Реферат: Панель обшивки внутреннего закрылка

--PAGE_BREAK--Политетрафторэтилен («тефлон») — стабильное полимерное вещество, ко­торое часто вводят в состав антиадгезионных смазок, работающих при темпе­ратуре выше 260°С, Такая смазка не образует на поверхности формы сплошной пленки, но частички «тефлона» обеспечивают надежное сухое смазывание, га­рантирующее отделение от нее отвержденного изделия.
Силиконовые смазки используются до 204°С, однако следует избегать их применения, поскольку они способствуют отслаиванию от КМ вторичных по­крытий и слоев, являясь при этом устойчивыми загрязнителями.
За рубежом выпускается антиадгезионная смазка на базе силановой смолы, которая стабильна до 482°С.
Из полимерных пленок для этих целей применяются пленки из целлофана, лавсана, ПВС, полиэтилена, полиэтилентетрофталата «Майлар», найлона и фторопласта. Использование этих пленок в качестве антиадгезионных и разделительных слоев допускается только с одним изгибом или плоских.
Раскрой наполнителя производится согласно карте раскроя, обеспечивающей максимальный КИМ.
Послойная укладка выкроек должна производиться в строгом соответствии со схемой выкладки, определяющей расположение каждой выкройки на по­верхности формы и направление армирования в каждом слое. При укладке с перекрытием его величина определяется из условия равной прочности одно­слойного ПКМ и соединительного шва на сдвиг.
При выборе материала для изготовления формы одним из основных крите­риев является соответствие температурных коэффициентов линейного расши­рения этого материала и ПКМ.
По значению этого коэффициента ближе всех к композитам стоит сталь. Она обладает и другими ценными свойствами: превосходной износостойкостью, способностью работать при повышенных температурах и хорошей теплопроводностью.
Наиболее благоприятными для изготовления форм свойствами характеризуется керамика. Она имеет самый низкий коэффициент теплового расширения, а по теплостойкости почти не отличается от закаленной инструментальной ста­ли. Однако при температуре окружающей среды керамика хрупкая. Она должна быть защищена от повреждений в процессе обработки — например, стальным кожухом.
Стальные формы с керамическими вставками и без них наиболее широко применяются в производстве высококачественных композиционных материа­лов. Благодаря низкому коэффициенту теплового расширения керамические вставки обеспечивают высокую точность укладки в форме компонентов слои­стого пластика. Такие формы очень удобны для производства больших партий соотверждаемых конструкций, в которых клеевой шов отверждается одновре­менно с пластиком. Однако дороговизна этой оснастки требует достаточного объема производства изделий, при котором амортизация ее стоимости сохранит конкурентоспособной цену на выпускаемую продукцию. В противном случае для изготовления форм желательно использовать менее дорогие материалы.
Алюминиевые формы относятся к наименее дорогой оснастке, изготовляе­мой из литых и ковких металлов. Несмотря на то, что алюминий имеет луч­шую теплопроводность, чем сталь, полученные из него формы менее долго­вечны и, кроме того, обладают слишком большим температурным линейным расширением.
Получаемые гальванопластикой никелевые формы, используемые более 20 лет, представляют собой плотную конструкцию без пор, с хорошо отполиро­ванной формующей поверхностью. Температурный коэффициент линейного расширения никеля того же порядка, что и у стеклопластиков. Такие формы ус­пешно применяются для формования различных деталей самолетов.
Для успешного применения форм из сталистого чугуна требуется, чтобы толщина всех стенок была почти одинаковой, иначе при термообработке форм, конфигурация и поперечное сечение которых резко изменяются, литой металл может растрескаться или покоробиться. Теплопроводность сталистого чугуна сравнительно низка. В местах изменения толщины стенок формы температура может колебаться в широких пределах, что затрудняет контроль процесса от­верждения формуемого композита.
Легкоплавкие сплавы, фазовые изменения которых происходят выше тем­ператур отверждения ПКМ, обычно отливают в заранее подготовленные корковые формы и гальваноформы.
Для изготовления оснастки из слоистых пластиков может быть использо­ван любой из описанных материалов.
2.2. Выбор метода формования.
Формование — это этап технологического процесса, при котором происходит отверждение связующего. В этот период создается конечная структура материала, формируются его свойства, и фиксируется форма изделия.
Отверждение связующего является результатом роста молекул и образования полимерной сетки под воздействием катализатора (отвердителя) и соответствующих внешних условий. При этом выделяют две характерные стадии отверждения:
— начальную — до формирования полимерной сетки;
— конечную — в процессе формирования полимерной сетки.
Эти две стадии отделены друг от друга так называемой фазой гелеобразования.
Фаза гелеобразования соответствует такому моменту, когда связующее утрачивает способность переходить в текучее состояние и растворяться, т.е. теряет свою жизнеспособность и технологические качества. Это одна из наиболее важных технологических характеристик процесса отверждения.
На определенном этапе отверждения вязкость связующего увеличивается до уровня, соответствующего вязкости твердого тела.
Все свойства его резко меняются:
— уменьшается удельный объем,
— увеличивается твердость,  
— возрастает сопротивление деформации.
Жидкое связующее переходит в стеклообразное состояние. Температура, при которой происходит это явление, называется температурой стеклования. Стеклование не является фазовым переходом, т.к. матрица сохраняет аморфную структуру и с термодинамической точки зрения может рассматриваться как переохлажденная жидкость.
Характерным параметром связующего является также точка деструкции, при которой начинается заметное разложение матрицы, сопровождающееся разрывом молекулярных связей. Устойчивость к деструкции характеризуется термостойкостью, которую следует отличать от теплостойкости, отражающей способность полимера к размягчению.
Параметры формования.
Для того чтобы обеспечить нужные качества композиту, необходимо создать определенные условия для отверждения свя­зующего и его сцепления с армирующим материалом.
Температурный режим обеспечивает необходимые условия для полимери­зации связующего. Повышенное давление необходимо для плотной укладки слоев армирующего материала, удаления излишков связующего и для более прочного сцепления связующего с арматурой.
К основным технологическим параметрам относятся: давление, темпера­тура, скорость их изменения по времени и степень отверждения.
Конкретной комбинации связующего и арматуры будут соответствовать свои параметры. В процессе производства их величину необходимо строго вы­держивать.
Классификация способов формования.
В настоящее время существует много различных способов формования изделий из ПКМ. Это объясняется разнообразием свойств исходных компонентов композитов, а также различными требованиями к прочности и другим параметрам изделий.
<imagedata src=«22015.files/image007.emz» o:><img width=«571» height=«284» src=«dopb99557.zip» v:shapes="_x0000_i1028">
Рис.5. Классификация схем формования.
Для получения нашей детали мы выбрали пневмо-гидрокомпресснонные методы формования, а именно автоклавное формование.
Пневмо-гидрокомпрессионное формование объединяет группу методов, в которых рабочей средой, осуществляющей давление на поверхность препрега, является газ или жидкость. Другими характерными признаками являются нали­чие эластичной герметичной диафрагмы и создание вакуума под диафрагмой со стороны препрега.
Автоклавное формование — формуемое изделие поме­щают в специальное оборудование — автоклав, где создается избыточное давление.
<imagedata src=«22015.files/image009.wmz» o:><img width=«580» height=«263» src=«dopb99558.zip» v:shapes="_x0000_i1029">
Рис.6. Формирование в автоклаве:
1 – форма; 2 – препрег; 3 – эластичная мембрана; 4 – уплотнители;
5 – тележка; 6 – рельсы; 7 – корпус автоклава; 8 – крышка.
Автоклав (рис.6.) представляет собой герметичную емкость в виде проч­ного, цилиндрической формы корпуса 7 с открывающейся крышкой 8.
В автоклаве может создаваться избыточное давление до 15 атмосфер и температура до 300°С. Давление создается или с помощью насосов, или за счет испарения жидкого азота; температура — с помощью электрических нагрева­тельных элементов или аэродинамическим нагревом специально спрофилиро­ванных мощных вентиляторов.
Автоклавы имеют числовые системы управления, позволяющие изменять и поддерживать давление и температуру в соответствии с заданным законом. Типовые автоклавы для авиационного производства имеют диаметр до <metricconverter productid=«3 метров» w:st=«on»>3 метров и длину 10-<metricconverter productid=«12 метров» w:st=«on»>12 метров. Наибольший по размерам автоклав (производство Фирмы Scholz (ФРГ)) установлен на УАПК. Его диаметр около <metricconverter productid=«6 метров» w:st=«on»>6 метров, а дли­на рабочей камеры <metricconverter productid=«21 метр» w:st=«on»>21 метр.
Автоклав является универсальным оборудованием. Он позволяет осуществлять формование изделий различного конструктивного исполнения, в том числе больших размеров и сложной конфигурации. При этом давление на лю­бой части поверхности изделия одинаково.
К недостаткам следует отнести большую стоимость автоклава и большие энергетические затраты в пересчете на одну деталь. Особенно в случае, если за­грузка объема автоклава неполная. Кроме того, автоклав является взрывоопасным объектом. Мощность взрыва пропорциональна объему и давлению в емкости.
Тем не менее, автоклавное формование является наиболее распространенным в авиационной промышленности.
2.3. Составление номенклатуры оснастки для придания формы и процесса формования.
Для обеспечения необходимой геометрии детали из полимерного композиционного материала и условий формования к материалам для изготовления формообразующей металлической оснастки предъявляют следующие требования:
— легкость механической обработки;
— низкая стоимость и недефецитность;
— хорошая свариваемость.
1. Выклеечная оснастка.
2. Автоклав.
3. Вакуумная трубка.
4. Вакуумный чехол.
2.4. Выбор необходимого оборудования.
Необходимо использовать такие средства индивидуальной защиты, как х/б халаты, косынки, тапочки, х/б перчатки, фартуки и полиэтиленовые нарукавники.
Пресс гидравлический должен быть снабжен системой регулирования и контроля температуры, давления и времени выдержки. Разъем съемных пресс-форм должен быть механизирован.
Автоклав. Герметичность соединения крышки с корпусом обеспечивается с помощью затвора. Затвор должен быть герметичным и надежным, он должен позволять многократно, быстро и безопасно открывать крышку. Обычно автоклавы снабжают механизмом для поворота и открывания в паре с электродвигателем. Должно быть предусмотрено блокирующее устройство с целью исключения впуска пара в аппарат при незакрытой крышке, также для исключения открывания крышки при давлении в аппарате.
Станки для раскроя препрега для получения пакетов заготовок деталей. На станках должны быть надежно закреплены формы и оправки для намотки и выкладки. Конструкция вакуумной системы станка выкладки должна исключать засорение всасывающих концов вакуумных трубок, попадание масла от насосов в секции вакуумного стола. Должно быть исключено повреждение электропневматического и гидрошлангов.
2.5. Схема увязки оснастки.
Обеспечение заданной точности обводообразующего элемента конструкции требует: применения единой системы базовых плоскостей и осей для координации положения всех взаимосвязанных элементов и оснастки в процессе их изготовления и сборки; применения единых способов базирования всей технологической цепочки.
<shape id="_x0000_i1030" type="#_x0000_t75" o:ole=""><imagedata src=«22015.files/image011.emz» o:><img width=«533» height=«687» src=«dopb99559.zip» v:shapes="_x0000_i1030">
2.6. Расчет ожидаемой точности изготовления.
Расчет ожидаемой точности сводится к прогнозированию погрешности, которая возникает в результате изготовления изделия. В процессе расчета определяем разницу между Т.К. и Д.К. Разница – погрешность, которая характеризует ожидаемую точность. Т.К. – это номинальный размер, задается мат. моделью агрегата, Д.К. – то, что получилось в результате нашей работы. Оценка погрешности изделия осуществляется на основе знаний о техпроцессе изготовления конструкции.
Погрешность изготовления обшивки.
При оценке погрешности изготовления обшивки δо все об­шивочные детали удобно разделить на три типа, отличающиеся конст­руктивным исполнением и жесткостью:
— обшивки малой толщины с линейчатой поверхностью (цилиндри­ческой или конической формы), которая разворачивается на плоскость;
— обшивки малой толщины, представляющие собой оболочки слож­ной формы (но разворачивающиеся на плоскость);
— обшивки в виде монолитных панелей.
1. Обшивочные детали первой группы, как правило, могут быть прижаты к обводообразующим элементам приспособления практически без зазора (рис.7), поэтому под погрешностью изготовления обшивки здесь следует понимать толь­ко допуск на изготовление листа при прокате его на металлургическом заводе. Для тонкой обшивки с линейчатой обра­зующей:
2. Детали второй группы, имея слож­ную форму, даже при незначительной тол­щине листа, могут иметь значительную жесткость. При этом дефект отклонения формы такой детали от заданной поверх­ности не всегда удается исключить пу­тем более частого расположения прижимов приспособления. Поэтому погрешность изготовления такой обшивки δо можно представить как сумму допуска на катаный лист δл и погрешность формообразования оболочки δф.
δo = δ л + δф.
Для определения δф необходимо рассмотреть цепь переноса размера с первоисточника на отформованную оболочку. Например, при инструментально-шаблонном методе увязки и изготовлении обшивки об­тяжкой по пуансону (рис.8.) схема будет следующей:
<shape id="_x0000_i1032" type="#_x0000_t75" o:ole=""><imagedata src=«22015.files/image015.emz» o:><img width=«535» height=«36» src=«dopb99561.zip» v:shapes="_x0000_i1032">
<line id="_x0000_s1233" from=«513.6pt,14.65pt» to=«513.6pt,132.25pt» o:allowincell=«f» strokeweight=".95pt"><img width=«2» height=«159» src=«dopb99562.zip» v:shapes="_x0000_s1233"><line id="_x0000_s1234" from=«523.7pt,28.55pt» to=«523.7pt,129.85pt» o:allowincell=«f» strokeweight=«1.2pt»><img width=«3» height=«137» src=«dopb99563.zip» v:shapes="_x0000_s1234">погрешность формообразования будет складываться из погрешностей на каждом этапе переноса размера:      
<shape id="_x0000_i1033" type="#_x0000_t75" o:ole=""><imagedata src=«22015.files/image019.wmz» o:><img width=«92» height=«55» src=«dopb99564.zip» v:shapes="_x0000_i1033">
3. Для третьей группы обшивочных деталей (монолитных панелей) δо будет зависеть от технологии изготовления плоских заготовок δз (механическим фрезерованием и т.п.) и от метода пластического формообразования δф (свободной гибкой, гибкой — прокаткой, гибкой дробеударным методом и т.п.):
δо = δз + δф
<imagedata src=«22015.files/image021.wmz» o:><img width=«550» height=«153» src=«dopb99565.zip» v:shapes="_x0000_i1034">
Наиболее распространенный метод получения плоских панелей — механическое фрезерование, точность определяется возможностями станка (δз ≈ ± <metricconverter productid=«0,15 мм» w:st=«on»>0,15 мм).
Точность определения формообразования, например, гибкой (рис. 9.), может быть определена из рассмотрения схемы увязки размеров:
<shape id="_x0000_i1035" type="#_x0000_t75" o:ole=""><imagedata src=«22015.files/image023.emz» o:><img width=«395» height=«38» src=«dopb99566.zip» v:shapes="_x0000_i1035">
Погрешность базирования обшивки.
При рассмотрении вопроса базирования обшивки следует выделить три случая: базирование по рубильникам, по макетным элементам  и по деталям каркаса.
Во всех случаях погрешность базирования — это зазор между ус­тановочной базой и обшивкой. Величина зазора определяется рассо­гласованием их увязки, т.е. суммой погрешностей, возникающих на несвязанных этапах переноса размеров при изготовлении объекта, ре­ализующего установочную базу (рубильник, деталь каркаса), и обшив­кой.
1. При установке обшивки по рубильникам (рис. 10, а) с ис­пользованием ИШМ схема увязки может быть представлена в виде:
<shape id="_x0000_i1036" type="#_x0000_t75" o:ole=""><imagedata src=«22015.files/image025.emz» o:><img width=«490» height=«89» src=«dopb99567.zip» v:shapes="_x0000_i1036">
Верхняя ветвь схемы увязки относится к изготовлению рубильника, а нижняя — к изготовлению обшивки обтяжкой по пуансону. Погрешность базирования δБО определяется по формуле:
<shape id="_x0000_i1037" type="#_x0000_t75" o:ole=""><imagedata src=«22015.files/image027.wmz» o:><img width=«112» height=«55» src=«dopb99568.zip» v:shapes="_x0000_i1037">,
где  к — коэффициент, учитывающий поджатие обшивки к рубильни­ку.
Если поджатие осуществляется в нескольких точках, то к приблизительно может быть определен по таблице. Если же обшивка прижимает­ся по всему контуру рубильника, например, упругой прокладкой ло­жемента, то к стремится к нулю.
2. При установке обшивки по макетным элементам (рис.10, б) схема увязки может быть следующая:
<shape id="_x0000_i1038" type="#_x0000_t75" o:ole=""><imagedata src=«22015.files/image029.emz» o:><img width=«349» height=«82» src=«dopb99569.zip» v:shapes="_x0000_i1038">
Верхняя ветвь относится к изготовлению монолитной панели на прессе свободной гибкой, нижняя ветвь показывает перенос размера на ма­кетный элемент с помощью инструментально-шаблонного метода увязки.
<shape id="_x0000_i1039" type="#_x0000_t75" o:ole=""><imagedata src=«22015.files/image031.emz» o:><img width=«484» height=«242» src=«dopb99570.zip» v:shapes="_x0000_i1039">
3. Определение величины погрешности базирования при установ­ке обшивки на каркас (рис.10, в) может быть осуществлено с помощью схемы:
<shape id="_x0000_i1040" type="#_x0000_t75" o:ole=""><imagedata src=«22015.files/image033.emz» o:><img width=«504» height=«92» src=«dopb99571.zip» v:shapes="_x0000_i1040">
Верхняя ветвь характеризует накопление погрешностей при изготовле­нии пояса каркаса, на который будет устанавливаться обшивка, ниж­няя ветвь показывает возникновение погрешностей при изготовлении обшивки обтяжкой по пуансону. Погрешность базирования можно рас­считать по формуле:
<shape id="_x0000_i1041" type="#_x0000_t75" o:ole=""><imagedata src=«22015.files/image035.wmz» o:><img width=«223» height=«57» src=«dopb99572.zip» v:shapes="_x0000_i1041">,
где к1 — коэффициент, учитывающий поджатие обшивки к каркасу, может быть определен по таблице;
      к2 — коэффициент, учитывающий способ базирования деталей кар­каса при сборке непосредственно самого каркаса.
    продолжение
--PAGE_BREAK--
еще рефераты
Еще работы по производству