Реферат: Межпредметные связи информатики и математики как средство активизации познавательной деятельности учащихся



Министерство общего и профессионального образования

Свердловской области

Департамент образования Администрации г. Нижний Тагил

Муниципальное общеобразовательное учреждение

средняя общеобразовательная школа № 75/42


Педагогический проект

Тема: Межпредметные связи информатики и математики как средство активизации познавательной деятельности учащихся


Разработчик:

Устинова Наталья Сергеевна


Должность:

учитель информатики


Нижний Тагил

2007


СОДЕРЖАНИЕ

Введение 3-5

І. Теоретическая часть 6-17

Классификация межпредметных связей, функции и роль

межпредметных связей в обучении 6-11

Межпредметные связи, как средство активизации познавательной

деятельности учащихся на различных этапах обучения 11-13

Межпредметные связи в обучении предметам естественно-

математического цикла 14-17

ІІ. Практическая часть 18-28

2.1 Сравнительный анализ учебной литературы по информатике и математике 18-25

2.2 Планирование педагогической деятельности 25-28

Заключение 29-30

Список литературы 31-33

Приложение 1. Конспекты интегрированных уроков по информатике и математике 34-49

Приложение 2. Типологии познавательной активности учащихся. 50-53


Введение

Межпредметные связи в школьном обучении являются конкретным выражением интеграционных процессов, происходящих сегодня в науке и в жизни общества. Эти связи играют важную роль в повышении уровня практической и научно-теоретической подготовки учащихся, существенной особенностью которой является овладение школьниками обобщенным характером познавательной деятельности.

Осуществление межпредметных связей помогает формированию у учащихся цельного представления о явлениях природы и взаимосвязи между ними и поэтому делает знания более значимыми и применимыми. Межпредметные связи помогают учащимся использовать знания и умения, которые они приобрели ранее, при изучении других предметов, дают возможность применять их в конкретных ситуациях, при рассмотрении частных вопросов, как в учебной, так и во внеурочной деятельности, в будущей производственной, научной и общественной жизни выпускников средней школы.

С помощью многосторонних межпредметных связей (когда ведущий предмет связан не менее чем с тремя) не только на качественно новом уровне решаются задачи обучения, развития и воспитания учащихся, но также закладывается фундамент для комплексного видения, подхода и решения сложных проблем реальной действительности. Именно поэтому межпредметные связи являются важным условием и результатом комплексного подхода в обучении и воспитании школьников.

Необходимость наличия связи между предметами диктуется также дидактическими принципами обучения и воспитательными задачами, которые ставятся перед школой. Так как в настоящее время резко увеличивается объем информации, подлежащий усвоению в период школьного обучения, особое значение приобретает задача формирования умений и навыков самостоятельной работы, то на сегодняшний день в педагогической практике актуален поиск наиболее эффективных способов средств активизации познавательной деятельности учащихся.

В соответствии со Стратегией модернизации содержания общего образования, одно из направлений поиска системы новых способов организации учебного процесса связано с организацией познавательной деятельности учащихся, которая решает задачи, недоступные традиционному обучению и позволяет достичь главных целей процесса обучения. Одним из средств активизации познавательной деятельности учащихся могут стать межпредметные связи, так как они способствуют лучшему формированию, так называемых межпредметных понятий, то есть таких, полное представление о которых невозможно дать учащимся на уроках какой-либо одной дисциплины. Современный этап развития науки характеризуется взаимопроникновением наук друг в друга, и особенно проникновением математики и информатики в другие сферы знаний.

Все указанное выше и определяет актуальность выбранной нами темы исследования.

Объект исследования – процесс обучения информатике.

^ Предмет исследования – межпредметные связи информатики и математики.

Цель исследования: разработать формы реализации межпредметных связей математики и информатики, направленных на активизацию познавательной деятельности учащихся.

Исходя из цели исследования, были поставлены конкретные задачи исследования:

изучить и проанализировать состояние исследуемой проблемы в психолого-педагогической литературе; провести сравнительный анализ базовых учебников математики и информатики;

определить темы предмета информатики, в которых учащиеся применяют знания по математике; выявить основные темы школьного курса математики, в процессе изучения которых целесообразно осуществлять

реализацию межпредметных связей курса математики и информатики;

разработать систему интегрированных уроков по информатике, направленных на реализацию межпредметных связей информатики и математики; создать банк тем интегрированных учебных проектов и научно-исследовательских работ учащихся; разработать внеклассные занятия по информатике, позволяющие активизировать познавательную деятельность учащихся через реализацию межпредметных связей информатики и математики.

Для решения поставленных задач использовались следующие методы исследования:

анализ программ и школьных учебников по информатике и математике;

изучение и анализ научно-методической и психолого-педагогической литературы по проблеме исследования;

работа со школьной документацией;

наблюдение;

апробация разработанных методик;

Гипотеза, если разработать формы реализации межпредметных связей математики и информатики и внедрить её в учебный процесс, то можно добиться активизации познавательной деятельности учащихся, как на уроках информатики, так и на внеклассных занятиях.

^ Практическая значимость проекта заключается в том, что будут разработаны и внедрены в учебный процесс формы обучения информатике, способствующие реализации межпредметных связей математики информатики.


І Теоретическая часть.

1.1. Классификация межпредметных связей, функции и роль межпредметных связей в обучении

В педагогической литературе существует различные подходы к определению понятия межпредметных связей: «Межпредметные связи есть отражение в курсе, построенном с учетом его логической структуры, признаков, понятий, раскрываемых на уроках других дисциплин» (Губанова А.А.) [14], «Межпредметные связи представляют собой отражение в содержании учебных дисциплин тех диалектических взаимосвязей, которые объективно действуют в природе и познаются современными науками» (Леонова Е.А.) [19].

Эти определения верны, однако их нельзя считать полными. Для того чтобы вывести наиболее правильное и информативное определение понятия «межпредметные связи», надо раскрыть его более широко. Таким более широким, родовым понятием по отношению к категории «межпредметная связь» является понятие «межнаучная связь», но и первое, и второе являются производными от общего родового понятия «связь» как философской категории. Исходя из этого, можно дать определение: «межпредметные связи есть педагогическая категория для обозначения синтезирующих, интегративных отношений между объектами, явлениями и процессами реальной действительности, нашедших свое отражение в содержании, формах и методах учебно-воспитательного процесса и выполняющих образовательную, развивающую и воспитывающую функции в их ограниченном единстве» [29]. В своем проекте я буду придерживаться этой трактовки.

Чтобы овладеть методикой реализации межпредметных связей, учителю важно не только понимать их значения в обучении, но, прежде всего,

необходимо изучить содержание смежных предметов. Этому может

способствовать умение различать отдельные виды знаний и виды межпредметных связей.

Рассмотрим классификацию межпредметных связей, так как правильная классификация, отображая закономерности развития классифицируемых понятий, глубоко раскрывает связи между ними, способствует созданию научно-практических предпосылок для реализации этих связей в учебном процессе.

Межпредметные связи характеризуются, прежде всего, своей структурой, а поскольку внутренняя структура предмета является формой, то можно выделить следующие формы связей:

по составу;

по направлению действия;

по временному фактору.

Каждый тип формы подразделяется на виды межпредметных связей.




Классификация межпредметных связей

Формы связей


По составу По направлению действия По временному фактору


Типы связей

1) Содержательные 1)Односторонние 1) Прямые 1)Хронологические

2) Операционные 2)Двусторонние 2) Обратные 2)Хронометрические

3) Методические 3)Многосторонние

4)Организационные


Виды связей

Фактические связи

Понятийные связи

Теоретические связи

Философские связи

Идеологические связи


Рис. 1. Классификация межпредметных связей

Рассмотрим каждый вид межпредметных связей в содержании предметов естественнонаучного цикла [27].

^ Фактические связи. Это связи между учебными предметами на уровне фактов, всестороннее их рассмотрение с целью обобщения знаний об отдельных явлениях и объектах природы. Этот вид межпредметных связей широко представлен в учебных программах и активно используется в практике обучения, особенно в младших и средних классах. Преобладание фактических связей предопределено учебным материалом изучаемых предметов, в которых значительное место отводится фактическим данным.

^ Понятийные связи. Межпредметные связи на уровне понятий направлены на формирование терминов, общих для родственных предметов.

Теоретические связи. Теория — это система научных знаний в определенной предметной области. В теории отражена взаимосвязь научных фактов, понятий, законов, следствий, практических приложений. Межпредметные теоретические связи означают поэлементное приращение новых компонентов общенаучных теорий из знаний, получаемых учащимися на уроках по родственным предметам, с целью усвоения ими теории как единого целого (в том объеме, в каком теория отражена в учебных программах).

^ Философские связи. При изучении конкретных явлений природы в предметах естественнонаучного цикла перед учащимися обнажается реальная диалектика развития материи. Важно обобщить конкретно-научные и межпредметные философские связи. Они помогают учащимся овладеть ведущими идеями диалектического материализма, усвоить их как метод познания и преобразования материального мира.

^ Идеологические связи. Это связи, формируемые в ходе согласованной учебной работы учителей предметов естественнонаучного и гуманитарного циклов в раскрытии идейного содержания основ наук.

Выше приведенная классификация межпредметных связей, отраженная на рис. 1, позволяет аналогичным образом классифицировать внутрикурсовые связи (связи, например, между физикой, математикой, информатикой - курса физики...), а также внутрипредметные связи между темами определенного учебного предмета, например физики, органической химии, новейшей истории. Во внутрикурсовьгх и внутрипредметных связях из хронологических видов преобладают преемственные и перспективные виды связей, тогда как синхронные резко ограничены, а во внутрипредметных связях синхронный вид вообще отсутствует.

Относительно какого-либо предмета «необходимые» межпредметные связи разделяют на: межпредметные связи «как цель» (предшествующие) и межпредметные связи «как результат» (перспективные).

Более важную роль для конкретного предмета играют целевые межпредметные связи, так как без их реализации изучение рассматриваемого учебного материала считается невозможным. Реализация межпредметных связей «как результат» необходима для обеспечения преподавания другого предмета, но при этом и они способствуют более глубокому изучению рассматриваемого предмета.

Межпредметные связи «как цель» в курсе информатики могут быть реализованы с математикой, физикой, лингвистикой, логикой, философией, историей, биологией, анатомией. При изучении вопросов, связанных с информацией, информационными процессами следует приводить разнообразные примеры из различных предметных областей.

Примеры:

При объяснении устройства ПК основой являются сведения из курса физики, которые пока весьма расплывчаты в силу опережающего изучения данного материала в рамках курса информатики.

Понятие величины вводится на основе и в сравнении с величинами в курсах физики и математики.

3. Знания о системах счисления представляется целесообразным формировать в рамках курса математики.

Реализация межпредметных связей «как цель» при разработке курса на основе технологического подхода заключается в выявлении дидактических целей по другим предметам на этапе определения вспомогательных целей.

Межпредметные связи «как результат» должны инициироваться предметами, нуждающимися в элементах содержания информатики. В этом плане на сегодняшний день потенциал курса информатики практически не востребован. В основном такие связи ограничиваются разделом «Аппаратные и программные средства компьютера». Рассмотрим примеры межпредметных связей «как результат».

Основу межпредметных связей по темам «Алгоритмы» и «Программирование» составляют типы задач, для которых строится алгоритм или создается программа. Алгоритмы вычисления функций позволяют расширить представление о понятии математической функции. В теме «Программирование» могут развиваться некоторые представления о численных методах, изучаемых в курсе математики. Содержание раздела «Моделирование» вполне оправдано востребовать на уроках физики, химии, биологии. Разделы, посвященные роли ПК в современном обществе, связаны с вопросами, изучаемыми в курсах истории, обществоведения. Связи можно реализовать и с такими предметами как английский язык (создание переводчика с помощью различных языков программирования), география (геоинформационные системы) и др.

Выявление и последующее осуществление необходимых и важных для раскрытия ведущих положений учебных тем межпредметных связей позволяет:

а) снизить вероятность субъективного подхода в определении
межпредметной емкости учебных тем;

б) сосредоточить внимание учителей и учащихся на узловых аспектах учебных предметов, которые играют важную роль в раскрытии ведущих идей наук;

в) осуществлять поэтапную организацию работы по установлению
межпредметных связей, постоянно усложняя познавательные задачи, расширяя поле действия творческой инициативы и познавательной самодеятельности школьников;

г) формировать познавательные интересы учащихся средствами самых различных учебных предметов в их органическом единстве;

д) осуществлять творческое сотрудничество между учителями и учащимися;

е) изучать важнейшие мировоззренческие проблемы и вопросы современности средствами различных предметов и наук в связи с жизнью.

В этих преимуществах находит свое выражение главная цель межпредметных связей.

В ходе учебного процесса, основанного на использовании межпредметных связей, развиваются обобщенные интеллектуальные умения, характеризующие определенные виды деятельности, общие для ряда предметов. Межпредметные связи стимулируют развитие творческой деятельности (возможность самостоятельно переносить знания и умения в новую ситуацию, видение новых проблем в знакомой ситуации, установление новых свойств объекта изучения и др.), происходит активизация познавательной деятельности учащихся.


^ 1.2. Межпредметные связи как средство активизации познавательной деятельности учащихся

Исследования специалистов показывают перспективность решения дидактических задач путем более полной реализации межпредметных связей, способствующих систематизации знаний учащихся, выработке у них умений и навыков по ряду предметов. Однако эпизодическое использование знаний одного предмета при изучении другого способно лишь частично выработать синтезированные знания и умения.

Особая роль в решении вопроса по проблемам реализации межпредметных связей принадлежит формированию общих понятий на межпредметной основе.

Рассмотрев ситуацию, при которой межпредметные связи в преподавании используются успешно, многообразие видов деятельности учащихся можно объединить в три группы:

1. Привлечение понятий и фактов из родственных дисциплин для расширения области практического применения теории, изучаемой в данном предмете.

Привлечение теорий, изученных на других предметах, для объяснения фактов, рассматриваемых в данной учебной дисциплине.

Привлечение практических умений и навыков, полученных на уроках родственных дисциплин, для получения новых экспериментальных данных.

Успешная деятельность учителя по реализации межпредметных связей требует специальных условий. К ним можно отнести координацию учебных планов и программ, координацию учебников и методических пособий, а также разработанную и экспериментально проверенную методику обучения учащихся переносу необходимой информации из одной дисциплины в другую и эффективные способы проверки этого важного умения.

Создание благоприятных условий для деятельности учителей и учащихся является важной задачей методистов, ученых-педагогов. В этой области предстоит еще много сделать. Требует углубленного изучения проблема координации учебных курсов по ступеням развития естественнонаучных понятий, методам экспериментального исследования и др. Необходимо также изучить вопросы согласования методических подходов к рассмотрению общих для курсов понятий, фактов, теорий.

Наряду с тем, что отдельные важные вопросы межпредметных связей еще не разработаны, трудности в их использовании возникают также по причине слабой соответствующей подготовки учителей. Принципиально методику обучения учащихся, основанную на использовании межпредметных связей в учебной деятельности можно представить состоящей из трех ступеней, которые представлены в таблице 1.


Таблица 1

^ Этапы обучения на основе использования межпредметных связей



^ Первая ступень – воспроизводящая

Цель – приучить учащихся использовать полученные знания

1 этап

Учащиеся повторяют

необходимые сведения из

соответствующих

дисциплин.

2 этап

Учитель объясняет новый

учебный материал,

используя факты и понятия

из одного учебного

предмета, на примерах из

другого.

3 этап

Учитель излагает новый

материал, привлекая теорию

из смежной дисциплины для

объяснения

рассматриваемых явлений.

^ Вторая ступень – использование знаний

Цель – перенос знаний из предмета в предмет

4 этап

Учащиеся должны

самостоятельно

воспроизводить отдельные

знания фактического или

теоретического характера из

смежной дисциплины.

5 этап

Учащиеся должны

привлекать факты и понятия,

усвоенные ими на уроках

одной дисциплины, для

подтверждения вновь

усваиваемых знаний на

уроках другой.

6 этап

Учащиеся должны

самостоятельно привлекать

теорию, изученную на

уроках одного предмета,

для объяснения изучаемых

явлений в курсе другого.

^ Третья ступень – обобщающая

Цель – обучить учащихся применять понятия, факты, законы и теории для иллюстрации единства мира,, а также использовать общие законы диалектики для объяснения явлений.

7 этап

Учитель объясняет

проявление в изучаемых на

уроках данной дисциплины

явлениях общих законов

диалектики.

8 этап

Учитель объясняет место

изучаемых явлений в общей

картине мира.

9 этап

Учащиеся воспроизводят

общие законы диалектики

при объяснении явлений,

изучаемых на уроках

данной дисциплины.

Выделенные ступени и этапы довольно условны. В практической работе учителя этапы обучения учащихся переносу знаний из предмета в предмет могут в значительной мере варьироваться. Основная цель использования ступеней и этапов состоит, во-первых, в упорядочении работы учителей по реализации межпредметных связей в преподавании, во-вторых, они позволяют судить о достигнутых в работе результатах обучения, в-третьих, дают возможность оценить степень овладения учащимися умением переносить и использовать знания, полученные на занятиях смежных дисциплин. Всё это, безусловно, повышает уровень познавательной деятельности учащихся.


^ 1.3. Межпредметные связи в обучении предметам

естественно-математического цикла

Изучение предметов естественно-математического цикла позволяет сформировать у учащихся знания о живой и неживой природе, о материальном единстве мира, о природных ресурсах и их использовании в хозяйственной деятельности человека. Общие учебно-воспитательные задачи этих предметов направлены на формирование диалектико-материалистического мировоззрения учащихся, всестороннее гармоническое развитие личности. На основе изучения общих законов развития природы, особенностей отдельных форм движения, отдельных форм материи и их взаимосвязей учителя формируют у учащихся современные представления о естественнонаучной картине мира.

Эти общие задачи успешно решаются в процессе осуществления межпредметных связей, в ходе согласованной работе учителей. Изучение всех предметов естественнонаучного цикла взаимосвязано с математикой.

Изучение математики позволяет сформировать у учащихся систему знаний и умений, необходимых в повседневной жизни и трудовой деятельности человека, а также важных для изучения смежных дисциплин (физики, химии, черчения, информатики и др.).

На основе знаний по математике у учащихся формируются общепредметные расчётно-измерительные умения. Изучение математики опирается на преемственные связи с курсами черчения, физической географии, трудового обучения и др. При этом раскрывается практическая значимость получаемых учащимися математических знаний и умений, что способствует формированию у учащихся научного мировоззрения, представлений о математическом моделировании, как обобщённом методе познания мира.

Последовательность расположения тем курса алгебры VII - IX классов обеспечивает своевременную подготовку к изучению физики. При изучении, например, равноускоренного движения используются сведения о линейной функции (IX класс), при изучении электричества - сведения о прямой и обратной пропорциональной зависимости (VШ класс). Решение уравнений, неравенств, особенно с использованием калькуляторов, подготавливает учащихся к восприятию важнейших понятий курса основ информатики и вычислительной техники (алгоритм, программа и др.). Курс алгебры и начала анализа (X - XI классы) на содержательных примерах показывает учащимся универсальность математических методов, демонстрирует основные этапы решения прикладных задач, что особенно важно для работы с компьютерами.

Аксиоматическое построение курса геометрии VII - XI классов создает базу для понимания учащимися логики построения любой научной теории, изучаемой в курсах физики, химии, биологии. Знания по геометрии широко применяются при изучении черчения, трудового обучения, астрономии, физики. Так, для изучения механики необходимо владение векторным и координатным методами, для изучения оптики - знаниями о свойствах симметрии в пространстве и т. д. Привлечение знаний о масштабе и географических координатах из курса физической географии, о графическом изображении сил, действующих по одной прямой, из курса физики VII класса позволяет на уроках математики наполнять конкретным содержанием геометрические абстракции. Применение ПК на уроках математики целесообразно для проведения визуальных исследований, математических опытов, создания «живых картин» (например, для изображения на экране процесса последовательного приближения к окружности правильных вписанных многоугольников), а также для вычислительных работ.

Связи математики с черчением, физикой, основами информатики и вычислительной техники развивают у учащихся политехнические знания и умения, необходимые для современной конструкторской и технической деятельности. Усиление практической направленности обучения, его связи с трудом, с практикой требует от учителей всех предметов обратить особое внимание на формирование практических умений учащихся, на формирование обобщённых умений практической деятельности с помощью межпредметных связей. Такие умения соответствуют видам деятельности, общим для смежных предметов. Это умение расчётно-измерительной, вычислительной, графической, экспериментальной, конструкторской, прикладной и трудовой деятельности в предметах естественно-математического цикла. Практические умения характеризуют умения учащихся применять знания на практике, в ситуациях разной степени новизны и сложности. Общепредметные умения (умения, позволяющие учащимся использовать знания, полученные на уроках по различным предметам, для решения какой-либо задачи) формируются на межпредметной основе, когда учителя различных предметов предъявляют к учащимся единые требования, исходя из общей структуры умений, последовательности выполняемых действий и этапов формирования и развития умений (показ образца действий, его осмысление, упражнение в его применении на материале разных предметов, закрепление при выполнении комплексных межпредметных заданий, в самостоятельных работах творческого характера).

Целесообразна разработка в школах обучающих общепредметных программ по формированию и развитию того или иного вида практических умений учащихся в групповом сотрудничестве учителей смежных предметов. Межпредметная основа обеспечивает эффективную методику последовательного развития общепредметных умений, в которых взаимосвязаны обобщённые и конкретные действия. К обобщённым относятся действия планирования и организации практической деятельности при выполнении тех или иных заданий: выдвижение цели, определение путей и методов её достижения, накопление сведений, выполнение практических действий по достижению цели, оценка результатов, их корректировка в

соответствии с целью. Конкретизация общих действий осуществляется в соответствии со спецификой учебного материала того или иного предмета, особенностями выполняемых заданий и формируемых практических умений.

Овладение общими умениями организации и планирования практической деятельности необходимо для подготовки и включения учащихся в общественно полезный, производительный труд, для формирования общетрудовых, политехнических умений.

Под влиянием систематических межпредметных связей общепредметные умения, формируемые на разном учебном материале предметов и на основе единых требований к их структуре, приобретают характер межпредметных умений. Межпредметными являются умения устанавливать связи между смежными вопросами, понятиями.

В программах по математике подчёркнуты перспективные межпредметные связи, указывающие на необходимость применения вычислительных навыков при изучении информатики.

На основе применения навыков работы с компьютером у школьников формируются умения решать расчётные задачи по математике, вычислять процент, среднюю арифметическую нескольких чисел, строить графики функций. Знания об измерении величин и геометрических фигурах применяются при выработке умений работы с графикой. Приобретаемые при изучении алгебры навыки работы с формулой, аппарат исследования основных элементарных функций необходимы для изучения программирования; элементы дифференциального исчисления находят применение при работе в Mathcad.

Изучаемые в курсе геометрий фигуры и их. свойства находят широкое применение в курсе черчения и в практической деятельности учащихся. В свою очередь, сформированные в курсе трудового обучения и черчения навыки работы с измерительными, разметочными и чертёжными инструментами используются в обучении геометрии. Для формирования межпредметных практических умений большое значение имеет решение межпредметных практических задач, выполнение комплексных заданий.

Учителя должны понимать значение межпредметных задач в формировании практических умений разных видов, в овладении учащимися общепредметными умениями при изучении предметов естественно-математического цикла и должны включать такие задачи в самостоятельные, контрольные и экзаменационные работы. Не менее важно стимулировать методическую работу учителей по разработке системы межпредметных задач при изучении отдельных учебных тем, курсов, обеспечивающих формирование практических умений разных видов. Такие умения усиливают развивающий и воспитательный эффекты обучения, способствуют профориентации учащихся.

Необходимо добиваться осознания учащимися роли общеобразовательных знаний по предметам школьного курса в овладении ими практическими, трудовыми и профессиональными умениями.


ІІ Практическая часть.

^ 2.1. Сравнительный анализ учебной литературы по информатике и математике.

Очевидно, что для установления наиболее действенных связей между предметами, и для получения оптимального результата, учителям-предметникам необходимо согласовывать между собой изложение материала по тому или иному предмету. Важную роль в данном вопросе играет учебная литература. А так как одной из наших задач являлось исследование учебной литературы по информатике, мы решили проанализировать учебную литературу по информатике различных авторов с тем, чтобы сравнить затем, кто в процессе изложения материала чаще всего прибегает к помощи математических знаний.

Учебно-методический комплект по информатике представлен в таблице 2.

Таблица 2

№ п/п

Учебник, автор

Дидактические особенности учебника

Реализация межпредметных связей

1

2

3

4

1

«Информатика. 5-6 класс. Начальный курс»

Макарова Н.В.


Курс рассчитан на детей 9-12 лет и ориентирован не только на освоение технологий работы в различных средах, но и на развитие алгоритмического мышления и творческого потенциала ребенка. Дать учащимся начальные знания в области информатики, обучить их работе на компьютере и в операционной системе Windows.

Межпредметные связи с математикой реализуются недостаточно часто.

Только в разделах

«Учимся работать на компьютере» и

«Компьютерная графика»


2

«Информатика. 7-9 класс. Базовый курс. Теория» Макарова Н. В.


В учебнике отражены теоретические вопросы информатики, рекомендуемые в обязательном минимуме содержания Министерства образования РФ

В основу учебника заложен модульный принцип представления материала.


Межпредметные связи с математикой уже присутствуют в большей степени.

Используются в разделах «Информация. Информационные процессы», «Информационная картина мира», «Техническое обеспечение информационных технологий», «История, современное состояние и перспективы развития компьютерной техники»

Таблица 2 (продолжение)

1

2

3

4

3

«Информатика. 7-9 класс. Базовый курс. Практикум по информационным технологиям»

Макарова Н. В.


Изучение технологий работы на компьютере можно проводить независимо от изучения тем теоретической части. Практикум построен по модульному принципу - все разделы независимы друг от друга и не требуют строгого последовательного изучения.

Связь с математикой обнаруживается только несколько раз: при освоении операционной системы Windows 95 (98),

в разделе «Освоение среды табличного процессора» и при знакомстве с основным инструментарием среды ЛОГО.

4

«Информатика. 7-9 класс. Базовый курс. Практикум-задачник

по моделированию»

Макарова Н. В.

Каждый этап моделирования подробно рассматривается на примере большого количества задач. Особое внимание уделяется этапу формализации задачи и разработки информационной модели изучаемого объекта или системы. В зависимости от типа задачи моделирование проводится в системе управления базой данных, графическом редакторе, текстовом или табличном процессорах.

Связь с математикой наблюдается всего в двух разделах:

«Моделирование в электронных таблицах»,

«Моделирование в среде графического редактора».


5

«Информатика и информационно-коммуникационные технологии. 10 класс. Базовый уровень» Макарова Н. В.

Ориентирован на обучение старшеклассников информатике и информационным технологиям на базовом уровне в соответствии со стандартом. Рассматриваются базовые понятия информатики.

Связь с математикой прослеживается только в первой главе «Информационные процессы, модели, объекты»

6

«Информатика и информационно-коммуникационные технологии. 11 класс. Базовый уровень» Макарова Н. В.

Ориентирован на обучение старшеклассников информатике и информационным технологиям на базовом уровне в соответствии со стандартом. Приводится теоретический материал по основам социальной информатики, по информационным системам и технологиям. Последний раздел посвящен подготовке к выпускным экзаменам.

Связь с математикой прослеживается во второй главе «Информационные системы и технологии»

7

«Информатика и информационно-

коммуникационные технологии. Базовый курс: Учебник для 8 класса» Семакин И. Г.

Содержание учебника соответствует принятому стандарту по информатике и ИКТ.

Учебник разделен на две части. Первая часть обеспечивает обязательный минимальный уровень изучения предмета. Материал второй части ориентирован на углубленный курс информатики.

Связь с математикой реализуется в трех главах: «Человек и информация»,

«Графическая информация и компьютер», «Технология мультимедиа»


Таблица 2 (окончание)

1

2

3

4

8

«Информатика и ИКТ. Базовый курс: Учебник для 9 класса» Семакин И. Г.

Содержание учебника соответствует принятому стандарту по информатике и ИКТ.

Учебник разделен на две части. Первая часть обеспечивает обязательный минимальный уровень изучения предмета. Материал второй части ориентирован на углубленный курс информатики.

Межпредметные связи осуществляются в пяти главах: «Информационное моделирование»,

«Табличные вычисления на компьютере», «Управление и алгоритмы»,

«Программное управление работой компьютера» и

«Информационные технологии и общество»

9

«Информатика. 10класс»

Семакин И. Г.


Содержание учебники опирается на изученный в 8 - 9-х классах базовый курс информатики. Особое внимание авторы уделяют следующим темам: системология, социальная информатика и информационные ресурсы. Отдельным разделом в учебнике представлен компьютерный практикум, который позволяет перейти на уровень, близкий к профессиональному.

Связь с математикой реализуется всего в двух главах: «Введение в информатику» и «Информационное моделирование и системология»


10

«Информатика. 11-й класс» Семакин И. Г.

Содержание учебника опирается на изученный в 7 - 10-х классах курс информатики. Особое внимание авторы уделяют следующим темам: информационные системы, базы данных, матема
еще рефераты
Еще работы по разное