Реферат: Реферат к сдаче кандидатского экзамена




Реферат

к сдаче кандидатского экзамена

“Физика полупроводников”

на тему:

“ Определение времени жизни носителей в высокоомном кремнии.

Влияние времени жизни на параметры высоковольтных приборов на кремнии.”


Содержание:

Введение
1. Обзор литературы

2. Определение времени жизни по стандарту ASTM F28-91

3. Механизмы рекомбинации

4. Выводы


Введение


Для биполярных приборов, работа которых связана с инжекцией неосновных носителей, особенно для приборов, работающих в области высоких напряжений, врямя жизни носителей чрезвычайно важно для таких параметров как: падение напряжения в открытом состоянии , динамические характеристики, поткри при выключении. Обычно компромисс между этими конкурирующими параметрами достигается путём облучения электронами, протонами или легированием примесями , дающими глубокие уровни в кремнии. Также время жизни является важным параметром для характеризации высокоомного кремния , его структурного совершенства. В связи с этим измерения времени жизни, возможность его регулирования представляет большой практический интерес.


^ Обзор литературы.


Для многих приборов, таких как высоковольтные тиристоры, необходим

большой температурный диапазон работы, в пределах 40 С - 125 С. Поэтому изменение времени жизни носителей в зависимости от температуры может оказать существенное влияние на характеристики прибора.

В программах моделирования полупроводниковых приборов

( одномерных [1], двумерных [2]) решаются стандартные уравнения диффузионно – дрейфового приближения [3]. Обычно применяется модель рекомбинации Шокли – Холла - Рида [4] для одного уровня в запрещённой зоне. Время жизни для электронов и дырок в этой модели описывается как

р=1 /pVthNt n=1 /nVthNt(1.1)

где:

Nt– концентрация рекомбинационных центров.

Vth = (3kT/m)1/2 107 см/сек – тепловая скорость носителей

p , n – сечение захвата электронов и дырок соответственно.


В пренебрежении зависимостью p , nот температуры это позволяет предположить, что n,р меняется с температурой как Т-1/2. Многочисленные исследования [5], [6], [7], показывают, что температурная зависимость n,р существенно сильнее. Согласно [7] температурная зависимость времени жизни определяется как:

р T2.8 n T2.2 (1.2)

Кроме того, при моделировании приборов необходимо учитывать зависимость времени жизни от концентрации акцепторной и донорной примеси. Такая зависимость рассмотрена в [8]. Она определяется формулой :


n,p(x) = n,p / (1+( {Na(x)+Nd(x)}/3*1015 )1/2 ) (1.3)


В работе [9] проводилось 2-х мерное моделирование зависимости тока управляющего электрода в GTO (Gate Turn Off thyristor) от температуры. В этой работе использовалась модель подвижности Даркеля и Летурка [8], в которой учитываются эффекты рассеяния носителей заряда на носителях, возникающие при высоких уровнях инжекции. Также была модифицирована температурная зависимость подвижности носителей. Были добавлены учет диссипации энергии при протекании тока и учет энергии рекомбинации. Дополнительно к сокращению времени жизни в высоколегированных областях ( по Шарфеттеру) n-эмиттера использовался коэффициент 0,8 учитывающий эффекты геттерирования и коэффициент 0,3 в высоколегированных слоях р-эмиттера , учитывающий вжигание аллюминиевой металлизации на анодном контакте. Рассчитанный по этой модели ток сравнивался с экспериментом. Полученная таким образом зависимость времени жизни приведена на рис. 1.1



Рис. 1.1. Температурная зависимость времени жизни по [9]

В температурном диапазоне 25 С - 125 С наблюдается линейный рост времени жизни в зависимости от температуры.

В сязи с массовым выпуском IGBT (Insulated Gate Bipolar Transistor), GTO встает вопрос о быстром и надежно тестировании времени жизни носителей непосредственно на кристалле прибора. В работах [10] , [11], [12] рассматривается вопрос о использовании для этой цели p-i-n диодов. В работе [13] приводится пример тестовой структуры , изготавливаемой непосредственно на кристалле IGBT, применяемой для контроля времени жизни. Приведены вольт – амперная характеристика и значения падения напряжения на диоде в зависимости от времени жизни в n— базе. Максимальная плотность тока в диоде 100 А/см2. Тестируемые значения времени жизни от 4 до 100 сек. Определенные времена жизни по падению напряжения проверялись по методу восстановления обратно смещенного диода.

Однако площадь тестовых элементов, расположенных на скрайбовой дорожке кристалла может оказаться мала для уверенного определения времени жизни. В лаб. 10 ИФП СО РАН разработан метод, позволяющий определять время жизни на рабочих структурах МСТ после дополнительных технологических обработок [14]. Применяемый метод – восстановление обратно смещенного диода. В качестве катода использовался Р-карман над которым расположен контакт к затвору тиристора. В процессе измерений сравнивались кристаллы МСТ, изготовленные по одному технологическому маршруту на двух предприятиях – АО “Ангстрем” и АО “Восток”. Средние значения времени жизни составили – 40,3 мкс (АО “Ангстрем”) и 11,6 мкс (АО “Восток”). Из сравнения времен жизни видно, насколько важна технологическая чистота процессов, используемых при изготовлении высоковольтных приборов. Недостатком метода является то, что этот метод – разрушающий.


Так как время жизни жизни в высокомной базе определяет такую важную характеристику прибора как , как потери энергии во время выключения прибора, то в литературе уделяется большое внимание регулированию этого параметра. В качестве одного из методов применяется облучение протонами эмиттерной (анодной) стороны прибора [15]. Эта технология позволяет уменьшить потери при выключении прибора путем введения большого числа рекомбинационных центров и уменьшения времени жизни носителей в базовой области , примыкающей к аноду. В работе [16] в качестве примера рассматривался IEGT (Injection Enhanced Gate Transistor) c напряжением блокирования 4,5 кВ. Для облучения применялись протоны с дозами 51011 см-2 и 71011 см-2. Об энергиях протонов в статье не сообщается, но по глубине залегания радиационных дефектов можно сказать, что она не менее 2 МэВ. Падения напряжения в открытом состоянии составили не менее 4,7 и 5,4 В соответственно при плотности тока 100 А/см2. Потери энергии при выключении составили 35 mДж/см2 и 25 mДж/см2. Однако при повышении дозы облучения на ВАХ появлется участок с отрицательным динамическим сопротивлением, что приводит к осцилляциям тока и ухудшению характеристик прибора. В статье [16] указано на необходимость точного подбора дозы облучения.

Регулирование времени жизни представляет интерес не только с точки зрения его уменьшение. Падение напряжения в низколегированой области зависит от величины времени жизни. В процессе технологических обработок пластины загрязняются примесями, многие из которых представляют из себя рекомбинационные центры. Поэтому встаёт вопрос о геттерировании таких примесей в процессе технологических обработок с целью повышения времени жизни носителей. Вопросы геттерирования подробно рассмотрены в [17] .


^ 2. Определение времени жизни по стандарту ASTM F28-91


Cтандарт ASTM F28-91 определяет порядок и условия определения обьемного времени жизни носителей в германии и в кремнии. Эта стандарт основан на измерении спада импульсного тока вызванного импульсной засветкой образца.

Другие стандарты измерения времени жизни:

1) DIN 50440/1 “Измерение времени жизни в монокристаллах кремния на основе спада фототока”

2) IEEE Standart 255 “Измерение времени жизни неосновных носителей в кремнии и германии на основе спада фототока ”.


Стандарт ASTM F28-91 определяет три типа образцов, применяемых при измерениях. Типы образцов приведены в таблице 2.1.

Таблица 2.1. Размеры образцов, применяемых при измерениях.


Тип образца

Длина, мм

Ширина, мм

Высота, мм

A

15,0

2,5

2,5

B

25,0

5,0

5,0

C

25,0

10,0

10,0



Таблица 2.2 Максимально допустимые обьемные времена жизни неосновных носителей для разных полупроводников и образцов , сек.


Материал

Тип А

Тип B

Тип C

p-тип германий

32

125

460

n-тип германий

64

250

950

n-тип кремний

90

350

1300

р-тип кремний

240

1000

3800



Таблица 2.3. Темп поверхностной рекомбинации для разных полупроводников и типов образцов, Rs , S-1.


Материал

Тип А

Тип B

Тип C

p-тип германий

0,03230

0.00813

0.00215

n-тип германий

0.01575

0.00396

0,00105

n-тип кремний

0,01120

0,00282

0,00075

р-тип кремний

0,00420

0,00105

0,00028



После засветки образца импульсом света напряжение на образце меняется по закону:


V=V0exp(-t/f) (2.1)


где:

V – напряжение на образце

V0 - максимальная амплитуда напряжения на образце

t - время

f- измеренное время экспоненциального спада.



В силу нескольких причин экспоненциальная форма сигнала (2.1) может быть искажена. Это может быть обусловлено как поверхностной рекомбинацией , скорость которой много выше обьемной, так и наличия глубоких уровней, на которых могут захватыватся носители. Устранение влияния поверхностной рекомбинации достигается 2 методами:


Использованием длины волны излучения, возбуждающего носители

больше 1 мкм (для этого применяются фильтры см. рис. 2.1.)

Использование образца соответствующих размеров (см. Таблицу 2.3)


Для устранения прилипания носителей используются два метода:

Нагревание образца до 70 С

Фоновая постоянная подсветка образца.


Однако при использовании температурного метода необходимо иметь в виду, что время жизни сильно зависит от температуры образца ( ~ 1% на градус).

Поэтому при сравнении времен жизни на нескольких образцах необходимо следить, чтобы температурные условия измерений были одинаковы.

Кроме того необходимо удостоверится, что в проводимости учавствуют носители, воникшие в результате возбуждения импульсом света. Для этого напряжение смещения Vdc, поданное на измеряемый образец должно удовлетворять требованию:


^ Vdc  (106LcL)/(500f) (2.2)


Где :

Lc – растояние от края области засветки образца до области контакта , мм

L – длина образца , мм

f- измеренное время экспоненциального спада, S.

 - - подвижность неосновных носителей, см2/Всек


Экспоненциальный спад тока фотопроводимости соответствует времени жизни в случае , если уровень инжекции фототока мал в сравнении с уровнем инжекции тока, протекающего под действием потенциала смещения. Это требование удовлетворено в случае выполнения соотношения:


V0/Vdc  0.01 (2.3)


Если это условие не выполнено, то следует внести поправку в экспоненциальный спад тока фотопроводимости по формуле:


f = f изм[ 1- (V0/Vdc) ] (2.4)


Где:

f изм - экспоненциальный спад тока фотопроводимости

f- экспоненциальный спад тока фотопроводимости после внесения поправки

После внесения этой поправки объемное время жизни неосновных носителей вычисляется по формуле :


0 = (f-1 – Rs)-1 (2.5)


Где Rs определяется из таблицы 2.3.


Стандартом ASTM F28 – 91 при выполнении вышеперечиленых условий устанавливается погрешность 50% для измерений на германиевых образцах и 135% для измерений на кремниевых образцах.




Рис. 2.1. Блок схема установки по измерению времени жизни фотоэлектирическим методом.


^ 3. Механизмы рекомбинации


По виду передачи энергии рекомбинирующих частиц различают три основных типа рекомбинации.


Рекомбинация называется излучательной, или фотонной, если энергия рекомбинирующих частиц выделяется в виде энергии фотона.

Если энергия частицы передаётся решетке (фононам) , то рекомбинация называется безизлучательной, или фононной.

Одним из видов безизлучательной рекомбинации является ударнaя ионизация ( процессы Оже ), когда энергия рекомбинирующих частиц передается третьей частице , которая благодаря этому становиться “горячей”. “Горячая” частица в результате нескольких столкновений передает свою энергию фононам.


Помимо этих трех основных механизмов, энергия рекомбинирующих частиц может передаваться электронному газу ( плазменная рекомбинация ). Если электрон и дырка образуют в качестве промежуточного состояния экситон, то такая рекомбинация носит название экситонной.


Фотонная, фононная и рекомбинация Оже могут протекать по разному в зависимости от механизма перехода электрона из зоны проводимости в валентную зону. Если частицы рекомбинируют в результате непосредственной встречи электрона и дырки, то такая рекомбинация называется прямой, или межзонной. Прямая рекомбинация играет роль в полупроводниках с малой шириной запрещенной зоны порядка 0,2 – 0,3 эВ и меньше.


Если ширина запрещенной зоны больше 0,5 эВ , то рекомбинация происходит через локализованные состояния , лежащие в запрещенной зоне. Эти сосстояния обычно называются рекомбинационными ловушками.

Предположим, что в полупроводнике имеются дефекты уровни энергии которых лежат в запрещенной зоне , а уровень энергии Et не занят электроном (дыркой). Возможен целый ряд процессов, схематически изображенных на

Рис. 3.1.




Рис. 3.1. Схемы рекомбинации носителей. Ес –дно зоны проводимости, Et – уровень в середине запрещённой зоны, Еv – уровень валентной зоны.


а)- нейтральный дефект захватывает свободную дырку

б)- отрицательно заряженый дефект отдает электрон в зону проводимости. Таким образом, электрон , побыв некоторое время

на уровне дефекта, вновь становится свободным. Если дефект с уровнем энергии Et осуществляет захват свободных электронов с последующим их освобождением , то он называется ловушкой захвата электрона;

в)- нейтральный дефект захватывает свободную дырку ( отдает электрон валентной зоне);

г)- положительно заряженый дефект захватывает электрон из валентной зоны; такой дефект называется ловушкой захвата дырки;

д)- захватив электрон из зоны проводимости, отрицательно заряженый дефект захватывает свободную дырку – отдаёт захваченый электрон в валентную зону. Происходит процесс рекомбинации пары электрон - дырка;

е)- захватив свободную дырку, положительно заряженый дефект захватывает свободный электрон, превращаясь в нейтральный дефект. Происходит процесс рекомбинации свободной пары электрон – дырка.


Захват носителей заряда не влияет на стационарное время жизни,

но оказывает влияние на мгновенное время жизни. Освобождение захваченного носителя заряда может быть вызвано тепловым перебросом.

В некоторых случаях это происходит в результате подсветки.


4. Выводы


В связи с бурным развитием силовой электроники в последнее время проявляется повышенный интерес к высокоомному кремнию. Высокоомный кремний является материалом для таких приборов как IGBT, GTO, IGCT, MCT. Поэтому контроль времени жизни в кремнии, возможность его регулирования в заданных пределах предсталяет большой практический интерес.


Литература:


1. W.L. Engl, R. Laur and K. Dirks, IEEE, CAD-1,85, 1982

2. Technology Modeling Associates. Inc.Palo Alto,California. USA, MEDICI user’s manual. March 1992

3. W. Van Robosbroek, Bell System Technical Journal, 29 , 560 , 1950

4. W. Shokley and T.W. Read, Physical Review 87, pp. 835-842, 1952 ; R. N. Hall, Physical Review 87, 387, 1952.

5. M. S. Tiyagi, R. Van Oberstaen, Minority carrier recombination in in heavily doped silicon. Solid State Elrctronics, Vol. 26, No. 6, pp. 577-597, 1983

6. A.G. Milnes, Deep Impurities in Semiconductors, Wiley, New York, 1973.

7. I.V. Grekhov, N.N Korotkov and A.E. Otbelsk, Soviet Physics Semicond., 12, 184 , 1977.

8. J. M. Dorkel, Ph. Lecturcq, Solid – State Electronics, Vol. 24, pp. 821 –825, 1981.

9. Y.G. Gerstenmaier, Proc. Of the 6th Internat. Symposium on Power

Semiconductor Devices & IC’s, Davos, Switzerland, May 31 – June2, pp. 271 –274 ,1994

10. Ichiro Omura and Akio Nakagava, Proc. Of 1995 ISPSD, pp. 422-426, 1995, Yokohama.

11. Olof Tornblad et al, Proc. Of 1995 ISPSD, pp. 380-384, 1995, Yokohama.

12. Thomas Flohr and Reinhard Helbig, IEEE Transactions on Electron Devices Vol. 37, No. 9 Sept., pp. 2076-2079, 1990.

13. Shinji Aono, Tetsuo Takahashi, Katsumi Nakamura, Hideki Nakamura, Akio Uenishi, Masana Harada. A simple and effective lifetime evaluation method with diode test structures in IGBT. // IEEE Trans. On Electron. Dev. n.2, pp. 117-120, 1997.

14. Годовой отчет по интеграционному проекту. ИФП СО РАН, 1997.

15. M. W. Huppi, Proton irradiation of silicon : Complete electrical characterization of the induced recombination centers, Jour. Applied Physics, vol. 68, pp 2708-2707, 1990.

16. Simon Eicher, Tsuneo Okura, Koichi Sugoyama, Hideki Ninomiya, Hiromichi Ohashi, Advanced Lifetime Control for reducing turn-off swithing losses of 4.5 kV IEGT devices, Proc. Of 1998 International Symposium on Power Srmiconductor Devices & IC’s, Kyoto, 1998.

17. Яновская С.Г., Реферат “ Формирование и геттерирующие свойства нитридных преципитатов в слоях Si, имплантированных ионами азота.”, ИФП СО РАН, 1997.
еще рефераты
Еще работы по разное