Реферат: Компьютеризация геофизических методов исследования скважин


Реферат: «Компьютеризация геофизических методов исследования скважин» ФТПУ 7.1-21/1




Федеральное агентство по образованию


Государственное профессиональное учреждение

Высшего профессионального образования


Томский политехнический университет


Кафедра информатики

и проектирования систем


Реферат на тему «Компьютеризация геофизических методов исследования скважин»


Выполнили студенты группы 2050:

Попов А.А. и Шайхиев Д.Р.

Принял: доцент, к.т.н Хамухин А.А.


Томск - 2006

Оглавление:
Оглавление: 2

Компания Paradigm переходит на 64-разрядную платформу Intel 2

Перспективы российской службы ГИС 12

Заключение: 13
^ Компания Paradigm переходит на 64-разрядную платформу Intel
Бурение нефтяных скважин — дело очень не дешевое, поэтому для нефтяников точность прогнозов геофизиков необычайно важна. Самым распространенным способом исследования земных глубин является сейсморазведка. На поверхности Земли устанавливается множество датчиков, и в момент специально организованного взрыва они регистрируют направление и силу отраженного сигнала. Затем собранные данные расшифровываются и интерпретируются. Так строится картина, с большой долей достоверности показывающая места залегания нефтяных и газовых месторождений.

Объем получаемой информации огромен. К примеру, с датчиков, установленных на площади в 200 км2 поступает порядка 60-80 Гбайт данных в «простой» местности и вдвое больше — в более «сложной».

Один из ведущих поставщиков современных технологий для обработки и интерпретации геологоразведочных данных для нефтегазовой индустрии — компания Paradigm, обслуживающая все основные нефтегазодобывающие регионы мира. Компания имеет представительства в 20 странах, в том числе в России и Казахстане; российский офис Paradigm, открытый в 1998 году, — третий по величине после офисов в Хьюстоне и Лондоне. Paradigm ведет свою деятельность в нескольких направлениях. Это научная деятельность в области геофизики, разработка программных решений и оказание услуг в части геофизических и технологических исследований. Услуги компании охватывают все этапы разведки и эксплуатации нефтегазовых месторождений от обработки данных, визуализации, интерпретации и моделирования геологического строения Земли до определения характеристик резервуаров, анализа, планирования бурения и буровых операций.

Подобная деятельность требует достаточно мощных, отказоустойчивых и высокопроизводительных систем. В прошлом обработку геофизических данных проводили на мэйнфреймах и суперкомпьютерах Cray. Позже им на смену пришла техника Silicon Graphics, Sun Microsystems, IBM. Сейчас набирают популярность системы на процессорах Intel. В конце февраля Paradigm сообщила о модернизации своих центров обработки сейсмических данных в СНГ. Компания установила два кластера, имеющих соответственно 20 и 25 двухпроцессорных узлов на базе Xeon/3,2 ГГц с поддержкой технологии Intel EM64T, снабженных дисковыми массивами с интерфейсами SCSI и FC-AL. Центр обработки данных Paradigm также был оснащен 32-процессорной системой SGI Altix на базе Itanium 2.

Ожидается, что новое оборудование позволит заметно сократить сроки выполнения работ. В компании отмечают, что новая платформа поддерживает функционирование последних программных разработок Paradigm — пакетов 3D Wave Equation Common Shot Migration и Common Reflection Angle Migration, оптимизированных для кластеров.

Еще в 2002 году компания сомневалась в возможности применения в своей деятельности систем на базе Xeon. Однако после всестороннего тестирования в американском офисе кластерной конфигурации системы на базе Xeon с технологией EM64T, было решено, что она не только отличается высокой надежностью, что важно при длительном цикле вычислений, но и подходящим соотношением цена/качество. –[2]


Оглавление:

^ Компьютерные технологии ГИС бурящихся скважин

Компьютерные комплексы для ГИС включают:

комплект модульных программно-управляемых скважинных приборов основных количественных методов ГИС с базовым и скважинным метрологическим обеспечением, позволяющий реализовать широкий комплекс исследований разведочных скважин за 2-3 рейса;

компьютерные наземные регистрирующие лаборатории с бортовыми вычислительными комплексами;

программное обеспечение для регистрации и экспресс-обработки получаемых геофизических данных на скважине.

Помимо традиционного ранее для России комплекса массовых исследований, компьютерные технологии ГИС включают аппаратуру компенсированного нейтронного и акустического каротажа, литоплотностной каротаж, кислородно-углеродный каротаж, спектральный гамма-каротаж, многозондовые и многочастотные электромагнитные имиджеры (ИКЗ, ВИКИЗ). –[1]

Оглавление:

 ^ Компьютерные технологии геолого-технологических

исследований бурящихся скважин – ГТИ

 Комплексы для ГТИ включают:

комплекс современных датчиков параметров процесса бурения;

компьютеризованную аппаратуру для экспресс-анализа флюидов, шлама и керна, газового каротажа;

компьютерную регистрирующую лабораторию с бортовыми вычислительными комплексами;

программное обеспечение для регистрации и обработки данных ГТИ.

Реализуется параметрический ряд станций ГТИ различного назначения и с различным набором аппаратурно-программных средств для всех категорий скважин.

Аппаратура и программное обеспечение комплексов ГТИ позволяет использовать их также для контроля и управления процессом цементирования скважин. –[1]

Оглавление:

^ Компьютерные технологии исследований

горизонтальных скважин

 В силу особенностей геологических разрезов и технологий проводки скважин в период массового бурения кустовых наклонно-направленных скважин, в России были разработаны оригинальные технологии бескабельного каротажа таких скважин (ВНИИГИС, ДОАО“Газпромгеофизика”, НПФ “Геофизика”).

Ввиду невозможности использования с применявшимися у нас типами промывочных жидкостей гидравлического канала связи “Забой-Устье”, более 25 лет назад в России (ВНИИГИС) была разработана и получила широкое применение технология проводки и исследования таких скважин с использованием электромагнитного канала связи. Позднее такая технология начала применяться Западными компаниями.

Эта же технология стала широко применяться и при бурении горизонтальных скважин (ГС). Появились сейчас отечественная и импортная аппаратура с гидравлическим каналом связи.

Наряду с технологиями исследований горизонтальных скважин (ГС) с гидравлическим и электромагнитными каналами связи “Забой-Устье”, в России разработаны и получили применение новые, оригинальные технологии исследований ГС:

Технология “Горизонталь” с использованием кабеля со специальными переводниками (НПФ “Геофизика”);

Технология исследований на специальном жестком каротажном кабеле, эффективная при бурении скважины в твёрдых породах (“Татнефтегеофизика”);

Технология исследований с комбинированным каналом связи, применяемая в глубоких скважинах и при наличии в разрезе соляных пластов (ДОАО“Газпромгеофизика”, ВНИИГИС);

Технология исследований горизонтальных скважин с помощью автономных аппаратурно-методических комплексов “АМАК-Обь” (НПЦ “Тверьгеофизика”, ДОАО“Газпромгеофизика”,).

Аппаратурно-методический комплекс “АМАК-Обь” при перемещении с помощью бурильных труб осуществляет исследования скважин полным комплексом ГИС, таким же, как в вертикальных скважинах, с автономной записью внутри прибора.

Последние две технологии реализуются с помощью компьютерных станций ГТИ-ГИС.

Благодаря переходу на компьютерные технологии ГИС и ГТИ обеспечиваются:

повышение в 2 раза производительности ГИС и сокращение срока исследования скважин;

интегрированная обработка ГИС и ГТИ с целью повышения их информативности;

оптимизация проводки скважин и режимов бурения по данным ГТИ;

метрологически обеспеченная информация в стандартах и форматах, пригодных для международного аудита;

экспресс-обработка данных на скважине для принятия оперативных решений.

–[1]

 Оглавление:


Компьютерные технологии и оборудование для исследований действующих нефтяных и газовых скважин.

Компьютерные комплексы ГИС для действующих нефтяных и газовых скважин включают набор высокочувствительных датчиков (дебита, температуры, давления, состава потока, ГК, акустических шумов, локатор муфт и др.) в модульном исполнении с единым интерфейсом и наземный аппаратурно-программный комплекс с бортовыми вычислительными средствами (ДОАО“Газпромгеофизика”, СКТБ “Геотрон”, НПФ “Геофизика”). Компьютерные комплексы ГИС для действующих газовых скважин (ДОАО “Газпромгеофизика”) обеспечиваются параметрическим рядом специальных лубрикаторов и вспомогательным наземным оборудованием. В комплекс исследований действующих скважин входит малогабаритный импульсный генератор нейтронов, спускаемый через НКТ (ВНИИЯГГ, “Татнефтегеофизика”).–[1]

Оглавление:

^ Структура геофизических исследований скважин в России

В последние годы существенно изменилась структура геофизических исследований скважин в России. Если ранее более половины объемов ГИС приходилось на исследования в открытом стволе бурящихся скважин, то сейчас более половины всех работ по ГИС приходится на исследования обсаженных скважин с целью контроля за разработкой месторождений, контроля технического состояния скважин, обеспечения ремонтных работ. 

^ Структура объемов ГИС в России, %

 

1990 г.

1997г.

Геофизические иссле-дования в открытом стволе

 

52

 

23

Геофизические иссле-дования в обсаженных скважинах

 

25

 

53

Прострелочно-взрыв-ные работы

 

11

 

13

Геолого-техноло-гические исследования

 

6

 

5

Испытание пластов на трубах

 

5

 

3

Прочие работы

 

1

1

 

Геофизические исследования в обсаженных скважинах выполнены в 1997 году по Минтопэнерго РФ – в 42800 скважинах на нефтяных месторождениях, в ОАО “Газпром” – в 1128 скважинах на газовых месторождениях и ПХГ. Это связано, с одной стороны, с ростом значения контроля за разработкой месторождений нефти и газа на поздних стадиях их разработки, с другой стороны, с необходимостью более эффективного использования действующих скважин. –[1]

Оглавление:

 ^ Структура службы ГИС в России

В 1997 г., несмотря на экономические трудности, производственные геофизические организации нефтегазовой отрасли сохранили свой потенциал и объемы работ. Функционировало 1200 отрядов (партий), в т.ч. 360 – по исследованиям бурящихся скважин, 110 – ГТИ и газовый каротаж, 620 – ГИС-контроль, перфорация и интенсификация притоков, 110 – комплексных и специальных. Экономическое преобразования последних лет вызвали значительные изменения в организации геофизических работ в России. Геофизические предприятия сейчас управляются государственными ведомствами (Минтопэнерго, МПР) не административно, а только через участие в их акционерном капитале и в советах директоров. Изменились организационно-правовые формы предприятий геофизи-ческой службы России:

Крупные геофизические предприятия системы бывшего Миннефтепрома и Министерства геологии прошли акционирование и приватизацию, при этом доля государства в их акционерном капитале не превышает 40%.

Ряд геофизических предприятий вошли в состав вертикально-интегрированных нефтяных компаний (“Сургутнефтегеофизика” в НК “Сургутнефтегаз”, “Ноябрьскнефтегазгеофизика” в НК “Сибнефть”, “Томскнефтегеофизика” в Восточную нефтяную компанию, “Тюменьнефтегеофизика” в Тюменскую нефтяную компанию, “Башнефтегеофизика” в НК “Башнефть”, “Татнефтегеофизика” в НК “Татнефть”).

Создана, впервые в России, интегрированная геофизическая компания с собственной научной и приборостроительной базой путем развития научно-технического потенциала ДОАО “Газпромгеофизика”, ОАО “Газпром”.

Решение задач устойчивого развития ОАО “Газпром” потребовало создания новой структуры геофизической службы газовой отрасли, способной собственными силами обеспечить все виды производственных геофизических работ, от разведки до мониторинга и весь инновационный цикл – от НИОКР до широкого производственного применения достижений научно-технического прогресса. Формирование новой структуры геофизической службы отрасли осуществлено руководством ОАО “Газпром” на базе развития ДОАО “Газпромгеофизика” и включения в его состав ведущих научных коллективов России в области геофизических методов исследований, строительства, заканчивания скважин, подсчета запасов УВС: НПЦ “Тверьгеофизика”, “ВНИПИвзрывгеофизика” и сейсморазведочного предприятия “Костромагеофизика”.–[1]

Оглавление:

^ Компьютерные технологии ГИС бурящихся скважин

 Компьютерные комплексы для ГИС включают:

комплект модульных программно-управляемых скважинных приборов основных количественных методов ГИС с базовым и скважинным метрологическим обеспечением, позволяющий реализовать широкий комплекс исследований разведочных скважин за 2-3 рейса;

компьютерные наземные регистрирующие лаборатории с бортовыми вычислительными комплексами;

программное обеспечение для регистрации и экспресс-обработки получаемых геофизических данных на скважине.

Помимо традиционного ранее для России комплекса массовых исследований, компьютерные технологии ГИС включают аппаратуру компенсированного нейтронного и акустического каротажа, литоплотностной каротаж, кислородно-углеродный каротаж, спектральный гамма-каротаж, многозондовые и многочастотные электромагнитные имиджеры (ИКЗ, ВИКИЗ). –[1]


Оглавление:

 ^ Компьютерные технологии геолого-технологических

исследований бурящихся скважин – ГТИ

Комплексы для ГТИ включают:

комплекс современных датчиков параметров процесса бурения;

компьютеризованную аппаратуру для экспресс-анализа флюидов, шлама и керна, газового каротажа;

компьютерную регистрирующую лабораторию с бортовыми вычислительными комплексами;

программное обеспечение для регистрации и обработки данных ГТИ.

Реализуется параметрический ряд станций ГТИ различного назначения и с различным набором аппаратурно-программных средств для всех категорий скважин.

Аппаратура и программное обеспечение комплексов ГТИ позволяет использовать их также для контроля и управления процессом цементирования скважин. –[1]

^ Компьютерные технологии исследований

горизонтальных скважин

В силу особенностей геологических разрезов и технологий проводки скважин в период массового бурения кустовых наклонно-направленных скважин, в России были разработаны оригинальные технологии бескабельного каротажа таких скважин (ВНИИГИС, ДОАО“Газпромгеофизика”, НПФ “Геофизика”). Ввиду невозможности использования с применявшимися у нас типами промывочных жидкостей гидравлического канала связи “Забой-Устье”, более 25 лет назад в России (ВНИИГИС) была разработана и получила широкое применение технология проводки и исследования таких скважин с использованием электромагнитного канала связи. Позднее такая технология начала применяться Западными компаниями. Эта же технология стала широко применяться и при бурении горизонтальных скважин (ГС). Появились сейчас отечественная и импортная аппаратура с гидравлическим каналом связи. Наряду с технологиями исследований горизонтальных скважин (ГС) с гидравлическим и электромагнитными каналами связи “Забой-Устье”, в России разработаны и получили применение новые, оригинальные технологии исследований ГС:

Технология “Горизонталь” с использованием кабеля со специальными переводниками (НПФ “Геофизика”);

Технология исследований на специальном жестком каротажном кабеле, эффективная при бурении скважины в твёрдых породах (“Татнефтегеофизика”);

Технология исследований с комбинированным каналом связи, применяемая в глубоких скважинах и при наличии в разрезе соляных пластов (ДОАО“Газпромгеофизика”, ВНИИГИС);

Технология исследований горизонтальных скважин с помощью автономных аппаратурно-методических комплексов “АМАК-Обь” (НПЦ “Тверьгеофизика”, ДОАО“Газпромгеофизика”,).

Аппаратурно-методический комплекс “АМАК-Обь” при перемещении с помощью бурильных труб осуществляет исследования скважин полным комплексом ГИС, таким же, как в вертикальных скважинах, с автономной записью внутри прибора. Последние две технологии реализуются с помощью компьютерных станций ГТИ-ГИС. Благодаря переходу на компьютерные технологии ГИС и ГТИ обеспечиваются:

повышение в 2 раза производительности ГИС и сокращение срока исследования скважин;

интегрированная обработка ГИС и ГТИ с целью повышения их информативности;

оптимизация проводки скважин и режимов бурения по данным ГТИ;

метрологически обеспеченная информация в стандартах и форматах, пригодных для международного аудита;

экспресс-обработка данных на скважине для принятия оперативных решений. –[1]

Оглавление:

^ Компьютерные технологии и оборудование для исследований действующих нефтяных и газовых скважин.

Компьютерные комплексы ГИС для действующих нефтяных и газовых скважин включают набор высокочувствительных датчиков (дебита, температуры, давления, состава потока, ГК, акустических шумов, локатор муфт и др.) в модульном исполнении с единым интерфейсом и наземный аппаратурно-программный комплекс с бортовыми вычислительными средствами (ДОАО“Газпромгеофизика”, СКТБ “Геотрон”, НПФ “Геофизика”). Компьютерные комплексы ГИС для действующих газовых скважин (ДОАО “Газпромгеофизика”) обеспечиваются параметрическим рядом специальных лубрикаторов и вспомогательным наземным оборудованием. В комплекс исследований действующих скважин входит малогабаритный импульсный генератор нейтронов, спускаемый через НКТ (ВНИИЯГГ, “Татнефтегеофизика”).–[1]

Оглавление:


^ Новейшие технологии ГИС, созданные в России

Различие условий, традиций, научных школ обусловило оригинальность пути развития российской геофизики и позволило, как это было и ранее (импульсные генераторы нейтронов, ядерно-магнитный каротаж, гидродинамический каротаж, исследования скважин через НКТ, ВСП и др.), предложить ряд новых технологий, представляющий интерес для мирового технического сообщества. Ряд из них (технологии исследования горизонтальных скважин, ГТИ и др.) выше упоминались. Здесь хотелось бы особо отметить технологию определения начальной и текущей нефтенасыщенности пластов-коллекторов на основе анализа различных типов волн акустического многоволнового каротажа. Эта технология, впервые представляющая альтернативу методу Арчи, предложена и разработана в РГУ НГ. Особое значение она может получить в обсаженных скважинах, в комплексе с кислородно-углеродным -каротажем и другими методами, для анализа разработки нефтяных и газовых месторождений. Для реализации этой технологии используется специально разработанная аппаратура многоволнового акустического каротажа (НПЦ “Тверьгеофизика”,ДОАО “Газпромгеофизика”). Для доизвлечения остаточных запасов нефти и газа, наряду с этой технологией, будет весьма перспективна технология их оценки на основе изучения пространственной неоднородности залежей на базе интегрированной обработки данных ГИС (РГУНГ им. Губкина…).–[1]


Оглавление:

^ Задачи и перспективы развития ГИС в России

 Новые геологические задачи

Дальнейшее развитие нефтегазового комплекса России требует вовлечения в разведку и разработку новых, сложнопостроенных по типам коллекторов и флюидных систем, перспективных отложений. К ним относятся:

месторождения, приуроченные к коллекторам трещиннного типа (рифейские отложения Юрубчено-Тахомской зоны Восточной Сибири и др.);

глинистые песчаники в тонкослоистых разрезах (ачимовская свита и юра Западной Сибири и др.);

битуминозные коллекторы (месторождения Урало-Поволжья, бажениты Западной Сибири) и др.

Крайне важна разработка методик количественного изучения углеводородных залежей со сложным и смешанным составом флюидальных систем (газ с высоким, предкритическим содержанием конденсата, жидкий конденсат, нефть). Такими сложными характеристиками отличаются весьма значительные по запасам жидких углеводородов залежи ачимовской толщи Западной Сибири, залежи в глубокозалегающих подсолевых отложениях Прикаспийской впадины и другие. Для решения этих проблем необходимо использование новых методов и методик ГИС. Представляется перспективным использование ядерно-магнитного каротажа в искусственных полях, различных по физической основе имиджеров и сканеров, геохимического каротажа.Главной, на наш взгляд, концептуальной проблемой для развития ГИС является более глубокое, теоретическое и экспериментальное познавание физической сущности отдельных геофизических методов, их функциональных связей с отдельными характеристиками пород и флюидов, и их синергетическое использование для создания искомого геологического образа. –[1]


Оглавление:

^ Новые технологические задачи

В последние годы на месторождениях и ПХГ получают распространение новые технологии и конструкции при строительстве скважин. К ним относятся:

высокопроизводительные скважины большого диаметра на месторождениях и ПХГ;

разведочные и эксплуатационные скважины на глубокозалегающие (более 5 км) перспективные отложения, в том числе с АВПД и высоким содержанием Н2S;

поисково-разведочные скважины малого диаметра (120 мм и менее), в том числе бурящиеся с использованием технологии “КОЛ-ТЬЮБИНГ”;

горизонтальные скважины и горизонтальные боковые стволы из скважин эксплуатационного фонда.

Все эти технологии и конструкции при строительстве скважин требуют соответствующего обеспечения аппаратурой и технологиями ГИС, пригодными для этих условий и геометрии измерений. –[1]


Оглавление:

^ Интеграция различных методов исследований

Значительные перспективы открывает комплексирование и интеграция различных видов исследований скважин и геологических объектов и создание интегрированных компьютерных комплексов для их реализации с целью решения различных геологических и технологических задач. К их числу следует отнести создаваемые в России:

интегрированные компьютерные станции, обеспечивающие проведение геолого-технологических и геофизических исследований (система ГТИ-К);

интегрированные компьютерные станции для проводки, геолого-технологических и геофизических исследований горизонтальных скважин, в том числе с использованием автономных геофизических приборов;

интегрированные компьютерные станции для ГИС, ГТИ, ВСП в процессе бурения и межскважинных геофизических исследований;

интегрированные аппаратно-методические комплексы для долговременных геофизических, геохимических и газогидродинамических исследований скважин, пласта, залежи и структур объектов исследований объектов УВС и ПХГ с целью экологического мониторинга и охраны окружающей среды;

система интегрированной интерпретации данных ГИС, керна, испытаний, полевой геофизики и геофизического контроля за разработкой, с целью использования геолого-геофизической информации для построения геолого-геофизических и газогидродинамических моделей объектов УВС и ПХГ.

–[1]


 Оглавление:

Роль геофизической информации в построении

информационных и управляющих систем

Во всех геофизических организациях, независимо от ведомственной принадлежности, в широком плане используется компьютерная технология первичных данных ГИС с применением аппаратурно-программного обеспечения для их сбора и обработки с целью формирования локальных, региональных и отраслевых баз и банков данных геолого-геофизической информации. ДОАО “Газпромгеофизика” ОАО “Газпром”, ГЛАВНИВЦ, МПР РФ, ЦГЭ, Минтопэнерго как главные научно-исследовательские центры проводят разработку и внедрение информационно-измерительных систем и программного обеспечения по иерархии. Указанные разработки предназначены для формирования информационно-вычислительных центров с геолого-геофизической информацией – ГГИ, для многократного использования при подсчете и корректировке запасов УВС, проектировании и управлении разработкой, мониторинге объектов УВС и ПХГ. Сбор информации осуществляется по данным: разведочной геофизики, геофизическим исследованиям скважин, геологическим, геохимическим, газогидродинамическим и гидрогеологическим исследованиям скважин, пластов, залежей объектов УВС и ПХГ, производственно-экономической деятельности предприятий, осуществляющих их проведение. Основными функциями геофизических информационно-вычислительных центров является:

автоматизированные сбор, регистрация, обработка, хранение и передача по каналам связи ГГИ по иерархии в локальные, региональные и отраслевые ИВЦ предприятий, акционерные общества, территориальные комитеты, компании, ВНИИ, НИИ;

автоматизация процессов объектно-ориентированной и комплексной обработки ГГИ при проведении поисково-разведочных работ и моделировании залежи;

интегрированная интерпретация ГГИ и подготовка решений для управления процессами разработки объектов УВС, ПХГ и строительства скважин;

создание локальных, региональных и отраслевых баз и банков данных геолого-геофизической информации БДГГин при поиске – разведке – обустройстве – разработке – добыче – эксплуатации и мониторинге объектов УВС и ПХГ.

За основу подхода к созданию единой информационно-вычислительной сети принят иерархический принцип организации информационно-вычислительных систем по уровням: локальный – региональный – отраслевой. Формирование ведомственных центров геолого-геофизической информации направлено на обеспечение в перспективе Федерального центра топливно-энергетического комплекса страны. ХХI век является веком компьютеризации и использования информационных технологий для прогнозирования и управления технологическими процессами больших систем с целью оптимизации технологического производства. Информация ГИС имеет определяющее значение при решении этих проблем. –[2]


 Оглавление:
^ Перспективы российской службы ГИС
Первоочередной задачей российской службы ГИС является завершение её коренного технического перевооружения, переход на созданные в России компьютерные технологии работ. Отечественная служба ГИС будет сохраняться и развиваться, в основном, на собственной научно-технической основе, с использованием достижений мирового геофизического сообщества. Основные объемы ГИС на территории России для различных Заказчиков будут и в дальнейшем, по экономическим и организационным причинам, выполняться российскими геофизиками, с обеспечением требуемого технического уровня и эффективности работ. В то же время представляется весьма перспективной интеграция сил с западными геофизическими компаниями, как при создании новой техники и технологий ГИС, так и при совместном осуществлении геофизического сервиса, в России и за её пределами. –[1]


Оглавление:
Заключение:

Внедрение новых технологий в области геофизических методов исследования скважин позволяют проводить масштабные исследования, с высокой точностью определять конструкции скважин и породы из которых они слагаются. Современные автоматизированные приборы позволяют избегать аварии на производстве, а что самое главное уменьшить затраты по проведению исследований.


Оглавление:


Список использованных источников:


1) http://www.raen.ru/index.php?sub_cat=39&cat=4 –[1]

2) http://geo.com.ru/db/msg.html?mid=1161636&uri=page... –[2]


Оглавление:

Дата разработки: 04.06.2006

Выполнили студенты группы 2050 Попов А.А. и Шайхиев Д.Р.

Проверил: Хамухин А.А.

еще рефераты
Еще работы по разное