Реферат: Задачи по моделированию средствами ms excel



МОУ «Лицей естественных наук города Кирова»


“Задачи по моделированию

средствами MS Excel”


г. Киров, 2009

Содержание


1. Введение ................................................................................................………………. 3
1.1 Психолого-педагогические особенности изучения темы

“Моделирования” в школьном курсе информатики

1.2 Обязательный минимум содержания образования по теме

“Моделирование и формализация”

1.3 Требования к уровню подготовки выпускников по теме

“Моделирование и формализация”

2. Основные понятия моделирования .......................................................……………. 7

3. Основные этапы моделирования ...........................................................……………. 10

4. Метод математических моделей ..........................................................…………….. 13

5. Задачи по моделированию из различных предметных областей ..........…………. 16

5.1 “Экономика” ……………………………………………………………………... 16
5.2 “Астрономия” ……………………………………………………………………. 24
5.3. “Физика” ………………………………………………………………………… 27
5.4 “Экология” ……………………………………………………………………….. 31
5.5 “Биология” ……………………………………………………………………….. 38

5.6 “География” ……………………………………………………………………… 44

6. Заключение …………………………………………………………………………... 45

7. Список литературы ………………………………………………………………….. 46

8. Приложение ………………………………………………………………………….. 47


1. Введение


1.1 Психолого-педагогические особенности изучения темы “Моделирования” в школьном курсе информатики


Наиболее важные и значимые общеобразовательные цели информатики и информатизации — установление и усиление межпредметных связей, создание условий для восприятия и понимания информационных процессов в обществе, природе, познании — формирование у учащихся информационной картины мира.

Современное образование требует преодоления разрозненности учебных предметов. Каждой научной дисциплине свойственно свое особое сочетание формализованных и неформализованных методов моделирования явлений, процедур доказательства и объяснения, и лишь информатика легко преодолевает межпредметные границы, обогащает все области научного познания.

Проблема взаимосвязи школьных дисциплин — математики, информатики, физики, биологии и др. — является одной из актуальных проблем современной дидактики, психологии и методики преподавания. Решение задач — конкретных моделей явлений — на уроках информатики является одним из мощных способов реализации межпредметных связей информатики и других наук.

Человек издавна использует моделирование для исследования объектов, процессов, явлений в различных областях. Результаты этих исследований служат для определения и улучшения характеристик реальных объектов и процессов; для понимания сути явлений и выработки умения приспосабливаться или управлять ими; для конструирования новых объектов или модернизации старых. Моделирование помогает человеку принимать обоснованные и продуманные решения, предвидеть последствия своей деятельности.

Компьютерное моделирование учебных и реальных объектов, ситуаций и процессов в математике, физике, химии, биологии, экологии ставит учащегося в активную позицию исследователя, позволяет самостоятельно открывать законы и явления.

Развитие навыков построения моделей способствует решению задачи, имеющей общеобразовательную ценность, а именно развитию системного и логического мышления. Ведь процесс построения моделей требует помимо специальных знаний еще и особым образом развитого мышления.

Решение задач по моделированию процессов и явлений развивает мыслительную деятельность учащихся.

Под развитием мышления учащихся в процессе обучения психологи понимают формирование и совершенствование всех видов, форм и операций мышления, выработку умений и навыков по применению законов мышления в познавательной и учебной деятельности, а также умений осуществлять перенос приемов мыслительной деятельности из одной области знаний в другую.

Таким образом, развитие мышления включает в себя:

Развитие всех видов мышления (наглядно-действенного, наглядно-образного, абстрактно-логического) и одновременно стимуляцию процесса перерастания их из одного вида в другой.

Формирование и совершенствование мыслительных операций.

Развитие умений:

выделять существенные свойства предметов и абстрагировать их от несущественных;

находить главные связи и отношения предметов и явлений реального мира;

делать правильные выводы из фактов и проверять их;

доказывать истинность своих суждений и опровергать ложные умозаключения;

раскрывать сущность основных форм правильных умозаключений (индукции, дедукции и по аналогии);

излагать свои мысли определенно, последовательно, непротиворечиво и обоснованно.

Выработку умения осуществлять перенос операций и приемов мышления из одной области знания в другую; прогнозирование развития явлений и умение делать выводы.

Совершенствование умений и навыков по применению законов и требований формальной и диалектической логики в учебной и во внеучебной познавательной деятельности учащихся.

По мнению психологов схема решения мыслительных задач выглядит следующим образом:

^ Условия возникновения




Процесс




Приемы




Результат




^ Формы

реализации








































Анализ










Суждения




























Проблемная




Мышление




Синтез




Продукт




Понятия




























ситуация










Сравнение




мышления




Умозаключения








































Обобщение














В процессе построения модели учащиеся, отталкиваясь от общей формулировки задачи, выделяют существенные части моделируемой системы, исследуют свойства этих объектов, находят связи между ними, проводят компьютерные эксперименты и анализируют результаты моделирования. Практически все перечисленные выше процессы мыслительной деятельности прослеживаются при решении задач на составление моделей.

Умение выделять необходимую информацию и организовывать ее в структуру — важнейшее качество человеческого интеллекта.


1.2 Обязательный минимум содержания образования

по теме “Моделирование и формализация”


Моделирование как метод познания. Материальные и информационные модели. Объектно-ориентированное информационное моделирование. Формализация. Основные типы информационных моделей (табличные, иерархические, сетевые). Исследование информационных моделей на компьютере.


1.3 Требования к уровню подготовки выпускников

по теме “Моделирование и формализация”


Учащиеся должны:

уметь характеризовать сущность моделирования;

уметь характеризовать сущность формализации;

знать о существовании множества моделей для одного и того же объекта;

уметь строить простейшие информационные модели;

знать этапы информационной технологии решения задач с использованием компьютера.


^ 2. Основные понятия моделирования


Понятие модели

Модель — это некоторое упрощенное подобие реального объекта, явления или процесса.

Модель — это такой материальный или мысленно представляемый объект, который замещает объект-оригинал с целью его исследования, сохраняя некоторые важные для данного исследования типичные черты и свойства оригинала.

Хорошо построенная модель, как правило, доступнее для исследования, чем реальный объект (например, такой, как экономика страны, Солнечная система и т.п.). Другое, не менее важное назначение модели состоит в том, что с ее помощью выявляются наиболее существенные факторы, формирующие те или иные свойства объекта. Модель также позволяет учиться управлять объектом, что важно в тех случаях, когда экспериментировать с объектом бывает неудобно, трудно или невозможно (например, когда эксперимент имеет большую продолжительность или когда существует риск привести объект в нежелательное или необратимое состояние).

Таким образом, можно сделать вывод, что модель необходима для того, чтобы:

понять, как устроен конкретный объект — каковы его структура, основные свойства, законы развития и взаимодействия с окружающим миром;

научиться управлять объектом или процессом и определить наилучшие способы управления при заданных целях и критериях (оптимизация);

прогнозировать прямые и косвенные последствия реализации заданных способов и форм воздействия на объект, процесс.

Структура — это определенный способ объединения элементов, составляющих единый сложный объект.

Система — это сложный объект, представляющий собой совокупность взаимосвязанных элементов, объединенных в некоторую структуру.

В учебнике “Информатика 9 класс” Н.В.Макаровой предложена следующая классификация моделей.


^ 1. Классификация по области использования













Модели





















































































Учебные




Опытные




Научно-технические




Игровые




Имитационные

^ Учебные: наглядные пособия, различные тренажеры, обучающие программы.

Опытные: уменьшенные или увеличенные копии исследуемого объекта для дальнейшего его изучения (модели корабля, автомобиля, самолета, гидростанции).

Научно-технические модели создают для исследования процессов и явлений (стенд для проверки телевизоров; синхротрон — ускоритель электронов и др.).

^ Игровые: военные, экономические, спортивные, деловые игры.

Имитационные: отражают реальность с той или иной степенью точности (испытание нового лекарственного средства в ряде опытах на мышах; эксперименты по внедрению в производство новой технологии).

^ 2. Классификация с учетом фактора времени








Модели














































Статические










Динамические


Статическая модель — модель объекта в данный момент времени.

Динамическая модель позволяет увидеть изменения объекта во времени.

^ 3. Классификация по способу представления








Модели























































Материальные










Информационные


























































Знаковые










Вербальные











































Компьютерные







Некомпьютерные




^ Материальная модель — это физическое подобие объекта. Они воспроизводят геометрические и физические свойства оригинала (чучела птиц, муляжи животных, внутренних органов человеческого организма, географические и исторические карты, схема солнечной системы).

^ Информационная модель — это совокупность информации, характеризующая свойства и состояния объекта, процесса, явления, а также взаимосвязь с внешним миром.

Любая информационная модель содержит лишь существенные сведения об объекте с учетом той цели, для которой она создается. Информационные модели одного и того же объекта, предназначенные для разных целей, могут быть совершенно разными.

^ Вербальная модель — информационная модель в мысленной или разговорной форме.

Знаковая модель — информационная модель, выраженная специальными знаками, т.е. средствами любого формального языка. Знаковые модели — это рисунки, тексты, графики, схемы, таблицы ...

^ Компьютерная модель — модель, реализованная средствами программной среды.

Прежде чем построить модель объекта (явления, процесса), необходимо выделить составляющие его элементы и связи между ними (провести системный анализ) и “перевести” полученную структуру в какую-либо заранее определенную форму — формализовать информацию.

Формализация — это процесс выделения и перевода внутренней структуры предмета, явления или процесса в определенную информационную структуру — форму.

Процесс построения модели называется моделированием.


3. Основные этапы моделирования


Моделирование — творческий процесс. Заключить его в формальные рамки очень трудно. В наиболее общем виде его можно представить поэтапно в следующем виде.

^ I этап. Постановка задачи

Описание задачи

Цель моделирования

Анализ объекта







^ II этап. Разработка модели

Информационная модель

Знаковая модель

Компьютерная модель







III этап. Компьютерный

эксперимент







IV этап. Анализ результатов моделирования










Результаты соответствуют цели

Результаты не соответствуют цели


Каждый раз при решении конкретной задачи такая схема может подвергаться некоторым изменениям: какой-то блок может быть убран или усовершенствован. Все этапы определяются поставленной задачей и целями моделирования.


^ I этап. Постановка задачи

Под задачей в самом общем смысле понимается некая проблема, которую надо решить. Главное — определить объект моделирования и понять, что собой должен представлять результат.

По характеру постановки все задачи можно разделить на две основные группы. К первой группе можно отнести задачи, в которых требуется исследовать, как изменяется характеристика объекта при некотором воздействии на него. Такую постановку задачи принято называть “что будет, если...”. Вторая группа задач имеет такую обобщенную формулировку: какое надо произвести воздействие на объект, чтобы его параметры удовлетворяли некоторому заданному условию? Такая постановка задачи часто называется “как сделать, чтобы...”.

Цели моделирования определяются расчетными параметрами модели. Чаще всего это поиск ответа на вопрос, поставленный в формулировке задачи.

Далее переходят к описанию объекта или процесса. На этой стадии выявляются факторы, от которых зависит поведение модели. При моделировании в электронных таблицах учитывать можно только те параметры, которые имеют количественные характеристики.

Иногда задача может быть уже сформулирована в упрощенном виде, и в ней четко поставлены цели и определены параметры модели, которые надо учесть.

При анализе объекта необходимо ответить на следующий вопрос: можно ли исследуемый объект или процесс рассматривать как единое целое или же это система, состоящая из более простых объектов? Если это единое целое, то можно перейти к построению информационной модели. Если система — надо перейти к анализу объектов, ее составляющих, определить связи между ними.


^ II этап. Разработка модели

По результатам анализа объекта составляется информационная модель. В ней детально описываются все свойства объекта, их параметры, действия и взаимосвязи.

Далее информационная модель должна быть выражена в одной из знаковых форм. Учитывая, что мы будем работать в среде электронных таблиц, то информационную модель необходимо преобразовать в математическую. На основе информационной и математической моделей составляется компьютерная модель в форме таблиц, в которой выделяются три области данных: исходные данные, промежуточные расчеты, результаты. Исходные данные вводятся “вручную”. Расчеты, как промежуточные, так и окончательные, проводятся по формулам, записанным по правилам электронных таблиц.


^ III этап. Компьютерный эксперимент

Чтобы дать жизнь новым конструкторским разработкам, внедрить новые технические решения в производство или проверить новые идеи, нужен эксперимент. В недалеком прошлом такой эксперимент можно было провести либо в лабораторных условиях на специально создаваемых для него установках, либо на натуре, т.е. на настоящем образце изделия, подвергая его всяческим испытаниям. Это требует больших материальных затрат и времени. В помощь пришли компьютерные исследования моделей. При проведении компьютерного эксперимента проверяют правильность построения моделей. Изучают поведение модели при различных параметрах объекта. Каждый эксперимент сопровождается осмыслением результатов. Если результаты компьютерного эксперимента противоречат смыслу решаемой задачи, то ошибку надо искать в неправильно выбранной модели или в алгоритме и методе ее решения. После выявления и устранения ошибок компьютерный эксперимент повторяется.

^ IV этап. Анализ результатов моделировани
x=V*t*cos

y=V*t*sin-g*t2/2, где g-ускорение свободного падения (9,8 м/с2).

Определим, сколько времени понадобится снаряду, чтобы преодолеть расстояние S:

t=S/( V*cos).

Подставив это значение t в выражение для y, получим значение:

L=S*tg-g*S2/(2*V2*cos2).

Если L<0, то снаряд до стены не долетит. Если L>h, то снаряд перелетит через стену.

Так выглядит электронная таблица в формате отображения формул:











Полет снаряда



Исходные данные:






 (град.)

35



V

180



S

3000



h

6



g

9,8



 (радианы)

=B3*ПИ()/180



L

=B5*TAN(B8)-B7*B5^2/(2*B4^2*(COS(B8))^2)



Результат

=ЕСЛИ(И(B9>0;B9
Компьютерный эксперимент

Введите значения исходных данных:
Например: =35; V=180; S=3000; h=6; g=9.8 и проанализируйте результат.
(Результат “Не попал”)

Найти такой угол наклона пушки, не изменяя другие параметры системы, при котором снаряд попадет в цель. (Результат =32.6; =32.7)

Найти такую скорость снаряда, не изменяя другие параметры системы, при котором снаряд попадет в цель. (Результат V=177)

Усовершенствуйте модель таким образом, чтобы результатом являлось одно из сообщений: “Снаряд попал в стену”, “Недолет”, “Перелет”.

^ Анализ результатов

Данная компьютерная модель позволяет проводить вычислительный эксперимент, взамен физическому. Меняя значения исходных данных, можно видеть все изменения происходящие в системе, производить расчет на поражение цели в зависимости от угла наклона пушки и скорости снаряда.


Задача 3

Две моторные лодки равномерно двигались по реке в направлении к озеру, в которое река впадает. Поравнявшись, они начали двигаться равноускоренно. Какая из лодок раньше дойдет до озера? [11]

5.4 Экология


Задача 1

Представьте себе, что на Земле останется только один источник пресной воды — озеро Байкал. На сколько лет Байкал обеспечит население всего мира водой?

^ Постановка задачи

Цель моделирования — определить количество лет, в течение которых Байкал обеспечит население всего мира водой, исследовать построенную модель.

Объектом моделирования является система, состоящая из двух компонентов: озеро Байкал и население Земли.

Зная количество воды в Байкале, численность населения Земли и потребляемость воды на 1 человека, можно найти на сколько лет ее хватит. При составлении этой модели мы не учитываем возможные изменения климатических условий. Мы также считаем постоянными численность населения Земли и потребляемость воды на 1 чел. в день. (Человечество потребляет на свои нужды огромное количество пресной воды. Основными ее потребителями являются промышленность, сельское и коммунально-бытовое хозяйство. Объем потребляемой воды зависит от уровня жизни, составляя от 3 до 700 л на одного человека.)

^ Разработка модели

Для построения математической модели определим исходные данные. Обозначим:

V - объем озера Байкал 23000 км3;

N - население Земли 6 млрд. чел.;

p - потребление воды в день на 1 человека (в среднем) 300 л.

Так как 1л. = 1 дм3 воды, необходимо выполнить перевод V воды озера из км3 в дм3. V (км3) = V * 109 (м3) = V * 1012 (дм3)

Результат — количество лет, за которое население Земли использует воды Байкала, обозначим g. Итак, g=(V*1000000000000)/(N*p*365)

Так выглядит электронная таблица в режиме отображения формул:










Задача об использовании вод Байкала



Исходные данные






V(км3)






N (чел)






p (л)






g (год)

=(B3*1000000000000)/(B4*B5*365)

Компьютерный эксперимент

Введите в компьютерную модель исходные данные.










Задача об использовании вод Байкала



Исходные данные






V(км3)

23000



N (чел)

6000000000



p (л)

300



g (год)

35




Сколько лет можно будет пользоваться водами Байкала, если потребляемость воды увеличится до 400 литров на человека?

Сколько лет можно будет пользоваться водами Байкала, если население Земли уменьшится до 5,7 млрд. чел.?

^ Анализ результатов

Построенная модель позволяет прогнозировать время использования вод Байкала с учетом потребляемости воды на 1 человека, изменения численности населения всего мира. Данную модель можно уточнить, учитывая изменения климатических условий.


Задача 2

Известны ежегодные показатели рождаемости и смертности некоторой популяции. Рассчитайте, до какого возраста могут дожить особи одного поколения.

^ Постановка задачи

Цель моделирования — исследовать изменение численности поколения популяции в зависимости от времени, определить возраст до которого могут дожить особи одного поколения популяции.

Объектом моделирования является процесс ежегодного изменения количества одного поколения популяции, который зависит от рождаемости популяции и ее смертности.

^ Разработка модели

Так как ежегодная рождаемость популяции соответствует количеству особей одного поколения в популяции, то исходными данными являются:

x - количество особей в 1 год;

p - ежегодная смертность (%).

Численность популяции в каждом следующем году рассчитывается по формуле: xi+1=xi - xi*p/100. Расчет производим до тех пор, пока значение xi не станет <1.

Так выглядит электронная таблица в режиме отображения формул:










Задача о прогнозировании численности популяции



Исходные данные






смертность (%)






рождаемость






1 год

B4



2 год

=B5-B5*$B$3/100



3 год

=B6-B6*$B$3/100

Формулу копируем.

Компьютерный эксперимент

Введите в компьютерную модель исходные данные p, x (например p=30, x=1000) и проиллюстрируйте зависимость численности популяции от времени на графике.

Результаты вычислений выглядят следующим образом:










Задача о прогнозировании численности популяции



% смертности

30



1 год

1000



2 год

700



3 год

490



4 год

343



5 год

240,1



6 год

168,1



7 год

117,6



8 год

82,4



9 год

57,6



10 год

40,4



11 год

28,2



12 год

19,8



13 год

13,8



14 год

9,7



15 год

6,8



16 год

4,7



17 год

3,3



18 год

2,3



19 год

1,6



20 год

1,1



21 год

0,8



22 год

0,6



Анализ результатов

Результаты эксперимента показывают, что особи одного поколения данной популяции могут дожить до 20 лет.

Продолжите компьютерный эксперимент

Какова должна быть рождаемость популяции, чтобы особи одного поколения доживали до 25 лет при той же смертности. (Результат: x=5000)

Каков должен быть показатель смертности, чтобы при той же рождаемости (x=1000) особи одного поколения доживали до 35 лет. (Результат: p=18)

^ Анализ результатов

Модель показывает, что количество особей одного поколения всегда уменьшается и стремится к нулю, т.е. приводит к гибели данного поколения популяции.


Задача 3

Определите, как будет меняться плотность популяции голубя в течение 5 ближайших лет, если предварительные наблюдения позволили установить, что ее плотность составляет 130 особей/га. За период размножения (у голубя раз в году) из одной кладки яиц в среднем выживает 1,3 детенышей. Смертность голубя постоянна, в среднем за год погибает 27% особей. При увеличении плотности популяции до 300 особей/га и выше смертность составляет 50%.


^ Постановка задачи

Цель моделирования — исследовать процесс изменения плотности популяции с учетом ее рождаемости и смертности.

Объект моделирования — процесс изменения плотности популяции.

Плотность популяции — это число особей, приходящаяся на единицу площади или объема жизненного пространства. Измерением плотности пользуются в тех случаях, когда важнее знать не конкретную величину популяции в тот или иной момент времени, а ее динамику, то есть ход изменений численности во времени.

Рождаемость характеризует способность популяции к увеличению численности за счет размножения особей. Показатель рождаемости — это число новых особей (также яиц, семян), родившихся (вылупившихся, отложенных) в популяции за определенный промежуток времени.

Смертность — это показатель, противоположный рождаемости. Смертность, как и рождаемость, выражается числом особей, погибших за данный период времени, но чаще в виде относительной или удельной величины. Такой величиной может быть процент особей, погибших в единичный отрезок времени.

^ Разработка модели

Известно начальное значение плотности популяции.

Плотность популяции к началу следующего года есть ее плотность к началу данного года плюс рождаемость и минус смертность.

Рождаемость зависит от плотности самок и плодовитости. Предположим, что в популяции равное количество самок и самцов, то, зная плотность популяции, можно определить плотность самок (плотность самок=1/2 плотности популяции). Плодовитость известна по условию задачи. Число особей, погибших за год — это процент (смертности) от общей плотности популяции. Смертность популяции зависит так же и от величины плотности популяции.

Исходные данные:

плотность популяции (P) - 130 особей/га;

плодовитость - 1,3 детеныша в год.

Остальные показатели рассчитываются следующим образом:

плотность самок = P/2;

рождаемость (R) = плотность самок * плодовитость;

смертность (S) = P * удельная смертность;

где удельная смертность голубя = 27% в год, если P<300,

в противном случае она равна 50%;

Плотность популяции в каждом следующем году рассчитывается по формуле:

Pi+1 = Pi + Ri - Si.

Так выглядит электронная таблица в режиме отображения формул:



















Задача о прогнозировании плотности популяции голубя



Исходные данные:


















Плотность популяции

130















Плодовитость

1,3



































Показатели популяции голубя

1 год

2 год

3 год

4 год

5 год



Плотность

=B3

=B7+B8-B9

=C7+C8-C9

=D7+D8-D9

=E7+E8-E9



Рождаемость

=B7/2*$B$4

=C7/2*$B$4

=D7/2*$B$4

=E7/2*$B$4

=F7/2*$B$4



Смертность

=ЕСЛИ(B7<300; B7*0,27; B7*0,5)

=ЕСЛИ(С7<300; C7*0,27; C7*0,5)

=ЕСЛИ(D7<300; D7*0,27; D7*0,5)

=ЕСЛИ(E7<300; E7*0,27; E7*0,5)

=ЕСЛИ(F7<300; F7*0,27; F7*0,5)


^ Компьютерный эксперимент

1. Введите значения исходных данных (Плотность популяции=130 и Плодовитость=1,3) и постройте в одной системе координат графики изменения плотности, рождаемости и смертности популяции голубя за 5 лет.




^ Показатели популяции голубя

1 год

2 год

3 год

4 год

5 год



Плотность

130

179

248

342

393



Рождаемость

85

117

161

222

255



Смертность

35

48

67

171

196



Как изменится модель, если число самок составляет 1/3 от общего количества популяции.

^ Анализ результатов

Данная модель позволяет исследовать процесс изменения плотности популяции с учетом ее рождаемости и смертности.

Задача 4

Как определить размер популяции рыбы в озере, используя метод мечения и повторного отлова.

^ Постановка задачи

Объект моделирования — популяция рыбы.

Для измерения обилия популяций испытано много различных методов. К наиболее распространенным относится метод мечения и повторного отлова (для подвижных животных). Этот метод — включает отлов животных, его мечение (без причинения вреда), пойманных животных подсчитывают и выпускают. Через некоторое время животных снова отлавливают и подсчитывают их общее число и отдельно число меченых. Численность популяции оценивают по формуле:

О = В1*В2/М,

где О - общая численность популяции,

В1 - число особей при 1 отлове,

В2 - число особей при 2 отлове,

М - число меченых животных пойманных при 2 отлове.

Используя данный метод, решите предложенную задачу при следующих значениях исходных данных: В1=625; В2=873; М=129.

Результат: 4230 особей.

5.5 Биология


Задача 1

Для производства вакцины на заводе планируется выращивать культуру бактерий. Известно, что если масса бактерий - x г., то через день она увеличится на (a-bx)x г., где коэффициенты a и b зависят от вида бактерий. Завод ежедневно будет забирать для нужд производства вакцины m г. бактерий. Для составления плана важно знать, как изменяется масса бактерий через 1, 2, 3, ..., 30 дней..[5]

^ Постановка задачи

Цель моделирования — исследовать изменения массы бактерий, в зависимости от ее начального значения.

Объектом моделирования является процесс ежедневного изменения количества вакцины с учетом выращивания и использования бактерий для производства вакцины.

^ Разработка модели

Исходные данные:

a и b - коэффициенты;

x0 - начальная масса бактерий;

m - масса бактерий, забираемых для нужд производства;

Количество бактерий каждого следующего дня зависит от количества бактерий предыдущего дня и вычисляется по формуле:

xi+1= xi+(a-b*xi)*xi-m - масса бактерий в следующий день.

Результатами являются значения массы бактерий через 1, 2, 3, 4 ... 30 дней.

Так выглядит электронная таблица в режиме отображения формул:










Задача о производстве вакцины



Исходные данные






a






b






m (г.)






1 день (г.)






2 день (г.)

=B6+(B$3-B$4*B6)*B6-B$5



3 день (г.)

=B7+(B$3-B$4*B7)*B7-B$5



4 день (г.)

=B8+(B$3-B$4*B8)*B8-B$5

....

35.

30 день (г.)

=B34+(B$3-B$4*B34)*B34-B$5

Компьютерный эксперимент

Введите в компьютерную модель исходные данные (например a=1, b=0.0001, m=2000, x0=12000) и постройте график зависимости массы бактерий от количества дней.

Результаты вычислений выглядят следующим образом:










Задача о производстве вакцины



Исходные данные






a

1



b

0,0001



m (г.)

2000



1 день (г.)

12000



2 день (г.)

7600



3 день (г.)

7424



4 день (г.)

7336,422



5 день (г.)

7290,535



6 день (г.)

7265,88



7 день (г.)

7252,459



8 день (г.)

7245,102



9 день (г.)

7241,054



10 день (г.)

7238,821

...

35.

30 день (г.)

7236,068





Анализ результатов

Видно, что масса бактерий достаточно быстро убывает и становится близкой к 7236 граммам.

^ Компьютерный эксперимент.

Что произойдет к концу месяца, если увеличить начальную массу бактерий. Проведите эксперимент, взяв начальную массу 13000 г., 14000 г., 17000 г., 18000 г. Постройте соответствующие графики зависимости массы бактерий от количества дней.


^ Анализ результатов

В результате этих экспериментов можно увидеть, что к концу месяца масса бактерий каждый раз упорно стремится к 7236 г. А при начальной массе в 18000 г. уже через 2 дня бактерии погибнут.

Вычислительный эксперимент показывает, что существует такой интервал значений начальной массы (от 2764 г. до 17236 г.), при котором в течение некоторого времени масса бактерий стабилизируется на уровне 7236 г. Если же взять начальную массу за пределами этого интервала, то бактерии погибнут.


Задача 2

Составить модель биоритмов для конкретного человека от указанной текущей даты (дня отсчета) на месяц вперед с целью дальнейшего анализа модели. На основе анализа индивидуальных биоритмов прогнозировать неблагоприятные дни, выбирать благоприятные дни для разного рода деятельности. [4]


^ Постановка задачи

Цель моделирования — составить модель биоритмов для конкретного человека от указанной текущей даты на месяц вперед с целью ее дальнейшего анализа.

Объектом моделирования является любой человек, для которого известна дата его рождения.

В жизни человека бывают творческие и бесплодные, счастливые и несчастливые дни, дни, когда он бывает в приподнятом или в подавленном настроении. Существует теория, что жизнь человека подчиняется циклическим процессам, называемым биоритмами. Эти циклы описывают три стороны самочувствия человека: физическую, эмоциональную и интеллектуальную. Биоритмы характеризуют подъемы и спады нашего состояния. Многие полагают, что “взлетам” графика, представляющего собой синусоидальную зависимость, соответствуют более благоприятные дни. Дни, в которые график переходит через ось абсцисс, являются критическими, т.е. неблагоприятными. Если у каких-либо двух (или у всех трех) биологических ритмов совпадают критические дни, то такой день называется дважды (трижды) критическим.

За точку отсчета трех биоритмов берется день рождения человека.

Физический био
еще рефераты
Еще работы по разное