Реферат: Разработка усилителя мощности звуковой частоты

--PAGE_BREAK--<img width=«695» height=«1073» src=«ref-2_299485789-4976.coolpic» v:shapes="_x0000_s1189 _x0000_s1190 _x0000_s1191 _x0000_s1192 _x0000_s1193 _x0000_s1194 _x0000_s1195 _x0000_s1196 _x0000_s1197 _x0000_s1198 _x0000_s1199 _x0000_s1200 _x0000_s1201 _x0000_s1202 _x0000_s1203 _x0000_s1204 _x0000_s1205 _x0000_s1206 _x0000_s1207 _x0000_s1208">ГЛАВА 4 НОРМИРУЮЩИЙ УСИЛИТЕЛЬ

Номинальное выходное напряжение источников звуковых программ, таких как магнитофон или тюнер, составляет около 200 мВ. Таким же обычно делают и выходное напряжение микрофонного усилителя и предусилителя корректора. Проходя через цепи регулировок громкости и баланса, оно, как правило, несколько уменьшается. Вместе с тем номинальное входное напряжение таких уз­лов усилителя, как регуляторы тембра, квадрапреобразователи, усилители мощности, обычно выбирают около 800 мВ.

Для согласования источников звуковых программ со входами предвыходных и выходных каскадов усилителя 3Ч применяют нормирующие усилители. К основным его техническим показателям относятся входное и выходное сопротивления, коэффициент усиления, перегрузочная способность, линейные и нелинейные искажения, отношение сигнал-шум, динамический диапазон, стабиль­ность показателей. Нормирующий усилитель имеет плоскую АЧХ в диапазоне рабочих частот. Он часто является первым каска­дом в тракте усилителя 3Ч, поэтому его шумовые свойства существенно влияют на достижимый динамический диапазон всего усилителя в целом.

Как было отмечено, получить более качественные показатели при отсутствии специализированных микросхем можно, если собрать функциональные узлы усилителя на дискретных компонентах, основываясь на схемотехнике ОУ По схемам, описанным в предыдущих разделах, усилитель можно вы­полнить, изменив цепи ООС и нормируюшие усилители Здесь приведено описание еще одной схемы ОУ на дискретных ком понентах, использованной для нормирую­щего усилителя, обладающего следующими основными   техническими   характеристиками

Входное   номинальное   напряжение

0,1 В

Входное максимальное напряжение

18
В


Выходное максимальное напряжение

14 В

Перегрузочная    способность неменее

25 дБ

Коэффициент гармоник, не более   

0,01 %

Отношение  сигнал шум   (невзвешенное)

78 дБ

Номинальный диапазон частот

10   100000 Гц

Напряжение   питания

±24 В

Ток потребления

15 мА

Схема нормирующего усилителя, приведен­ная на рисунке 5, сложная, так как требуемые характеристики здесь достаточно высокие гармонические искажения гораздо ниже 0,01 % при выходном напряжении 14 В, что на 25 дБ выше номинального уровня.
Входной каскад усилителя состоит из диф­ференциального усилителя (на транзисторах VT2 и VT4), в котором для улучшения параметров используются источники тока на транзисторах VT1 и VT3. Коллекторный ток <img width=«695» height=«1073» src=«ref-2_299490765-4967.coolpic» v:shapes="_x0000_s1229 _x0000_s1230 _x0000_s1231 _x0000_s1232 _x0000_s1233 _x0000_s1234 _x0000_s1235 _x0000_s1236 _x0000_s1237 _x0000_s1238 _x0000_s1239 _x0000_s1240 _x0000_s1241 _x0000_s1242 _x0000_s1243 _x0000_s1244 _x0000_s1245 _x0000_s1246 _x0000_s1247 _x0000_s1248">каскада оптимизирован, чтобы иметь хоро­шую шумовую характеристику. Кроме того, в качестве входных использованы транзис­торы структуры р-п-р типа, имеющие мень­шее объемное сопротивление базы по срав­нению с транзисторами структуры п-р-п. Эмиттерный повторитель на транзисторе VT5 согласует входной каскад с последующей частью узла.

Основное усиление обеспечивает каскад на транзисторе VT6, в котором, чтобы получить максимальное усиление при минималь­ных искажениях, применяется источник тока на транзисторе VT7. Выходной эмиттерный повторитель на транзисторе VT8 с активной нагрузкой на транзисторе VT9 устраняет влияние нагрузки на параметры нормирую­щего усилителя. Для улучшения темпера­турной стабильности узла в качестве образ­цов источников напряжения используются светодиоды HL1 и HL2. Диод VDIзащищает конденсатор С6 от положительного напря­жения. Цепь ООС С6, R10, R11, охваты­вающая усилитель, обеспечивает его необ­ходимый коэффициент усиления. Конденса­торы С7 и С8 предотвращают самовозбуждение нормирующего усилителя.

Налаживание усилителя заключается в установке необходимого коэффициента уси­ления подбором резистора R10.

<img width=«492» height=«288» src=«ref-2_299495732-24631.coolpic» v:shapes="_x0000_i1025">

Рис. 5

    продолжение
--PAGE_BREAK--<img width=«695» height=«1073» src=«ref-2_299520363-4964.coolpic» v:shapes="_x0000_s1249 _x0000_s1250 _x0000_s1251 _x0000_s1252 _x0000_s1253 _x0000_s1254 _x0000_s1255 _x0000_s1256 _x0000_s1257 _x0000_s1258 _x0000_s1259 _x0000_s1260 _x0000_s1261 _x0000_s1262 _x0000_s1263 _x0000_s1264 _x0000_s1265 _x0000_s1266 _x0000_s1267 _x0000_s1268">ГЛАВА 5 РЕГУЛЯТОР ГРОМКОСТИ


Для наиболее комфортного прослушивания, АЧХ регулятора громкости должна иметь вид, представленный на рисунке 6.

<img width=«452» height=«408» src=«ref-2_299525327-22308.coolpic» v:shapes="_x0000_s1310"><img width=«444» height=«400» src=«ref-2_299547635-73.coolpic» v:shapes="_x0000_i1042">

Рис. 6 АЧХ при трех положениях регуляторах громкости, a– максимальную, b– среднюю, c– минимальную.
Реализовать такие кривые электронно довольно сложно. При снижении уровня громкости, хуже воспринимаются НЧ и ВЧ составляющие звука (по кривым равной громкости). Частотно – зависимые регуляторы громкости выравнивают громкость звучания звуковой картины в соответствии с субъективными особенностями слуха человека.

Тон компенсацию почти во всех устройствах можно исключить, т.к. её применение не всегда оправдано, по причинам:

1.     Для данного положения регулятора громкости и заданного им уровня тонкомпенсации, реальные уровни входного сигнала могут меняться.

2.     Практическая реализация АЧХ отличается от желаемой по экономическим параметрам.

3.     Нелинейные характеристики чувствительного слуха, теоретически требуют дополнительного сжатия сигнала, зависящего от его уровня.

4.     Вносятся дополнительные фазовые искажения в сигнал

5.     Для многих инструментов тембральная окраска меняется с уровнем громкости на них.
Пассивный цифровой регулятор громкости изображен на рисунке 7.
Регулятор используют совместно сселек­тором входных сигналов. Регулятор громкости состоит из элект­ронного переключателя на 32 положения и цифрового узла управления им. До­стоинством этого регулятора также является большая точность совпадения каналов, определяемая допуском резисторов делителя.

<img width=«695» height=«1073» src=«ref-2_299547708-4973.coolpic» v:shapes="_x0000_s1270 _x0000_s1271 _x0000_s1272 _x0000_s1273 _x0000_s1274 _x0000_s1275 _x0000_s1276 _x0000_s1277 _x0000_s1278 _x0000_s1279 _x0000_s1280 _x0000_s1281 _x0000_s1282 _x0000_s1283 _x0000_s1284 _x0000_s1285 _x0000_s1286 _x0000_s1287 _x0000_s1288 _x0000_s1289">Цифровой регулятор громкости имеет следующие основные технические ха­рактеристики:

Номинальное входное напряжение.

200 мВ

Номинальное выходное напряжение.

200 мВ

Максимальное входное напряжение.

6 В

Глубина регулировки громкости.

64 дБ

Напряжение питания.

15 и 7,5 В

Ток потребления.

30 мА

<img width=«642» height=«451» src=«ref-2_299552681-73207.coolpic» hspace=«12» v:shapes="_x0000_s1537">Рис. 7. Принципиальная схема цифрового регулятора громкости
Собственно электронный переключатель выполнен на микросхемах DD
1,
DD
2
и DA
1.
Управляется он цифровой частью на микросхемах DD
3
DD
9.
Пе­реключатель состоит из двух секций: одной (на микросхеме DD
2
и резисторах R
13
R
16)
на четыре положения с шагом 2 дБ, второй (на микросхеме DD
1
и резисторах R
3
R
10)
на восемь положений с шагом 8 дБ.

Между ним» установлен развязывающий усилитель на микросхеме DA
1.1
с коэффициентом передачи около 1. Такое построение позволяет создать переключатель на 32 положения, используя всего 12 резисторов делителя. Состояние секций пере­ключателя определяется пятиразрядным кодом, вырабатываемым цифровым узлом управления, собранным на микросхемах DD
3
DD
9.


<img width=«695» height=«1073» src=«ref-2_299625888-4969.coolpic» v:shapes="_x0000_s1290 _x0000_s1291 _x0000_s1292 _x0000_s1293 _x0000_s1294 _x0000_s1295 _x0000_s1296 _x0000_s1297 _x0000_s1298 _x0000_s1299 _x0000_s1300 _x0000_s1301 _x0000_s1302 _x0000_s1303 _x0000_s1304 _x0000_s1305 _x0000_s1306 _x0000_s1307 _x0000_s1308 _x0000_s1309">Узел управления содержит задающий генератор (на элементах DD
3,3,
DD
3.4,
DD
5.2),
вырабатывающий сигнал с частотой около 4 Гц, и реверсив­ный счетчик (DD
4.1,
DD
9),
вырабатывающий пятиразрядный код управления.

Элементы DD
6.2,
DD
6.3,
DD
8.1,
DD
8.2,
DD
5.3,
DD
3.5,
DD
3.6,
DD
7.1 —
DD
7.3
обеспечивают реверсирование счетчика и ограничение счета снизу и сверху. Элементы DD
6.1,
DD
3.2,
DD
5.1,
DD
5.2
необходимы, чтобы задающий генератор работал при нажатии любой из кнопок SB
1
или SB
2.
Триггер DD
4.2
устраняет дребезг их контактов. С помощью кнопок SB
3
SB
6
дела­ют предварительную установку счетчика DD
9
и тем самым задают любой на­чальный уровень громкости. Элемент DD
3.1
совместно с резисторами Rl
,
R
2
и конденсатором С1 формирует импульс установки счетчика в нулевое состо­яние.

Особенностью регулятора является то, что при разомкнутых контактах кнопок SB
1
и SB
2
весь электронный переключатель находится в статическом положении и не вносит в усиливаемый аналоговый сигнал дополнительных по­мех. Это позволяет монтировать аналоговую и цифровую части регулятора на одной плате.

Узел управления общий для двух каналов. Стереобаланса добиваются из­менением усиления выходного каскада в селекторе входных сигналов. Если сделать цифровое управление раздельным для левого и право­го каналов, то баланс устанавливают раздельной регулировкой громкости.

Регулятор смонтирован на унифицированной монтажной плате с примене­нием переходных панелей для микросхем серии К564. В устройстве исполь­зованы резисторы МЛТ-0,25 (с точностью 5% в делителе и 10% — остальные) и конденсаторы КМ-4, КМ-5, К53-1. В качестве кнопок SB
1,
SB
2
можно при­менять переключатели без фиксации любого типа (например МП-3), вместо SB
3
SB
6
— переключатели любого типа с фиксацией.

Учитывая сложность устройства, необходимо обратить внимание на пра­вильность монтажа. Для проверки работоспособности регулятора необходим стабилизированный источник питания с напряжением 15 В и током не менее 30 мА. Напряжение 7,5 В берется с селектора входных сигналов. Налаживание устройства состоит в попарном подборе резисторов делителя R
3 —
R
10
и R
13 —
R
16.




ГЛАВА 6 РЕГУЛЯТОР ТЕМБРА

Регулятор тембра является, как правило, обязательным узлом совре­менного высококачественного устройства звуковоспроизведения. Основное его назначение — обеспечить такое регулирование АЧХ усилительного устройства, чтобы компенсировать частотные искажения, вызванные несовершенством акус­тических систем, или сформировать АЧХ под конкретную фонограмму с учетом акустических свойств помещения и дефектов записи фонограммы и тем самым восстановить естественный тембр звучания. Регулировка тембра звучания осно­вана на изменении АЧХ усилителя в определенной области частот. Коррекция АЧХ усилителя 34 достигается в основном с помощью цепей, содержащих кон­денсаторы и переменные резисторы и влияющих на АЧХ на краях рабочего диапазона частот.

В последнее время для регулировки АЧХ усилителя все чаще используют многополосные регуляторы тембра — эквалайзеры с LCR-элементами, которые позволяют изменить АЧХ на нескольких участках частотного диапазона. Точ­ность коррекции АЧХ усилителя обычно повышается при увеличении числа час­тотных полос, в которых происходит раздельная коррекция.

Для повышения плавности и глубины регулирования тембра, все чаще ис­пользуют активные элементы — транзисторы и ОУ, а также включают регулиру­ющие элементы в цепь ООС. В отличие от пассивных регуляторов (имеющих только цепи формирования АЧХ и согласующие каскады) активные регуляторы обеспечивают большее отношение сигнал — шум и больший диапазон регулиров­ки тембров примерно при том же количестве элементов.

<img width=«695» height=«1073» src=«ref-2_299630857-4976.coolpic» v:shapes="_x0000_s1312 _x0000_s1313 _x0000_s1314 _x0000_s1315 _x0000_s1316 _x0000_s1317 _x0000_s1318 _x0000_s1319 _x0000_s1320 _x0000_s1321 _x0000_s1322 _x0000_s1323 _x0000_s1324 _x0000_s1325 _x0000_s1326 _x0000_s1327 _x0000_s1328 _x0000_s1329 _x0000_s1330 _x0000_s1331">


Регулятор тембра на ОУ К153УД2 имеет следующие основные технические характеристики:



Номинальное входное напряжение.

0,15 В

Коэффициент передачи на частоте

1 кГц -15 дБ

Пределы регулирования тембра на частоте, Гц:



100.

±12 дБ

10000.

±13 дБ

Перегрузочная способность (относительно уровня 12 дБ),

не менее10 дБ

Коэффициент гармоник в диапазоне частот 20… 20 000 Гц

не более  0,1%

Отношение сигнал-шум (невзвешенное),

не менее  70 дБ

Входное сопротивление.

100 кОм

Выходное сопротивление.

1 кОм

Напряжение питания.

±15 В

Ток потребления.

10 мА



<img width=«695» height=«1073» src=«ref-2_299635833-4973.coolpic» v:shapes="_x0000_s1332 _x0000_s1333 _x0000_s1334 _x0000_s1335 _x0000_s1336 _x0000_s1337 _x0000_s1338 _x0000_s1339 _x0000_s1340 _x0000_s1341 _x0000_s1342 _x0000_s1343 _x0000_s1344 _x0000_s1345 _x0000_s1346 _x0000_s1347 _x0000_s1348 _x0000_s1349 _x0000_s1350 _x0000_s1351">Такой активный регулятор тембра с RCмостом в цепи ООС (рис. 8), не­смотря на простоту, обеспечивает достаточную глубину изменения АЧХ усили­теля в области низших и высших частот. Пределы регулировки АЧХ на часто­тах 50 Гц и 15 кГц составляют около ±16 дБ. Наличие ОУ DA1 позволяет по­лучить коэффициент передачи напряжения регулятора больше единицы.

В поло­жении максимального подъема АЧХ в области низших и высших частот (ре­зисторы R
5
и R
3
в крайнем левом по схеме положении) АЧХ на частотая 350 Гц и 1,5 кГц имеет подъем на 3 дБ. Для обеспечения приведенных характе­ристик внутреннее сопротивление источника входного сигнала должно быть не более 1 кОм.

<img width=«447» height=«168» src=«ref-2_299640806-16740.coolpic» hspace=«12» v:shapes="_x0000_s1311">

Рис. 8  Принципиальная схема регулятора тембра на ОУ 153УД2
Регулятор смонтирован на унифицированной монтажной плате методом объ­емного монтажа. Резисторы R
3,
R
5
могут быть любого типа с линейной зависимостью (типа А), остальные — МЛТ-0,25, конденсаторы — КМб. Кроме микро­схемы К153УД2 можно использовать К153УД1, К140УД7, К140УД8 и другие Q
соответствующими цепями коррекции.

Для питания темброблока можно использовать любой стабилизированный Двухполярный источник напряжения ±15 В, обеспечивающий ток в нагрузке не менее 20 мА. Перед настройкой проверяют правильность монтажа схемы. Затем подбором конденсаторов С5 и С6 устраняют возможное самовозбуждение узла при крайних положениях регуляторов тембра.



ГЛАВА 7 УСИЛИТЕЛЬ МОЩНОСТИ

Еще один пример построения усили­теля с высоким питающим напряжением показан на рис.9. Его коэффи­циент усиления — 10, амплитуда вы­ходного напряжения — 29,5 В, макси­мальная выходная мощность — 30 Вт при сопротивлении нагрузки 4 Ом, коэффициент гармоник — 0,4 %, полоса пропускания по мощности — 30 кГц. Величину напряжения питания ОУ за­дают делители R1-R2 и R5-R6. Частотную коррекцию усилителя осуществляют конденсаторы Cl, C2. Высокая линей­ность усилителя гарантируется при равенстве сопротивлений резисторов R7 и R8 и подборе транзисторов VT3, VT4 с. близкими параметрами (параметры транзисторов VT1, VT2 на величину не­линейных искажений существенного влияния не оказывают). Недостаток усилителя — зависимость напряжения питания ОУ от стабильности общего питающего напряжения. Поэтому, если используется нестабилизированный источник, резисторы R2, R5 лучше заме­нить стабилитронами.

В усилителе использован принцип тем­пературной стабилизации тока покоя выходных транзисторов при помощи об­ратной связи по току. Элементы R6, R10, R12—R15, С2—С4 предотвращают самовозбужде­ние.

<img width=«317» height=«393» src=«ref-2_299657546-25758.coolpic» hspace=«12» v:shapes="_x0000_s1352"><img width=«695» height=«1073» src=«ref-2_299683304-4978.coolpic» v:shapes="_x0000_s1353 _x0000_s1354 _x0000_s1355 _x0000_s1356 _x0000_s1357 _x0000_s1358 _x0000_s1359 _x0000_s1360 _x0000_s1361 _x0000_s1362 _x0000_s1363 _x0000_s1364 _x0000_s1365 _x0000_s1366 _x0000_s1367 _x0000_s1368 _x0000_s1369 _x0000_s1370 _x0000_s1371 _x0000_s1372">Усилители на ОУ, содержащие вы­ходные каскады усиления по напря­жению, имеют одну примечательную особенность. Известно, что скорость на­растания выходного напряжения прямопропорциональна его амплитуде, а поскольку последняя в К раз (К — коэффициент усиления выходного кас­када) больше амплитуды напряжения на выходе ОУ, то и скорость его на­растания в К раз превышает ско­рость нарастания напряжения па выходе ОУ. Казалось бы, что повышения скорости нарастания выходного напря­жения можно достигнуть, увеличивая коэффициент усиления каскада, однако делать это можно только до вполне определенной величины, пока сохра­няется устойчивость усилителя.

Рис. 9

По заданию требуется рассчитать резистивные цепи усилителя, задающие режим работы и смещение на транзисторах для питающего однополярного напряжения 70В.
<img width=«695» height=«1073» src=«ref-2_299688282-4978.coolpic» v:shapes="_x0000_s1373 _x0000_s1374 _x0000_s1375 _x0000_s1376 _x0000_s1377 _x0000_s1378 _x0000_s1379 _x0000_s1380 _x0000_s1381 _x0000_s1382 _x0000_s1383 _x0000_s1384 _x0000_s1385 _x0000_s1386 _x0000_s1387 _x0000_s1388 _x0000_s1389 _x0000_s1390 _x0000_s1391 _x0000_s1392">Преобразуем схему, используя следующие методы.

— Сопротивления R2, R5 на рис. 9, присоединенные к общему выводу, соединим вместе R6,R7 рис. 10

— Добавим блокирующую емкость к резистору R12

— Добавим и рассчитаем разделительные емкости на входе и выходе усилителя.

— Вывод схемы, который при двухполярном питании подключался к отрицательному выводу источника питания, подадим на отрицательный вывод однополярного источника питания.

— Поднимем вдвое, по сравнению с двухполярным питанием, напряжение источника.

— Добавим делитель напряжения и подключим к нему вывод 3 ОУ.
<img width=«368» height=«416» src=«ref-2_299693260-17250.coolpic» v:shapes="_x0000_i1026">

                                                 Рис. 10
Рассчитаем ток делителя R5-R6-R7-R8
<img width=«275» height=«41» src=«ref-2_299710510-594.coolpic» v:shapes="_x0000_i1043">
После изменения питающего напряжения до значения 70В, ток делителя должен оставаться неизменным, поэтому пересчитаем сопротивления делителя.

<img width=«195» height=«43» src=«ref-2_299711104-469.coolpic» v:shapes="_x0000_i1044"> примем по ГОСТ 33 кОм.

<img width=«695» height=«1073» src=«ref-2_299711573-4978.coolpic» v:shapes="_x0000_s1539 _x0000_s1540 _x0000_s1541 _x0000_s1542 _x0000_s1543 _x0000_s1544 _x0000_s1545 _x0000_s1546 _x0000_s1547 _x0000_s1548 _x0000_s1549 _x0000_s1550 _x0000_s1551 _x0000_s1552 _x0000_s1553 _x0000_s1554 _x0000_s1555 _x0000_s1556 _x0000_s1557 _x0000_s1558">Сопротивление каждого из резисторов будет равно Rд/4=7кОм. Примем R2 = R3 = R5 = R6 = 6,8 кОм по ГОСТ.
Разделительные емкости рассчитаем по формуле:

<img width=«303» height=«45» src=«ref-2_299716551-631.coolpic» v:shapes="_x0000_i1045"> примем по ГОСТ 4,7 мкФ

<img width=«289» height=«45» src=«ref-2_299717182-614.coolpic» v:shapes="_x0000_i1046"> примем по ГОСТ 1000 мкФ

Примем С4=10 мкФ
Ток делителя примем 10мА. Рассчитаем делитель напряжения R1,R2
<img width=«183» height=«41» src=«ref-2_299717796-440.coolpic» v:shapes="_x0000_i1047">, следовательно, R1=R2=7кОм/2=3,5 кОм. Примем по ГОСТ R1=R2=3,3 кОм.

    продолжение
--PAGE_BREAK--ГЛАВА 8 ИНДИКАТОР ВЫХОДНОЙ МОЩНОСТИ

<img width=«695» height=«1073» src=«ref-2_299718236-4976.coolpic» v:shapes="_x0000_s1394 _x0000_s1395 _x0000_s1396 _x0000_s1397 _x0000_s1398 _x0000_s1399 _x0000_s1400 _x0000_s1401 _x0000_s1402 _x0000_s1403 _x0000_s1404 _x0000_s1405 _x0000_s1406 _x0000_s1407 _x0000_s1408 _x0000_s1409 _x0000_s1410 _x0000_s1411 _x0000_s1412 _x0000_s1413">Контроль уровня сигналов звукового тракта имеет важное значение для получения высококачественного воспроизведения. Большое внимание этому уделяют, например, в магнитной звукозаписи, где сигнал должен иметь оптимальное значение. Если он будет больше, резко возрастают нелинейные искажения, если меньше — ухудшается отношение сигнал-шум. Необходимость контроля уровня выходных сигналов высококачественных усилителей также не вызывает сомнений, поскольку это значительно облегчает балансировку каналов и предотвращает перегрузку усилителей и акустических систем (а значит, и возрастание нелинейных искажений и возможный выход из строя динамических головок).

Основными параметрами измерителей уровня являются время интеграции и время обратного хода. Время интеграции определяет, насколько правильно ото­бражает измеритель реальный уровень сигнала в данный момент. Чем меньше время интеграции, тем лучше реагирует измеритель на мгновенные изменения уровня сигнала. Время обратного хода, наоборот, выбирают достаточно большим в пределах 1...3 с, что позволяет отслеживать за изменениями среднего уровня сигнала и исключает утомляемость от мелькания отображающих элементов (стрелки измерителя или светодиодов).

В бытовой аппаратуре для контроля уровня широкое распространение получили измерители уровня средних значений (как говорит само название, они измеряют среднее значение сигнала). За рубежом аналогичные измерители называются волюметрами. Основным недостатком таких измерителей является большое время интеграции (около 200 мс), что не позволяет регистрировать кратковременные изменения уровня сигнала.

Реальная звуковая программа имеет ярко выраженный импульсный характер и часто содержит сигналы с длительностью значительно меньше чем 200 мс. Поэтому для исключения перегрузок и более точной регистрации пиковыхуровней ГОСТ 21186-75 рекомендует квазипиковые измерители уровня с временем интеграции 5 мс. Иногда также применяют измерители с временем интеграции 60 мс.

В качестве отображающих элементов в измерителях уровня до недавнего времени использовались в основном стрелочные приборы. В настоящее время все чаще применяют газоразрядные, люминесцентные и светодиодные индика­торы. По сравнению со стрелочными такие индикаторы практически безынерционны и позволяют регистрировать кратковременное превышение допустимого значения уровня выходного сигнала.

Рассмотрим индикатор на 8 диодах.
Измеритель (рисунок 11) имеет следующие основные технические характеристики:



Число индицируемых уровней

8

Время интеграции

60 мс

Время обратного хода

1,7 с

Диапазон индицируемых уровней

(0,14-5)В

Напряжение питания

5 В

Ток потребления (при   свечении восьми светодиодов)

100 мА

                                  

<img width=«695» height=«1073» src=«ref-2_299723212-4976.coolpic» v:shapes="_x0000_s1414 _x0000_s1415 _x0000_s1416 _x0000_s1417 _x0000_s1418 _x0000_s1419 _x0000_s1420 _x0000_s1421 _x0000_s1422 _x0000_s1423 _x0000_s1424 _x0000_s1425 _x0000_s1426 _x0000_s1427 _x0000_s1428 _x0000_s1429 _x0000_s1430 _x0000_s1431 _x0000_s1432 _x0000_s1433">Здесь транзисторы VTl—VT8 формируют первоначальный логический уровень для работы микро­схем DD1, DD2. Один из входов логических элементов 2И-НЕ соединяется таким обра­зом, что появление напряжения низкого уровня (лог 0) на одном выходе автома­тически поддерживает напряжение низкого логического уровня на выходах всех предыдущих логических элементов.

<img width=«451» height=«543» src=«ref-2_299728188-45823.coolpic» v:shapes="_x0000_i1048">

Рис. 11 Индикатор выходной мощности.

ГЛАВА 9 РАСЧТЕ РАДИАТОРОВ УМЗЧ

<img width=«695» height=«1073» src=«ref-2_299774011-5066.coolpic» v:shapes="_x0000_s1434 _x0000_s1435 _x0000_s1436 _x0000_s1437 _x0000_s1438 _x0000_s1439 _x0000_s1440 _x0000_s1441 _x0000_s1442 _x0000_s1443 _x0000_s1444 _x0000_s1445 _x0000_s1446 _x0000_s1447 _x0000_s1448 _x0000_s1449 _x0000_s1450 _x0000_s1451 _x0000_s1452 _x0000_s1453">Мощность, рассеиваемая каждым выходным транзистором КТ818 и  КТ819, составляет 50% от суммарной рассеиваемой мощности – 12,5 Вт.

Из табл. 6.5 [3]: ТПmax= 125°С, R
П
K
= 1,8°С/Вт, RKP
— 0,5
°С/Вт.

Радиатор из пластины толщиной <metricconverter productid=«5 мм» w:st=«on»>5 мм.

Выберем крепление транзисторов прижимом на винтах с пастой. Тогда, в соответствии с табл. 6.3:

R
KP
= 0,5 • 0,5 = 0,25С/Вт, т.к. к = 0,5.

Тепловое сопротивление переход-радиатор

Rnp
=
RnK
+
RKP
=
= 1,8 + 0,25=2,05С/Вт.

Предельно допустимая температура радиаторов

<img width=«373» height=«24» src=«ref-2_299779077-541.coolpic» v:shapes="_x0000_i1049">

Допустимый перегрев радиатора:

<img width=«245» height=«24» src=«ref-2_299779618-377.coolpic» v:shapes="_x0000_i1050">

<img width=«152» height=«27» src=«ref-2_299779995-278.coolpic» v:shapes="_x0000_i1051">

Из соображений надежности выберем <img width=«25» height=«17» src=«ref-2_299780273-106.coolpic» v:shapes="_x0000_i1052">= 50°С. Рассеиваемая радиатором мощность

RPC
= <img width=«25» height=«17» src=«ref-2_299780273-106.coolpic» v:shapes="_x0000_i1053">= 50/12,5 = 4 С/Вт.

Тепловое сопротивление равностороннего радиатора из пластины

R
РС
= R
1 +
R
2
= 4°С/Вт,

где Rt
= 475/0,945Sдля вертикальной установки радиатора;

R
2
=
0,25/d
=
0,25/0,5 = 0,5°С/Вт.

Откуда площадь радиатора S
равна:

S
= 475/(0,94*(4 — 0,5)) = 143,61 см2.

    продолжение
--PAGE_BREAK--
еще рефераты
Еще работы по производству