, в зависимости от одновременного или поочерёдного контакта теплоносителей с разделяющей их стенкой. Теплообменные аппараты поверхностного типа, кроме того классифицируются по назначению (подогреватели, холодильники и т.д.); по взаимному направлению теплоносителей (прямоток, противоток, смешанный ток и т.д.); по материалу поверхности теплообмена; по числу ходов и т.д.

Поверхностные теплообменники

1)      Рекуперативные теплообменники

Рекуперативный теплообменник — теплообменник, в котором горячий и холодный теплоносители движутся в разных каналах, в стенке между которыми происходит теплообмен. При неизменных условиях параметры теплоносителей на входе и в любом из сечений каналов, остаются неизменными, независимыми от времени, т.е процесс теплопередачи имеет стационарный характер. Поэтому рекуперативные теплообменники называют также стационарными. Рекуператоры могут работать как в периодическом, так и в непрерывном режимах

В зависимости от направления движения теплоносителей рекуперативные теплообменники могут быть прямоточными при параллельном движении в одном направлении, противоточными при параллельном встречном движении, а также перекрестноточными при взаимно перпендикулярном движении двух взаимодействующих сред.

Наиболее распространённые в промышленности рекуперативные теплообменники:

— кожухотрубные теплообменники,

— элементные (секционные) теплообменники,

— двухтрубные теплообменники типа «труба в трубе»,

— витые теплообменники,

— погружные теплообменники,

— оросительные теплообменники,

— ребристые теплообменники,

— спиральные теплообменники,

— пластинчатые теплообменники,

— пластинчато-ребристые теплообменники,

— графитовые теплообменники.

2)  Регенеративные теплообменники

В регенеративных поверхностных теплообменниках теплоносители (горячий и холодный) контактируют с твердой стенкой поочерёдно. Теплота накапливается в стенке при контакте с горячим теплоносителем и отдаётся при контакте с холодным. Регенераторы являются аппаратами периодического действия.

Смесительные теплообменники

Смесительный теплообменник (контактный теплообменник) — теплообменник, предназначенный для осуществления тепло- и массообменных процессов путем прямого смешивания сред. Наиболее распространены пароводяные струйные аппараты ПСА — теплообменники струйного типа, использующие в своей основе струйный инжектор. Смесительные теплообменники конструктивно устроены проще, нежели поверхностные, более полно используют тепло. Однако, пригодны они лишь в случаях, когда по технологическим условиям произ­водства допустимо смешение рабочих сред.

Большое применение контактные теплообменники находят в установках утилизации тепла дымовых газов, отработанного пара и т.п.
Кожухотрубный теплообменный аппарат

Наиболее широкое распространение получили кожухотрубные теплообменные аппараты (рис. 1), используемые для теплообмена между потоками в различных агрегатных состояниях (пар—жидкость, жидкость—жидкость, газ—газ, газ— жидкость). Аппарат состоит из пучка труб, помещенного внутри цилиндрического корпуса (обечайки), сваренного из листовой стали, реже — литого. Трубки завальцованы в двух трубных решетках или приварены к ним в зависимости от свойств конструкционных материалов. Трубки размещаются в пучке в шахматном порядке, по вершинам равностороннего треугольника, с шагом s/d = (1,25—2,20), где d — наружный диаметр труб. Аппарат снабжен двумя съемными крышками со штуцерами для входа и выхода теплоносителя, движущегося внутри труб. Трубное и межтрубное пространства разобщены. Второй теплоноситель движется в межтрубном пространстве, снабженном входным и выходным штуцерами. По трубам движется, как правило, тот поток, который содержит взвешенные твердые частицы (для удобства чистки), находится под большим давлением (чтобы не утяжелять корпус) или обладает агрессивными свойствами (для предохранения корпуса от коррозии). Площадь проходного сечения межтрубного пространства значительно больше (иногда в 2 раза) суммарного живого сечения труб, поэтому при одинаковых объемных расходах теплоносителей коэффициент теплоотдачи со стороны межтрубного пространства оказывается более низким. Для устранения этого явления прибегают к увеличению скорости теплоносителя путем размещения различных перегородок в межтрубном пространстве. В кожухотрубных теплообменниках достигаются достаточно большие отношения  теплообменной поверхности к объему и массе. Размеры поверхности теплообмена легко можно варьировать в широких пределах, конструкция имеет достаточную прочность и выдерживает нормальные нагрузки при сборке, перевозке и монтаже теплообменника, а также внутренние и внешние напряжения в обычных условиях эксплуатации. Очистка кожухотрубного теплообменника вызывает затруднений, а его элементы, наиболее подвержены коррозии, — прокладки и трубы — легко могут быть заменены. Конструктивные особенности позволяют применять этот тип почти во всех случаях, включая предельно низкие или высокие температуры и давления, большие градиенты температур, при  испарении и конденсации и использовании сильно загрязненных и коррозионно-активных теплоносителей.


Трубы являются основным элементом, обеспечивающим теплопередачу между теплоносителем, протекающим внутри тубы и в межтрубном пространстве. Трубы могут быть либо гладкими, либо с невысокими ребрами  снаружи. В последнем случае наружный диаметр ребра выбирается немного меньше, чем наружный диаметр неоребренных концов труб, что позволяет  вставлять оребренные трубы через отверстия в трубной досках на каждом конце (за исключением U-образных труб, которые закрепляются только одной трубной доске). Трубы либо  развальцовываются в трубной доске, либо привариваются к ним снаружи. В некоторых случаях при низких давлениях трубы просто вставляются в  отверстия в трубных досках.

Трубная доска представляет собой металлический диск, в котором имеются отверстия для труб, элементов уплотнений, дистанционирующих решеток и крепежных болтов, если трубная доска привинчивается к фланцу кожуха (трубная доска может быть также приварена к кожуху).

Кожух имеет вид цилиндра, внутри которого помещены трубы и циркулирует теплоноситель. Кожух малого диаметра (до 0,6м) можно изготовить из трубы, обрезав ее до желаемой длины.

Теплоноситель поступает в кожух через входной патрубок и выходит через выходной. Чаще всего патрубки изготовляются из стандартных труб, которые привариваются к кожуху. Там, где требуются малые потери давления, равномерное распределение теплоносителя или защита от коррозии, применяются специальные конструкции. В тех случаях, когда в межтрубное пространство подается двухфазный поток или насыщенный пар, внутри кожуха за входным патрубком могут быть установлены отражающие пластины, имеющие несколько большие размеры, чем сечение патрубка.

Распределение теплоносителя по трубам осуществляется через коллекторы и патрубки. Поскольку теплоноситель, протекающий через трубы, в большей степени способствует коррозии, эти элементы могут быть изготовлены из сплавов или низкоуглеродистых сталей с наплавленным или нанесенным взрывом покрытием крышки сборного и распределительного коллектора прикрепляются таким образом, чтобы обеспечить без повреждений осмотр трубной доски и труб. Для теплоносителя, текущего по трубам, могут быть использованы вместо коллекторов завинчивающиеся крышки с боковыми патрубками.

Важным элементом большинства кожухотрубных теплообменников является набор перегородок. Они предохраняют трубы от изгиба и вибрации, а также направляют поток поперек труб для улучшения теплоотдачи(и, как следствие, увеличивают перепад давления).

 Кожухотрубные теплообменные аппараты могут использоваться в качестве теплообменников, холодильников, конденсаторов и испарителей.

Испарители классифицируют по наиболее характерным признакам. По характеру охлаждаемой среды (по назначению) различают испарители для охлаждения жидких хладоносителей и технологических продуктов; для охлаждения воздуха и газообразных технологических продуктов, т. е. когда происходит непосредственный теплообмен между охлаждаемым объектом и хладагентом; для охлаждения твердых технологических продуктов; испарители-конденсаторы.

В холодильной технике теплообменные аппараты, используемые для охлаждения жидких хладоносителей и жидких технологических продуктов, называют испарителями, а аппараты для охлаждения воздуха — батареями и воздухоохладителями.

В зависимости от условий циркуляции охлаждаемой жидкости испарители могут быть закрытого или открытого типов. Испарителями закрытого типа называют испарители с закрытой системой циркуляции охлаждаемой жидкости, прокачиваемой насосом. К ним относятся кожухотрубные и кожухозмеевиковые испарители. Испарителями открытого типа называют испарители с открытым уровнем охлаждаемой жидкости, циркуляция которой создается мешалкой. К ним относятся вертикально-трубные и панельные испарители.

По характеру заполнения хладагентом испарители разделяют на затопленные и незатопленные. К последним относятся оросительный, кожухотрубный с кипением в трубах, а также змеевиковый испарители с верхней подачей жидкости.

Испарители также разделяют на группы в зависимости от того, на какой поверхности кипит хладагент: в межтрубном пространстве (кожухотрубные затопленные и оросительные) или внутри труб и каналов (кожухотрубные с кипением в трубах, вертикально-трубные и панельные). Последнее разделение важно с точки зрения выбора модели для расчета теплоотдачи кипящей жидкости.

Испарители с вертикальными трубами обладают рядом положительных свойств, в частности, при намораживании льда на поверхности труб не происходит разрушений, что важно при охлаждении воды в аккумуляторах. Недостатком этих аппаратов является большая металлоемкость и сложность сварочных работ.

Разновидностью испарителей с вертикальными трубами является панельный испаритель, состоящий из прямоугольного металлического или железобетонного бака, в который помещены испарительные секции панельного типа и мешалка, создающая циркуляцию хладоносителя. Использование панельных испарителей позволяет уменьшить массу на 25—30% (по сравнению с трубчатыми аппаратами), в 5—6 раз снизить расход бесшовных труб, стоимость которых почти втрое выше стоимости листового материала, уменьшить вместимость аппарата по хладагенту.

Наиболее эффективны испарители с трубами, имеющими одновременно внутреннее и наружное оребрение. При проектировании аппаратов с большой плотностью теплового потока необходимо обеспечивать интенсификацию теплообмена со стороны фреонов различными методами (использование насадок, турбувизирующих поток, оребрение, режимный метод интенсификации, переход к насосной подаче хладагента), уменьшающими термическое сопротивление со стороны хладагента.

Конкретный выбор типа аппарата зависит от относительной значимости отдельных факторов и назначения аппарата: стоимости изготовления аппарата (капитальные затраты), эксплуатационных расходов (особенно расходов на прокачку теплоносителя), возможности очистки аппарата, склонности к коррозии, разности рабочих давлений сред, опасностей, связанных с утечкой хладоносителя, рабочего диапазона температур, возможности возникновения вибрации труб, и появления усталостных повреждений.

 Кожухотрубные аппараты соответственно местным условиям располагаются вертикально или горизонтально; при необходимости удлинения пути теплоносителей они могут соединяться последовательно, а при невозможности размещения требуемого числа труб в одном корпусе их соединяют параллельно, могут быть одно-, двух-, четырех- и шестиходовыми по трубному пространству. Трубы, кожух и другие элементы конструкции могут быть изготовлены из углеродистой или нержавеющей стали.

           При конструкции различают теплообменники с неподвижными трубными решетками, в которых обе решетки жестко прикреплены к корпусу и трубы не могут свободно удлиняться, и теплообменники с компенсирующими устройствами, в которых трубы могут свободно удлиняться.

В теплообменниках с неподвижными трубными решетками при различном тепловом удлинении труб и кожуха возникают температурные напряжения; поэтому такие теплообменники применяют при небольшой разности температур между трубами и кожухом.

Для одноходовых теплообменников при сравнительно небольших расходах жидкости скорость её движения в трубах низка и, следовательно, коэффициенты теплоотдачи невелики. Для увеличения последних при данной поверхности теплообмена можно уменьшить диаметр труб, соответственно увеличив их высоту (длину). Однако теплообменники небольшого диаметра и значительной высоты не удобны для монтажа, требуют высоких помещений и повышенного расхода металла на изготовление деталей, не участвующих непосредственно в теплообменниках.


<img border=«0» width=«259» height=«679» src=«ref-2_1714188879-35997.coolpic» v:shapes="_x0000_i1027">

<img border=«0» width=«242» height=«268» src=«ref-2_1714224876-15596.coolpic» v:shapes="_x0000_i1028">



Рис. 1. Кожухотрубный теплообменный аппарат.

1 — корпус; 2 — трубы; 3 — трубные решетки; 4 — крышки; 5 — штуцеры для входа и выхода из трубного пространства; 6 — штуцеры для входа и выхода из межтрубного пространства; 7 — поперечные перегородки межтрубного пространства; 8, 9 — опорные липы соответственно при вертикальном и горизонтальном расположениях аппарата.
2.Расчетная часть

Целью выполнения курсовой работы является расчет кожухотрубного испарителя. В данном разделе представлена формулировка задачи для расчета кожухотрубного испарителя, представляются исходные данные, необходимые расчетные формулы и расчеты.

2.1.Содержательная формулировка задачи
Задачей расчета кожухотрубного испарителя является определение основных размеров аппарата. Здесь рассматривается определение диаметра корпуса аппарата, количество, диаметр и длины трубок, выбор размещения трубок, скорость движения теплоносителей.

2.2. Условие задания

Рассчитать и выбрать кожухотрубчатый испаритель для испарения 2000 кг/ч уксусной кислоты начальной с температурой 35 градусов при давлении 1,5*105 Па.

2.3. Расчет теплообменного аппарата

Движущей силой любого процесса теплообмена является разность температур теплоносителей. Обозначим массовые расходы теплоносителей через <img border=«0» width=«20» height=«23» src=«ref-2_1714240472-104.coolpic» v:shapes="_x0000_i1029">    продолжение
--PAGE_BREAK-- и <img border=«0» width=«21» height=«23» src=«ref-2_1714240576-106.coolpic» v:shapes="_x0000_i1030"> (кг/ч), их удельные теплоемкости  — <img border=«0» width=«16» height=«23» src=«ref-2_1714240682-92.coolpic» v:shapes="_x0000_i1031">, <img border=«0» width=«17» height=«23» src=«ref-2_1714240774-94.coolpic» v:shapes="_x0000_i1032"> (Дж/кг K), а их температуры входа и выхода из теплообменного аппарата — соответственно через <img border=«0» width=«129» height=«24» src=«ref-2_1714240868-236.coolpic» v:shapes="_x0000_i1033">. Для процесса испарения <img border=«0» width=«21» height=«23» src=«ref-2_1714240576-106.coolpic» v:shapes="_x0000_i1034"> кг/с жидкости с начальной температурой <img border=«0» width=«15» height=«24» src=«ref-2_1714241210-92.coolpic» v:shapes="_x0000_i1035"> и начальной удельной теплоемкостью <img border=«0» width=«17» height=«23» src=«ref-2_1714240774-94.coolpic» v:shapes="_x0000_i1036"> потоком жидкости (газа) <img border=«0» width=«20» height=«23» src=«ref-2_1714240472-104.coolpic» v:shapes="_x0000_i1037"> кг/с с удельной теплоемкостью <img border=«0» width=«16» height=«23» src=«ref-2_1714240682-92.coolpic» v:shapes="_x0000_i1038"> начальной <img border=«0» width=«13» height=«23» src=«ref-2_1714241592-91.coolpic» v:shapes="_x0000_i1039"> и конечной  <img border=«0» width=«15» height=«23» src=«ref-2_1714241683-94.coolpic» v:shapes="_x0000_i1040"> температурами получим:

<img border=«0» width=«237» height=«32» src=«ref-2_1714241777-2022.coolpic» v:shapes="_x0000_i1041">

причем i2 — энтальпия образовавшегося пара.

Из этого уравнения находим тепловую нагрузку аппарата и расход вещества, за счет которого испаряется уксусная кислота. Определяем объемный расход обоих веществ. Для этого надо выбрать вещество, за счет которого будет испаряться уксусная кислота и рассчитать среднюю разницу температур между теплоносителями.

Пусть в трубном пространстве течет вещество, которое будет испаряться (будем обозначать его индексом 1), а в межтрубном – которым будем испарять (будем обозначать его индексом 2). Вещества обычно направляют противотоком друг к другу. При противотоке всегда требуется меньшая теплопередающая поверхность, чем при прямотоке, для передачи равного количества тепла в одинаковых условиях начальных и конечных температур сред.

В подавляющем большинстве случаев температуры сред в процессе теплопередачи будут изменяться в результате происходящего теплообмена, а следовательно, будет изменяться и разность температур <img border=«0» width=«40» height=«17» src=«ref-2_1714243799-156.coolpic» v:shapes="_x0000_i1042"> вдоль поверхности теплообмена. Поэтому рассчитывают среднюю разность температур по длине аппарата <img border=«0» width=«23» height=«19» src=«ref-2_1714243955-137.coolpic» v:shapes="_x0000_i1043">, но так как это изменение не линейно, то рассчитывают логарифмическую разность температур.

<img border=«0» width=«128» height=«64» src=«ref-2_1714244092-475.coolpic» v:shapes="_x0000_i1044">

где <img border=«0» width=«25» height=«24» src=«ref-2_1714244567-113.coolpic» v:shapes="_x0000_i1045"> и <img border=«0» width=«27» height=«24» src=«ref-2_1714244680-118.coolpic» v:shapes="_x0000_i1046">— большая и меньшая разности температур па концах теплообменника.

Выбираем, что в трубном пространстве течет уксусная кислота, а в межтрубном- анилин.

1. Определяем среднюю разность температур при противотоке теплоносителей.

<img width=«255» height=«12» src=«ref-2_1714244798-138.coolpic» v:shapes="_x0000_s1026">35 <img border=«0» width=«24» height=«21» src=«ref-2_1714244936-106.coolpic» v:shapes="_x0000_i1047">      уксусная кислота  118<img border=«0» width=«24» height=«21» src=«ref-2_1714244936-106.coolpic» v:shapes="_x0000_i1048">

<img width=«255» height=«12» src=«ref-2_1714245148-143.coolpic» v:shapes="_x0000_s1027">95<img border=«0» width=«24» height=«21» src=«ref-2_1714244936-106.coolpic» v:shapes="_x0000_i1049">       анилин                 145<img border=«0» width=«24» height=«21» src=«ref-2_1714244936-106.coolpic» v:shapes="_x0000_i1050">

_____________              ____________

<img border=«0» width=«80» height=«25» src=«ref-2_1714245503-194.coolpic» v:shapes="_x0000_i1051">                   <img border=«0» width=«81» height=«25» src=«ref-2_1714245697-197.coolpic» v:shapes="_x0000_i1052">

Отношение <img border=«0» width=«103» height=«47» src=«ref-2_1714245894-307.coolpic» v:shapes="_x0000_i1053">, следовательно, средняя разность температур:

<img border=«0» width=«240» height=«69» src=«ref-2_1714246201-680.coolpic» v:shapes="_x0000_i1054">

2. Рассчитаем среднюю температуру каждого теплоносителя.

<img border=«0» width=«156» height=«43» src=«ref-2_1714246881-350.coolpic» v:shapes="_x0000_i1055">для уксусной кислоты

<img border=«0» width=«155» height=«43» src=«ref-2_1714247231-347.coolpic» v:shapes="_x0000_i1056">для анилина

Выпишем теплофизические свойства теплоносителей при их

средних температурах


Таблица 1



3. Рассчитаем тепловую нагрузку аппарата.


Так как в заданном нам процессе происходит изменение агрегатного состояние вещества, то тепловая нагрузка находится по формуле:

<img border=«0» width=«436» height=«41» src=«ref-2_1714247936-820.coolpic» v:shapes="_x0000_i1061"> , где

    i— энтальпия образовавшегося пара, равная <img border=«0» width=«225» height=«24» src=«ref-2_1714248756-376.coolpic» v:shapes="_x0000_i1062">

с1– теплоемкость уксусной кислоты, Дж/(кгК),

G1– массовый расход уксусной кислоты, кг/ч,

<img border=«0» width=«19» height=«24» src=«ref-2_1714249132-100.coolpic» v:shapes="_x0000_i1063">-начальная температура уксусной кислоты, <img border=«0» width=«23» height=«21» src=«ref-2_1714249232-105.coolpic» v:shapes="_x0000_i1064">.

4. Рассчитываем расход анилина.


Исходя из уравнения и ранее найденной тепловой нагрузки на аппарат, вычисляем расход анилина, с помощью которого испаряем уксусную кислоту:

<img border=«0» width=«287» height=«48» src=«ref-2_1714249337-660.coolpic» v:shapes="_x0000_i1065"> кг/с, где

Q– тепловая нагрузка аппарата, Дж/с,

с2- теплоемкость анилина, Дж/(кгК),

<img border=«0» width=«44» height=«24» src=«ref-2_1714249997-133.coolpic» v:shapes="_x0000_i1066">-начальная и конечная температуры анилина, <img border=«0» width=«23» height=«21» src=«ref-2_1714249232-105.coolpic» v:shapes="_x0000_i1067">.

5. Найдем объемный расход веществ.


<img border=«0» width=«268» height=«48» src=«ref-2_1714250235-622.coolpic» v:shapes="_x0000_i1068"> — объемный расход уксусной кислоты, где

<img border=«0» width=«20» height=«23» src=«ref-2_1714240472-104.coolpic» v:shapes="_x0000_i1069"> — массовый расход уксусной кислоты, кг/ч,

<img border=«0» width=«19» height=«23» src=«ref-2_1714250961-98.coolpic» v:shapes="_x0000_i1070"> — плотность уксусной кислоты, <img border=«0» width=«45» height=«21» src=«ref-2_1714251059-139.coolpic» v:shapes="_x0000_i1071">.

<img border=«0» width=«232» height=«48» src=«ref-2_1714251198-543.coolpic» v:shapes="_x0000_i1072">— объемный расход анилина, где

<img border=«0» width=«21» height=«23» src=«ref-2_1714240576-106.coolpic» v:shapes="_x0000_i1073"> — массовый расход анилина, кг/с,

<img border=«0» width=«20» height=«23» src=«ref-2_1714251847-100.coolpic» v:shapes="_x0000_i1074"> — плотность анилина, <img border=«0» width=«45» height=«21» src=«ref-2_1714251059-139.coolpic» v:shapes="_x0000_i1075">.

6. Находим скорость течения жидкостей.

По ГОСТ 15121-79 выбираем внутренний и наружный диаметр трубок, а также диаметр кожуха. Т.о., внутренний диаметр трубок d1=0,025 м, а наружный d2=d1+0,0025*2=0,029м, диаметр кожуха D=0,159 м. Число трубок к данным n=19.

Определяем скорость движения теплоносителей по формулам :

<img border=«0» width=«55» height=«21» src=«ref-2_1714252086-150.coolpic» v:shapes="_x0000_i1076">, где <img border=«0» width=«69» height=«44» src=«ref-2_1714252236-221.coolpic» v:shapes="_x0000_i1077">

<img border=«0» width=«69» height=«41» src=«ref-2_1714252457-232.coolpic» v:shapes="_x0000_i1078">, где

Q– тепловой поток (расход передаваемой теплоты), Вт,

 F —  площадь поверхности теплопередачи, м2,

 w– скорость течения жидкостей, м/с,

 n – количество трубок внутри кожуха,

 d – диаметр трубок, м.

<img border=«0» width=«255» height=«44» src=«ref-2_1714252689-646.coolpic» v:shapes="_x0000_i1079">м/с скорость течения уксусной кислоты внутри трубок.

Находим площадь сечения межтрубного пространства:


<img border=«0» width=«68» height=«19» src=«ref-2_1714253728-156.coolpic» v:shapes="_x0000_i1081"><img border=«0» width=«23» height=«21» src=«ref-2_1714253884-106.coolpic» v:shapes="_x0000_i1082">

<img border=«0» width=«209» height=«44» src=«ref-2_1714253990-488.coolpic» v:shapes="_x0000_i1083">м/с скорость течения анилина в межтрубном пространстве.

7.Определяем режим движения в межтрубном  пространстве с помощью критерия Рейнольдса.


Анилин течет по межтрубному пространству.

<img border=«0» width=«319» height=«47» src=«ref-2_1714254478-720.coolpic» v:shapes="_x0000_i1084">  для анилина

Ламинарный  режим течения.

8. Рассчитаем критерий Прандтля.


<img border=«0» width=«244» height=«48» src=«ref-2_1714255198-556.coolpic» v:shapes="_x0000_i1085"> для анилина

9.Найдем критерий Нуссельта для анилина.


Для расчета критерия Нуссельта необходимо правильно выбрать расчетное уравнения. Re>10000:




<img border=«0» width=«469» height=«28» src=«ref-2_1714256533-804.coolpic» v:shapes="_x0000_i1090">              

10.  Найдем коэффициенты теплоотдачи.

Т.к. <img border=«0» width=«75» height=«41» src=«ref-2_1714257337-225.coolpic» v:shapes="_x0000_i1091">, то можно записать формулу для определения коэффициента теплоотдачи для анилина:

<img border=«0» width=«241» height=«47» src=«ref-2_1714257562-564.coolpic» v:shapes="_x0000_i1092"> Вт/м<img border=«0» width=«11» height=«20» src=«ref-2_1714258126-79.coolpic» v:shapes="_x0000_i1093">К

Коэффициент теплоотдачи для уксусной кислоты находим по формуле:

Р=0,15 МПа              <img border=«0» width=«52» height=«21» src=«ref-2_1714258205-146.coolpic» v:shapes="_x0000_i1094">

<img border=«0» width=«444» height=«25» src=«ref-2_1714258351-719.coolpic» v:shapes="_x0000_i1095"> Вт/м<img border=«0» width=«11» height=«20» src=«ref-2_1714258126-79.coolpic» v:shapes="_x0000_i1096">К

<img border=«0» width=«117» height=«21» src=«ref-2_1714259149-236.coolpic» v:shapes="_x0000_i1097">

<img border=«0» width=«256» height=«21» src=«ref-2_1714259385-411.coolpic» v:shapes="_x0000_i1098">

<img border=«0» width=«201» height=«24» src=«ref-2_1714259796-349.coolpic» v:shapes="_x0000_i1099"> Вт/м<img border=«0» width=«11» height=«20» src=«ref-2_1714258126-79.coolpic» v:shapes="_x0000_i1100">К

11. Определение коэффициента теплопередачи для цилиндрической стенки.


<img border=«0» width=«228» height=«71» src=«ref-2_1714260224-799.coolpic» v:shapes="_x0000_i1101">

<img border=«0» width=«71» height=«24» src=«ref-2_1714261023-171.coolpic» v:shapes="_x0000_i1102">Вт/мК

<img border=«0» width=«389» height=«65» src=«ref-2_1714261194-945.coolpic» v:shapes="_x0000_i1103">

12. Расчет длины трубок.

Требуемая длина трубок находится по формуле:

<img border=«0» width=«225» height=«49» src=«ref-2_1714262139-558.coolpic» v:shapes="_x0000_i1104"> 

Общее количество трубок в аппарате равно 19, длину каждой из трубок находим по формуле:

<img border=«0» width=«175» height=«41» src=«ref-2_1714262697-393.coolpic» v:shapes="_x0000_i1105">

Расположение труб в пучке определяется способом разбивки, шагом и числом ходов. В теплообменных аппаратах применяются следующие способы разбивки труб:

1) Шахматная, определяемая поперечным  шагом ( частный случай треугольная).

2) Коридорная (частный случай квадратная).

Выбор размещения трубок производится с учетом таких требований:

-достижение максимальной компактности устройства, приводящей к уменьшению диаметра корпуса аппарата, а также к уменьшению сечения межтрубного пространства, что увеличивает скорость движущейся в нем рабочей среды и повышает коэффициент теплопередачи;

-обеспечение достаточной прочности;

-придание конструкции аппарата максимальной «технологичности» в смысле облегчения условий изготовления и ремонта аппарата.

Преимущественно распространение на практике получил первый из этих способов.

Схема размещения трубок, дающая шахматный трубный пучок, показана на рис 2. Чертеж выполнен в Компас 3D график.

<img border=«0» width=«604» height=«632» src=«ref-2_1714263090-60043.coolpic» v:shapes="_x0000_i1025">

Рис. 2. Размещение труб в пучке при шахматной разбивке
3. Результаты расчета
Задавшись выше целью работы, были решены следующие задачи:

а) Рассчитана средняя разность температур <img border=«0» width=«104» height=«25» src=«ref-2_1714323133-218.coolpic» v:shapes="_x0000_i1106">    продолжение
--PAGE_BREAK--
еще рефераты
Еще работы по производству