Реферат: Специфика моделирования экономических процессов


Федеральное государственное образовательное бюджетное учреждение

высшего профессионального образования

ФИНАНСОВЫЙ УНИВЕРСИТЕТ

ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ


Кафедра философии


Реферат

«Специфика моделирования экономических процессов»


Выполнил аспирант кафедры «Информационные технологии»

Захаров Кирилл Владимирович


Специальность 08.00.13

«Математические и инструментальные методы экономики»


Реферат представлен для сдачи кандидатского минимума


Москва 2011
Оглавление
Оглавление 2

Введение 3

1. Исторический аспект 4

1.1. История моделирования как метода познания 4

1.2. История применения моделирования в экономике 5

2. Моделирование как метод научного познания 6

2.2 Понятие «модель» и «моделирование» 6

2.2 Общая теория моделирования 9

2.3 Общая классификация моделей и виды моделирования 11

3. Специфика и особенности моделирования в экономике 14

3.1. Классификация экономико-математических моделей 14

3.2 Проблема истины в моделях экономических процессов 17

3.3 Экономические объекты – сложные динамические системы 18

3.4. Случайность и неопределенность в экономическом развитии 19

3.4 Проблема качества первичной информации 21

3.5 Проблема точности экономических измерений 22

3.5. Этапы экономико-математического моделирования. 22

Заключение 27

Список литературы 28



Введение
Сложно переоценить значимость такого метода теоретического познания как моделирование для развития экономикой теории.

Математическое моделирование является неотъемлемой частью практически любого исследования в области экономики. Бурное развитие математического анализа, исследования операций, теории вероятностей и математической статистики способствовали формированию различного рода моделей экономики.

В западной экономической литературе большинство теоретических прикладных и научных статей в области экономики содержат в качестве центральной ту или иную математическую модель, разработанную для проверки или иллюстрации гипотез. В отечественной экономической науке также наблюдается тенденция к «математизированным» работам.

По мнению известного российского экономиста Г. Клейнера, вероятность признания практически любой новой экономической теории или концепции едва ли не в решающей степени зависит от того, в какой мере эта концепция допускает математическую формализацию и насколько впечатляют полученные при исследовании модели математические результаты. Это подтверждает и тот факт, что примерно половина Нобелевских премий по экономике присуждена за работы на стыке экономики и математики1.

Я считаю выбранную тему актуальной, потому что на сегодняшний день метод математического моделирования является одним из приоритетных методов не только в экономике, но и в других науках. Математическое моделирование и построение экономико-математических моделей на их основе являются современным научным направлением, позволяющим вскрывать сущность протекающих экономических процессов, эффективно управлять их поведением и анализировать функционирование экономических объектов и систем.

В реферате предпринята попытка рассмотреть специфические особенности математического моделирования экономических процессов. В первой части исследованы общие вопросы моделирования как метода познания окружающего мира, обосновываются понятия моделирование, математическая модель и математическое моделирование, приводится классификация моделей. Во второй части рассматриваются исторические аспекты математического моделирования. Третья часть затрагивает вопросы математического моделирования применительно к исследованиям экономических систем, поднимаются вопросы классификации экономико-математических моделей, выделяются основные этапы данного метода.

^ 1. Исторический аспект 1.1. История моделирования как метода познания
Моделирование как метод научного познания стало применяться еще в глубокой древности и постепенно захватило все новые области научных познаний: техническое конструирование, строительство и архитектуру, астрономию, физику, химию, биологию и, наконец, общественные науки. Реальные объекты и процессы столь многогранны и сложны, что лучшим способом их изучения часто является построение модели, отображающей какую-то грань реальности и потому многократно более простой, чем эта реальность, и исследование вначале этой модели. Многовековой опыт развития науки доказал на практике плодотворность такого подхода.

По существу, моделирование как форма отражения действительности зарождается в античную эпоху одновременно с возникновением научного познания. Достаточно указать на представления Демокpита и Эпикура об атомах, их форме, и способах соединения, об атомных вихрях и ливнях, объяснения физических свойств различных веществ с помощью представления о круглых и гладких или крючковатых частицах, сцепленных между собой. Эти представления являются прообразами современных моделей, отражающих ядеpно-электpонное строение атома вещества2.

Однако в отчётливой форме (хотя без употребления самого термина) моделирование начинает широко использоваться в эпоху Возрождения. Брунеллески, Микеланджело и другие итальянские архитекторы и скульпторы пользовались моделями проектируемых ими сооружений; в теоретических же работах Г. Галилея и Леонардо да Винчи не только используются модели, но и выясняются пределы применимости метода моделирования.

В 19 веке трудно назвать область науки или её приложений, где моделирование не имело бы существенного значения; исключительно большую методологическую роль сыграли в этом отношении работы Кельвина, Дж. Максвелла, Ф. А. Кекуле, А. М. Бутлерова и других физиков и химиков - именно эти науки стали, можно сказать, классическими «полигонами» метода моделирования3.

Большие успехи и признание практически во всех отраслях современной науки принес методу моделирования XX век. Появление первых электронных вычислительных машин (Джон фон Нейман, 1947) и формулирование основных принципов кибернетики (Норберт Винер, 1948) привели к поистине универсальной значимости новых методов — как в абстрактных областях знания, так и в их приложениях.

Однако методология моделирования долгое время развивалась независимо отдельными науками. Отсутствовала единая система понятий, единая терминология. Лишь постепенно стала осознаваться важная роль моделирования как универсального метода научного познания.

^ 1.2. История применения моделирования в экономике
Необходимо сразу отметить, что исторически правильное изложение динамики зарождения и становления идеи экономико-математического подхода является сложной задачей ввиду огромного количества фактического материала, разнообразия различных школ и воззрений, их взаимосвязей и переплетений, разного отношения экономистов к основам экономической теории, ее развитию и структуре.

Развитие методологии экономико-математического моделирования имеет длинную историю. Становление двух по сути разных научных дисциплин – экономики и математики – на протяжении многих веков проходило по собственным законам, отражавшим природу этих дисциплин, и одновременно соприкасаясь друг с другом.

Понятие об экономике как науке возникло в период расцвета греческой рабовладельческой демократии. Аристотель первым пытался рассмотреть экономические закономерности, господствующие в обществе, выдвинул идею о различии между потребительной и меновой стоимостями товаров, высказал мысль о превращении денег в капитал и т. д.

Тем самым еще в глубокой древности с развитием товарно-денежных отношений в экономике появляются количественные величины как мера качества, что можно характеризовать как применение арифметики в экономике.

Апофеозом математического метода в экономических идеях явились идеи основателя классической школы буржуазной политической экономии Уильяма Петти. В своей «Политической арифметике» Петти показал, что его привлекают прежде всего статистические сопоставления, расчеты, цифры.

Признается, что исторически первая модель национальной экономики создана французским экономистом Франсуа Кене, в которой содержались зачатки моделей экономической динамики, мультипликатора, теории рынка.

Сам термин «экономико-математические методы и модели» появился лишь в ХХ веке. До этого экономико-математическая наука развивалась в рамках политической экономии (а позже в рамках чистой экономической теории). Неудивительно, что представители буржуазной политической экономии уже с середины XIX века в своих теоретических исследованиях начинают использовать все более и более сложный математический аппарат. В последнее тридцатилетие XIX века складывается самостоятельное математическое направление в буржуазной политической экономии.

Математическая школа возникла в рамках так называемого неоклассического направления в политической экономии, главным содержанием которого является теория предельной полезности (маржинализм). В ходе развития неоклассического направления проблемы социально-экономической динамики незаметно исчезают из анализа, постепенно осуществляется переход к общим проблемам функционирования экономических систем, рыночных и ценовых механизмов, реализации принципа экономичности и рациональности в условиях совершенной конкуренции, условий частного и общего равновесия.

Родоначальником математической школы считается французский ученый А. Курно. В 1838 г. вышла его книга «Исследование математических принципов теории богатства» (О. Курно был известным математиком, философом, историком и экономистом).

Видными представителями математической школы являются Г. Госсен в Германии, У. Джевонс в Англии, Л. Вальрас в Швейцарии, Ф. Эджворд в Англии, В. Парето в Италии, В. Дмитриев в России.

Представители математического направления в буржуазной политической экономии достигли известных успехов в области математического моделирования, в раскрытии ряда объективных закономерностей производства, обмена, распределения и потребления.

Родоначальники математической школы рассматривали математические методы, математическое моделирование связей между элементами экономической системы как методы исследования, а не как методы изложения, иллюстраций экономических положений и законов, полученных других путем. Изложение же выводов, полученных математически, может быть дано и на обычном языке, или в математической форме, но без доказательства. Так, Л. Вальрас писал: «Весьма немногие из нас в состоянии прочесть «Математические начала натуральной философии» Ньютона или «Небесную механику» Лапласа, и тем не менее мы все принимаем на веру сделанное сведущими людьми описание мира астрономических явлений согласно закону всеобщего тяготения. Почему точно таким же образом не принять описание мира экономических явлений, сделанного согласно закону свободной конкуренции».

Уже в XX веке большой вклад в развитие математического направления в экономике внесли советские ученые: Л. В. Канторович, В. В. Новожилов, В. С. Немчинов.

Представители математической школы с помощью математических методов стремились разрешить не отдельные частные проблемы экономической теории, а охватить весь экономический процесс в целом, дать общую картину взаимозависимости всех экономических явлений. Математический метод рассматривается как основной, важнейший метод, который только один в состоянии дать экономической теории научную законченность.

Сейчас уже сложно представить экономиста, не владеющего методами моделирования. В университетах в качестве обязательного курса для экономистов стала читаться дисциплина «Экономико-математическое моделирование». Специальность «Математические и инструментальные методы экономики» получила признание и ВАК – Высшей аттестационной комиссии.

^ 2. Моделирование как метод научного познания 2.2 Понятие «модель» и «моделирование»
В настоящее время нельзя назвать область человеческой деятельности, в которой в той или иной степени не использовались бы методы моделирования. Однако до сих пор нет устоявшейся общепринятой точки зрения на место моделирования среди методов познания.

Множество мнений исследователей, тем не менее, укладываются в некоторую область, ограниченную двумя полярными мнениями. Одно из них рассматривает моделирование как некий вторичный метод, подчиненный более общим (менее радикальный вариант той же, по сути, позиции - моделирование рассматривается исключительно как разновидность такого эмпирического метода познания как эксперимент). Другое же, наоборот, называет моделирование «главным и основополагающим методом познания», в подтверждение приводится тезис, что «всякое вновь изучаемое явление или процесс бесконечно сложно и многообразно и потому до конца принципиально не познаваемо и не изучаемо»4.

Главной причиной возникновения столь различных позиций можно считать отсутствие общепринятого и устоявшегося в науке определения моделирования. Ниже предпринята попытка анализа нескольких определений термина «моделирование» и непосредственно связанного с ним термина «модель». Это вполне оправдано, так как подавляющее большинство источников определяют моделирование как «исследование процессов, явлений и систем объектов через построение и изучение их моделей». То есть наибольшую сложность представляет проблема определения модели.

Термин «модель» широко используется в различных сферах человеческой деятельности и имеет множество смысловых значений.

Само слово «модель» произошло от латинского слова «modelium», означает: мера, способ и т.д. Его первоначальное значение было связано со строительным искусством, и почти во всех европейских языках оно употреблялось для обозначения образа или вещи, сходной в каком-то отношении с другой вещью5.

С другой стороны, в таких науках о природе, как астрономия, механика, физика термин «модель» стал применяться для обозначения того, что она описывает. В. А. Штофф отмечает, что «здесь со словом «модель» связаны два близких, но несколько различных понятия»6. В своей книге «Моделирование и философия» В.А. Штоф даёт определение, которое стало эталонным в западной философии: «Под моделью понимается такая мысленно представляемая или материально реализуемая система, которая отображая или воспроизводя объект исследования, способна замещать его так, что ее изучение дает нам новую информацию об этом объекте»7. Модель в этом смысле выступает как некоторая идеализация, упрощение действительности, хотя сам характер и степень упрощения, вносимые моделью, могут со временем меняться. В более узком смысле термин «модель» применяют тогда, когда хотят изобразить некоторую область явлений с помощью другой, более изученной, легче понимаемой. Так, физики 18 века пытались изобразить оптические и электрические явления посредством механических («планетарная модель атома» - строение атома изображалось как строение солнечной системы).

Таким образом, в этих двух случаях под моделью понимается либо конкретный образ изучаемого объекта, в котором отображаются реальные или предполагаемые свойства, либо другой объект, реально существующий наряду с изучаемым и сходный с ним в отношении некоторых определенных свойств или структурных особенностей. В этом смысле модель - не теория, а то, что описывается данной теорией - своеобразный предмет данной теории.

В философской литературе, посвященной вопросам моделирования, предлагаются и другие определения модели. А.А. Зиновьев и И.И. Pевзин дают следующее определение: «Пусть X есть некоторое множество суждений, описывающих соотношение элементов некоторых сложных объектов А и В. Пусть Y есть некоторое множество суждений, получаемых путем изучения А и отличных от суждения Х. Пусть есть некоторое множество суждений, относящихся к В и также отличных от Х. Если выводится из конъюнкции Х и Y по правилам логики, то А есть модель В, а В есть оригинал модели»8. Здесь модель - лишь средство получения знаний, а не сами знания, следовательно, из рассмотрения выпадают идеальные модели (мысленные), т.к. их значение в качестве элементов знания реальных объектов отрицать нельзя.

Обратимся к энциклопедическим знаниям. Сначала выделим определение, которое предлагает Оксфордский Толковый Словарь9. Авторы предлагают 7 различных определений для различных видов моделей. Наибольший интерес представляют следующее: «Модель — упрощенное описание некоей системы для дальнейших расчетов». Данное определение лежит где-то в плоскости абстрактно-знаковых моделей. Объем понятия «модель» неизмеримо больше, чем предлагаемый авторами словаря, Классификация моделей, которая приведена ниже, будет являться доказательством этому.

Сходная проблема возникает и при анализе определения «модели» в Советском Энциклопедическом Словаре10 (СЭС). Модель авторами рассматривается двояко. В узком смысле — это «устройство, воспроизводящее, имитирующее строение и действие какого-либо другого (моделируемого) устройства в научных, производственных или практических целях». Слово «устройство», встречающееся в определении автоматически приводит к сужению понятия «модель» как минимум до понятия «материальная модель», но данное определение представляет определенную ценность, так как содержит внутри себя формулировку, раскрывающую сущность моделирования — «строение и действие».

Второе определение СЭС: «Модель — любой образ какого-либо объекта, процесса, явления, используемый в качестве его заместителя или представителя», - наоборот, является слишком широким. Данное определение отражает скорее внешние признаки, которыми обладает модель, но не её внутреннее содержание. Однако рациональное зерно есть и в этом определении — за словом «образ» угадывается более важное, с философской точки зрения, понятие — «отражение».

Дальнейшее рассмотрение метода моделирования связано с его целями. Большинство исследователей выделяют три11:

Понимание устройства конкретной системы, её структуры, свойств, законов развития и взаимодействия с окружающим миром;

Управление системой, определение наилучших способов управления при заданных целях и критериях;

Прогнозирование прямых и косвенных последствий реализации заданных способов и форм воздействия на систему.

Все три цели подразумевают в той или иной степени наличия механизма обратной связи, то есть необходима возможность не только переноса элементов, свойств и отношений моделируемой системы на моделирующую, но и наоборот.

То есть, моделирование может быть определено как представление объекта моделью для получения информации об этом объекте путем проведения экспериментов с его моделью. Такое определение моделирования сформулировано И.Б.Новиком и А.А.Ляпуновым12: «Моделирование-это опосредованное практическое или теоретическое исследование объекта, при котором непосредственно изучается не сам интересующий нас объект, а некоторая вспомогательная искусственная или естественная система:

1) находящаяся в некотором объективном соответствии с познаваемым объектом;

2) способная замещать его в определенных отношениях;

3) дающая при её исследовании, в конечном счете, информацию о самом моделируемом объекте».

Три перечисленных признака, по сути, являются определяющими признаками модели.

Имеет смысл обратить также внимание на определение И.Т. Фролова: «Моделирование означает материальное или мысленное имитирование реально существующей системы путем специального конструирования аналогов (моделей), в которых воспроизводятся принципы организации и функционирования этой системы»13. Здесь в основе мысль, что модель - средство познания, главный ее признак - отображение. Теория замещения одних объектов (оригиналов) другими объектами (моделями) и исследование свойств объектов на их моделях называется теорией моделирования.

Оба приведенных определения «моделирования» коррелируют с определением «модели», которое дал В.А. Штоф в книге «Моделирование и философия». На него и будем опираться в реферате.

^ 2.2 Общая теория моделирования
Остановимся подробнее на философских аспектах моделирования, а точнее, общей теории моделирования. Методологическая основа моделирования заключается в следующем. Все то, на что направлена человеческая деятельность, называется объектом (лат. objectum – предмет). Выработка методологии направлена на упорядочение получения и обработки информации об объектах, которые существуют вне нашего сознания и взаимодействуют между собой и внешней средой.14

Главная особенность моделирования в том, что это метод опосредованного познания с помощью объектов-заместителей. Модель выступает как своеобразный инструмент познания, который исследователь ставит между собой и объектом и с помощью которого изучает интересующий его объект. Именно эта особенность метода моделирования определяет специфические формы использования абстракций, аналогий, гипотез, других категорий и методов познания. Необходимость использования метода моделирования определяется тем, что многие объекты (или проблемы, относящиеся к этим объектам) непосредственно исследовать или вовсе невозможно, или же это исследование требует много времени и средств.

Следует отметить, что, с точки зрения философии, моделирование – эффективное средство познания природы, которое предполагает наличие:

объекта исследования;

исследователя, перед которым поставлена конкретная задача;

модели, создаваемой для получения информации об объекте и необходимой для решения поставленной задачи.

Пусть имеется или необходимо создать некоторый объект А. Мы конструируем (материально или мысленно) или находим в реальном мире другой объект В - модель объекта А. Этап построения модели предполагает наличие некоторых знаний об объекте-оригинале. Познавательные возможности модели обуславливаются тем, что модель отражает какие-либо существенные черты объекта-оригинала. Вопрос о необходимости и достаточной мере сходства оригинала и модели требует конкретного анализа. Очевидно, модель утрачивает свой смысл как в случае тождества с оригиналом (тогда она перестает быть моделью), так и в случае чрезмерного во всех существенных отношениях отличия от оригинала.

Таким образом, изучение одних сторон моделируемого объекта осуществляется ценой отказа от отражения других сторон. Поэтому любая модель замещает оригинал лишь в строго ограниченном смысле. Из этого следует, что для одного объекта может быть построено несколько «специализированных» моделей, концентрирующих внимание на определенных сторонах исследуемого объекта или же характеризующих объект с разной степенью детализации.

На втором этапе процесса моделирования модель выступает как самостоятельный объект исследования. Одной из форм такого исследования является проведение «модельных» экспериментов, при которых сознательно изменяются условия функционирования модели и систематизируются данные о её «поведении». Конечным результатом этого этапа является множество знаний о модели R.

На третьем этапе осуществляется перенос знаний с модели на оригинал - формирование множества знаний S об объекте. Этот процесс переноса знаний проводится по определенным правилам. Знания о модели должны быть скорректированы с учетом тех свойств объекта-оригинала, которые не нашли отражения или были изменены при построении модели. Мы можем с достаточным основанием переносить какой-либо результат с модели на оригинал, если этот результат необходимо связан с признаками сходства оригинала и модели. Если же определенный результат модельного исследования связан с отличием модели от оригинала, то этот результат переносить неправомерно.

Четвертый этап - практическая проверка получаемых с помощью моделей знаний и их использование для построения обобщающей теории объекта, его преобразования или управления им.

Для понимания сущности моделирования важно не упускать из виду, что моделирование - не единственный источник знаний об объекте. Процесс моделирования «погружен» в более общий процесс познания. Это обстоятельство учитывается не только на этапе построения модели, но и на завершающей стадии, когда происходит объединение и обобщение результатов исследования, получаемых на основе многообразных средств познания.

Моделирование - циклический процесс. Это означает, что за первым четырехэтапным циклом может последовать второй, третий и т.д. При этом знания об исследуемом объекте расширяются и уточняются, а исходная модель постепенно совершенствуется. Недостатки, обнаруженные после первого цикла моделирования, обусловленные малым знанием объекта и ошибками в построении модели, можно исправить в последующих циклах.

В методологии моделирования, таким образом, заложены большие возможности саморазвития.

При дальнейшем рассмотрении моделей и процесса моделирования будем исходить из того, что общим свойством всех моделей является их способность, так или иначе, отображать действительность. В зависимости от того, какими средствами, при каких условиях, по отношению к каким объектам познания это их общее свойство реализуется, возникает большое разнообразие моделей, а вместе с ним и проблема классификации моделей.

^ 2.3 Общая классификация моделей и виды моделирования
В литературе, посвященной философским аспектам моделирования, представлены различные классификационные признаки, по которым выделены различные типы моделей. Рассмотрим данные классификации в свете применения их в экономике.

Классификацию можно проводить по различным основаниям:

по характеру моделей (т. е. по средствам моделирования);

по способу построения (форме) моделей;

по характеру моделируемых объектов;

по сферам приложения моделирования;

по уровням («глубине») моделирования;

по динамичности моделей.

В зависимости от характера используемых в научном иссле­довании моделей различают несколько видов моделирования.

1. Мысленное (идеальное) моделирование. К этому виду мо­делирования относятся различные мысленные представления в форме тех или иных воображаемых моделей. Сле­дует заметить, что мысленные (идеальные) модели нередко могут быть реализованы материально в виде чувственно вос­принимаемых физических моделей.

2. Физическое моделирование. Оно характеризуется физи­ческим подобием между моделью и оригиналом и имеет целью воспроизведение в модели процессов, свойственных оригиналу. По результатам исследования тех или иных физических свойств модели судят о явлениях, происходящих (или могущих про­изойти) в так называемых «натуральных условиях».

3. Символическое (знаковое) моделирование. Оно связано с условно-знаковым представлением каких-то свойств, отношений объекта-оригинала. К символическим (знаковым) моделям от­носятся разнообразные топологические и графовые представле­ния (в виде графиков, номограмм, схем и т. п.) исследуемых объектов или, например, модели, представленные в виде хими­ческой символики и отражающие состояние или соотношение элементов во время химических реакций.

Особой и очень важной разновидностью символического (зна­кового) моделирования является математическое моделирова­ние. Символический язык математики позволяет выражать свой­ства, стороны, отношения объектов и явлений самой различной природы. Взаимосвязи между различными величинами, описы­вающими функционирование такого объекта или явления, мо­гут быть представлены соответствующими уравнениями (диф­ференциальными, интегральными, интегро-дифференциальными, алгебраическими) и их системами. Поскольку этот вид моделирования является главным для экономики, мы рассмотрим его в отдельной главе.

4. Численное моделирование на компьютере. Эта разновид­ность моделирования основывается на ранее созданной матема­тической модели изучаемого объекта или явления и применя­ется в случаях больших объемов вычислений, необходимых для исследования данной модели.

Численное моделирование особенно важно там, где не совсем ясна физическая картина изучаемого явления, не познан внут­ренний механизм взаимодействия. Путем расчетов на компью­тере различных вариантов ведется накопление фактов, что дает возможность, в конечном счете, произвести отбор наиболее ре­альных и вероятных ситуаций. Активное использование мето­дов численного моделирования позволяет резко сократить сро­ки научных и конструкторских разработок.

Компьютерное моделирование является основным системообразующим методом интеллектуального анализа данных, позволяющего исследовать сложные системы, выявлять скрытые закономерности, прогнозировать последствия принимаемых решений на компьютерной модели, а не на живых людях. По сути являясь продолжением математического моделирования, оно тоже активно применяется в экономических исслеованиях.

Вернемся к классификации моделей. По способу построения моделей различают «экспериментальное» и «теоретическое» моделирование. Такое противопоставление весьма условно не только в силу взаимосвязи и обоюдного влияния этих видов моделирования, но и наличия таких «гибридных» форм, как «мысленный эксперимент».

По характеру той стороны объекта, которая подвергается моделированию, уместно различать моделирование структуры объекта и моделирование его поведения.

В исследованиях на народнохозяйственном уровне чаще применяются структурные модели, поскольку для планирования и управления большое значение имеют взаимосвязи подсистем. Типичными структурными моделями являются модели межотраслевых связей. Функциональные модели широко применяются в экономическом регулировании, когда на поведение объекта ("выход") воздействуют путем изменения "входа". Примером может служить модель поведения потребителей в условиях товарно-денежных отношений. Один и тот же объект может описываться одновременно и структурой, и функциональной моделью. Так, например, для планирования отдельной отраслевой системы используется структурная модель, а на народнохозяйственном уровне каждая отрасль может быть представлена функциональной моделью.

В зависимости от сферы приложения различают моделирование в маркетинге, менеджменте, в финансово-банковских операциях и т.д.

Классификация по уровням моделирования показывает «глубину» создаваемых и рассматриваемых моделей. В экономике принципиально различают два уровня моделирования: производственно-технологический и социально-экономический.

Первый уровень - производственно-технологический. К нему относится описание производственных возможностей изучаемых экономических систем. При математическом моделировании производственных возможностей экономической системы ее обычно разбивают на отдельные, «элементарные» в данной модели, производственные единицы. После этого необходимо описать, во-первых, производственные возможности каждой из единиц, и, во-вторых, возможности обмена ресурсами производства и продукцией между «элементарными» производственными единицами. Производственные возможности описывают при помощи так называемых производственных функций различных типов, а при описании возможностей обмена главную роль играют балансовые соотношения.

На уровне социально-экономических процессов определяется, каким образом реализуются производственные возможности, описанные при моделировании производственно-технологического уровня экономической системы. Существует огромное число вариантов принятия решений и распределения заданий, укладывающихся в технологические ограничения, которые задают производственные возможности системы. В математических моделях выделяют специальные переменные, значения которых определяют единственный вариант развития экономического процесса. Эти переменные принято называть управляющими воздействиями или управлениями. На уровне социально-экономических процессов определяется механизм выбора управляющих воздействий.

Итак, для описания функционирования экономической системы необходимо смоделировать оба уровня: производственно-технологический и социально-экономический. Как показывает опыт, описание второго уровня провести гораздо сложнее.

Существует, однако, большое число проблем, в которых описание социально-экономического уровня не является необходимым. Это так называемые нормативные проблемы, в которых необходимо указать, как надо задать управляющие воздействия, чтобы достичь наилучших в каком-то смысле результатов. При этом необходимо точно определить, что понимается под наилучшим результатом, т.е. сформулировать критерий, по которому можно оценивать и сравнивать различные управляющие воздействия. Критерий (также называют целевой функцией) является функцией переменных модели изучаемой системы. Обычно предполагается, что имеется единственный критерий выбора управления системой. Ищется такое управление, чтобы критерий достигал максимального (выпуск продукции, прибыль и т.д.) или минимального (затраты) значения. Такое значение управления находится методами оптимизации и называется оптимальным.

Поэтому для одной и той же задачи можно предложить две различные модели с различными критериями оптимизации. Например, мы можем предпочесть максимизировать прибыль, или с не меньшим основанием исходить из другой целевой установки - минимизации затрат. Эти критерии не эквивалентны, так как величина затрат может быть функцией переменных, находящихся под контролем данной фирмы, тогда как величина прибыли зависит от внешних неуправляемых факторов, например от ситуации на рынке сбыта, складывающейся под влиянием конкурентов. Использование соответствующих этим критериям оптимизационных моделей при одинаковых ограничениях не обязательно приведет к получению одинаковых оптимальных решений

Другим принципом классификации может служить деление моделей на статические и динамические. В статических моделях экономики все зависимости относятся к одному моменту или периоду времени. Динамические модели характеризуют изменения экономических процессов во времени. По длительности рассматриваемого периода времени различаются модели краткосрочного (до года), среднесрочного (до 5 лет), долгосрочного (10-15 и более лет) прогнозирования и планирования. Само время в моделях экономических процессов может изменяться либо непрерывно, либо дискретно.

А.Н. Кочергин15 предлагает рассматривать и такие классификационные признаки, как природа моделируемых явлений, степень точности, объем отображаемых свойств и др. Но, следует признать, что данные признаки не являются существенными, потому подобные классификации выглядят несколько искусственно.

Детально рассмотрим специфические (присущие не всем видам моделей) классификации математических моделей экономических процессов.

^ 3. Специфика и особенности моделирования в экономике 3.1. Классификация экономико-математических моделей
В научной литературе математические модели экономических процессов принято называть экономико-математическими моделями. Именно данный вид моделей активно используется в экономике. Математическая модель может возникнуть тремя путями:

В результате прямого изучения реального процесса. Такие модели называются феноменологическими.

В результате процесса дедукции. Новая модель является частным случаем некоторой общей модели. Такие модели называются асимптотическими.

В результате процесса индукции. Новая модель является обобщением элементарных моделей. Такие модели называют моделями ансамблей.

Существует два типа математических моделей: модели описания и модели объяснения16. Модель описания не предполагает содержател
еще рефераты
Еще работы по разное