Реферат: Терещенко Александр Петрович, учитель физики моу «Средняя общеобразовательная школа №10 села Солдато-Александровского Советского района» Ставропольского края реферат


Терещенко Александр Петрович,
учитель физики МОУ «Средняя общеобразовательная школа №10
села Солдато-Александровского
Советского района»
Ставропольского края


Реферат-концепция педагогической деятельности:


ПРОБЛЕМНОЕ ОБУЧЕНИЕ

В ПРОЦЕССЕ ПРЕПОДАВАНИЯ ФИЗИКИ


2008 г

ОГЛАВЛЕНИЕ


1 Введение - ....................................................................................................................................3


2 Основная часть.



Теоретическая основа теории проблемного обучения - ...........................3

Структура и содержание курса физики с точки зрения задач проблемного обучения - ................................................................................4



Проблемное обучение и оптимизация учебного процесса

Вариативность проблемности и учет индивидуальных особенностей учащихся — основные пути оптимизации проблемного обучения - ...........6

Оптимизация проблемного обучения при демонстрации физических опытов - ........................................................................................................10

Обучение творчеству - ...................................................................16



Объяснение нового материала с использованием проблемного обучения

2.4.1 Проблемное изложение - ..............................................................23
2.4.2 Поисковая беседа - ......................................................................27


2.5 О зависимости проблемного обучения от характера изучаемого
материала
2.5.1. Проблемное изучение физических явлений - .............................32
2.5.2 Проблемное изучение физических законов - ..............................35
2.5.3. Проблемное изучение физических теорий - ...............................36


3. Заключение - ..........................................................................................39

4. Литература - ................................................................................................................................39


Иллюстрации:
Рис. №1: Основные пути оптимизации проблемного обучения..................................................8
Рис. №2: Процедура познавательных действий в проблемном обучении включает.............11
Рис.№3: Оптимизация проблемного обучения при демонстрации физических опытов......13
Рис. №4: Правила выполнения исследовательских заданий.....................................................20
Рис. №5: Правила выполнения конструкторских заданий........................................................22
Рис. №6: Факторы успешности проблемное изложения нового материала...........................24


1 Введение.

Перед педагогической наукой и школой стоит задача: разработать для процесса обучения специальную систему развития- самостоятельности и творческих способностей учащихся. Такая же задача стоит и перед методикой преподавания физики в школе. Для того чтобы быть на уровне времени, выпускник школы должен глубоко усвоить важнейшие идеи современной физики и овладеть системой основных научных понятий, уметь ориентироваться в научно-технической литературе, самостоятельно и быстро отыскивать нужные сведения, научиться самостоятельно и систематически пополнять знания и, наконец, научиться активно, творчески пользоваться своими знаниями.

Эту задачу школа решает путем активизации познавательной деятельности учащихся, развития их мышления и способностей в процессе обучения. В последнее время особые надежды в этом отношении связаны с проблемным обучением.

Проблемное обучение — это система развития учащихся в процессе обучения, в основу которой положено использование учебных проблем в преподавании и привлечение школьников к активному участию в разрешении этих проблем.

Под учебной проблемой понимают задачу, вопрос или задание, решение которых нельзя получить по готовому образцу; в этом случае от ученика требуется проявление самостоятельности и оригинальности в самом подходе к решению этих заданий и задач. Система проблемного обучения охватывает все основные виды его учебной деятельности и определяет оптимальные условия организации труда.


2 Основная часть.


2.1 Теоретическая основа теории проблемного обучения.


Особенностью человека являются осмысление получаемой при помощи органов чувств информации об окружающем мире и ее творческая переработка. Однажды, наблюдая по­лет стрекозы, известный авиаконструктор обратил внимание на небольшие утолщения на передних кромках ее крыльев. В то время он был поглощен проблемой флаттера — само­возбуждения колебаний крыла самолета при приближении его скорости к звуковому по­рогу. (Это явление на заре реактивной авиации было причиной многих авиационных ката­строф.) Мгновенно явилась мысль: не здесь ли решение этой проблемы. Идея оказалась верной. Подобных примеров история техники и естествознания знает немало.

Таким образом, на уровне чувственного восприятия отражательная и творческая деятельности человека могут сливаться воедино.

Но и высшие формы творческой деятельности, в частности теоретическая творческая деятельность, носят отражательный характер, хотя на первый взгляд может создаться впечатление, что такое творчество не связано с отражением окружающей действительности. Однако образы модели, которыми оперирует человек в процессе творческой деятельности, имеют реальное содержание лишь постольку, поскольку они отражают собой реальные отношения между предметами и явлениями действительности, установленные через восприятие. Следовательно, преобразующая, творческая деятельность сознания и в этом случае является отражением внутренних, подчас глубоко скрытых закономерностей реально существующего мира.

Теория отражения научно объясняет процесс познания на всех его уровнях, включая творчество. Но когда мы говорим о теории отражения как о гносеологической основе теории проблемного обучения, то мы имеем в виду не только это.

Любая теория не может быть построена без четкой и научно обоснованной формулировки основных понятий. Теория отражения дает научное диалектико-материалистическое объяснение всем фундаментальным понятиям, на которых строится теория проблемного обучения: например, объясняет такие понятия, как «проблема», «закон», «истина», «интуиция», «воображение», «гипотеза», «теория» и т. д. Все эти понятия в своей основе — категории философские. И только на этой основе возможно методологически правильное их применение и специфическое развитие в частных науках.

Нередко понятие «проблема» отождествляют с понятиями «задача» или «вопрос». Но философы утверждают: любая проблема представляет собой единство двух элементов:

а) знание о незнании;

б) предположение о возможности открытия неизвестного закона либо принципиально нового способа практического применения ранее полученных знаний.

Постановка проблемы возможна лишь при наличии специфического отношения между познающим субъектом и предметом познания, которое можно назвать проблемной ситуацией, сущность которой состоит в противоречии между уровнем знаний субъекта и реальным содержанием объекта.

В проблеме (и в этом ее отличие от понятия «вопрос») обязательно содержатся зачатки ответа на те вопросы, с которыми она связана. Такое включение в структуру проблемы предварительных подходов к ее решению обусловлено частичным использованием старых знаний для объяснения новых явлений, а также тем, что в ходе исследования новых явлений субъект не просто выявляет отдельные факты, но и раскрывает какие-то отношения между ними. Философское раскрытие понятия «проблема» позволяет развивать его применительно к теории обучения на прочной научной основе, предотвращает методологические ошибки.


2.2 Структура и содержание курса физики с точки зрения задач проблемного обучения.


Главная цель проблемного обучения — это при минимальных затратах времени получить максимальный эффект в развитии мышления и творческих способностей учащихся. Поэтому вопрос об отборе наиболее ценных проблем, связанных между собой в единую систему, нельзя решать в отрыве от структуры курса и содержания материала. Поясним сказанное. Структура каждого курса определяется общими идеями, положенными в основу его построения, например структура механики (X класс) вытекает из главной методической идеи: показать, как на протяжении всего курса решается основная задача механики — определение положения движущегося тела в пространстве в любой момент времени. Эта задача четко и последовательно раскрывается в учебнике. Следовательно, главные проблемы должны способствовать логически последовательному раскрытию стержневой методической идеи курса и обеспечивать активную мыслительную работу учащихся. Так, при изложении кинематики в учебнике в соответствии с логикой познания в последовательном порядке рассматриваются усложняющиеся виды движения:

- прямолинейное равномерное,

- прямолинейное неравномерное,

- криволинейное движение (здесь акцент делается на изучение наиболее важного частного вопроса — равномерного движения точки по окружности). Соответственно и основные проблемы могут быть сформулированы следующим образом:

Как определить положение прямолинейно и равномерно движущегося тела в произвольный момент времени?

Как определить положение прямолинейно и равноускоренно движущегося тела в произвольный момент времени?

Как определить положение тела при равномерном вращении по окружности в произвольный момент времени?

При переходе к динамике возникают связанные с кинематикой основные проблемы:

- при каких условиях происходит прямолинейное и равномерное движение тела;

- прямолинейное и равноускоренное;

- какие виды сил встречаются в природе.

Главные проблемы, вытекающие из структуры курса, образуют логическую цепь связанных между собой проблем. На их основе уже составляются частные проблемы, целью которых является последовательное раскрытие главных проблем. Например, первая из названных выше проблем кинематики — определение положения тела в произвольный момент времени, движущегося равномерно и прямолинейно,— распадается на две частные проблемы:
1. От чего вообще зависит положение тела, движущегося прямолинейно и равномерно в тот или иной произвольно взятый момент времени? (При обсуждении выясняется, что это положение зависит от выбора системы координат, скорости тела, его начального положения.)
2. Как выразить в виде формулы зависимость между координатой тела и временем при заданных скорости и начальной координате?

Главные и частные проблемы решаются под руководством учителя на уроках, посвященных изучению нового материала. В результате их решения ученики приобретают новые теоретические знания. Основной формой организации деятельности учащихся при этом является поисковая или эвристическая беседа. Такое обучение невозможно без самостоятельной работы учащихся над решением учебных проблем, которыми могут быть творческие задачи и исследовательские лабораторные работы, выполняемые на уроке, а также домашние проблемные задания разных видов.

При отборе проблемных заданий, предназначенных для самостоятельного выполнения их учащимися, необходимо учитывать два обстоятельства:

- самостоятельное выполнение проблемных заданий ведет к глубокому усвоению учениками соответствующих вопросов курса, способствуя одновременно интенсивному умственному развитию школьников;

- на выполнение таких заданий затрачивается в среднем значительно больше времени, чем на выполнение заданий обычного типа. Поэтому обязательные для всего класса проблемные задания целесообразно применять в тех случаях, когда необходимо обеспечить глубокое и прочное усвоение учащимися какого-либо материала.

Речь идет о наиболее важных и принципиальных вопросах курса: основных физических понятиях и явлениях, законах, основаниях физических теорий. В этих случаях дополнительные затраты времени, связанные с применением проблемных заданий, себя оправдывают. Например, при изучении кинематики принципиально важным (и наиболее сложным для учащихся) является вопрос об относительности движения, т. е. о зависимости характера движения и уравнений от выбора системы координат. Поэтому здесь целесообразно предложить учащимся проблемное задание, позволяющее сосредоточить их внимание на этом вопросе, а также применить полученные знания в новой ситуации.

Составной частью системы проблемного обучения физике должны быть и важнейшие физико-технические проблемы. Их решение определяло и определяет в настоящее время основные пути научно-технического прогресса, следовательно, и реальные исторические проблемы. Освещение этих проблем, во-первых, имеет большое методологическое значение. Оно раскрывает материалистическую природу развития научных знаний — обусловленность развития науки производственными потребностями общества. В то же время в диалектическом единстве раскрывает обратное воздействие науки на развитие техники и производства; во-вторых, содействует политехническому обучению.

Таким образом, ознакомление учащихся с важнейшими физико-техническими проблемами помогает решению двух задач: формированию научного мировоззрения учащихся и их политехническому обучению.


2.3 Проблемное обучение и оптимизация учебного процесса.


2.3.1 Вариативность проблемности и учет индивидуальных особенностей учащихся — основные пути оптимизации проблемного обучения.


История развития школы свидетельствует о том, что, когда появляется какой-либо новый «модный» метод обучения, возникает опасность одностороннего увлечения этим методом в ущерб другим, давно сложившимся и хорошо проверенным методам. Сказанное в полной мере относится и к проблемному обучению. Всякая серьезная новая идея в педагогике, новое направление возникают для того, чтобы на данном конкретном этапе развития школы можно было наиболее эффективно (оптимально) решать новые задачи, которые выдвигает перед школой жизнь. На современном этапе одной из таких задач является задача всемерного развития творческих способностей учащихся. Однако помимо этой задачи перед учителем физики стоит немало и других, весьма важных задач обучения и воспитания. Он- должен обеспечить твердое знание программного материала учащимися, научить их применять знания на практике при решении физических задач, выработать у них необходимые экспериментальные умения и навыки. При этом ему необходимо готовить учащихся к осознанному выбору профессии, формировать научное мировоззрение, воспитывать патриотизм и интернационализм и т. д. Поэтому необходимо находить такие формы, методы, приемы работы, которые бы позволяли оптимально решать все эти задачи в комплексе. Чрезмерное увлечение проблемностью может только повредить учебному процессу в целом. Поэтому оптимальным (максимально полезным) может быть лишь такое применение проблемного обучения, которое учитывает все цели и задачи обучения.

Итак, определение места проблемности в учебном процессе с учетом всех учебно-воспитательных задач, стоящих перед учителем (при разработке конкретного урока, темы или целого раздела),— это одна сторона оптимизации учебного процесса при использовании проблемного обучения.

Другая сторона — это оптимизация самого проблемного обучения (рисунок №1, стр.8). Дело в том, что один и тот же проблемный подход может дать совершенно различные результаты в зависимости от условий его применения, и прежде всего от готовности учащихся к проблемному восприятию материала. Здесь имеют значение и общий уровень знаний по физике учеников данного класса, и их настроенность на урок, и предшествующий опыт применения проблемного обучения в данном классе.

Каковы же пути оптимизации проблемного обучения? Главными можно считать вариативность проблемного изучения материала и учет индивидуальных особенностей учащихся. Рассмотрим эти пути.

Вариативность означает возможность выбора такого варианта проблемного подхода- к изучению материала, который в наибольшей мере отвечает конкретным условиям данного класса. При подборе учебные проблемы, используемые на данном уроке (или при изучении данной темы), могут варьироваться, также может варьироваться и степень активности учащихся в решении проблемы, т. е. варьируются и содержание проблемы и, как говорят, уровень проблемности. Это относится ко всем основным видам учебной работы по физике: объяснению нового материала, выполнению учащимися самостоятельных экспериментальных заданий на уроке, решению задач на уроке и к домашним заданиям.

^ При объяснении нового материала составляют два или три различных варианта проблемного подхода, которые рассчитаны на классы с высокой, средней и слабой подготовкой. Допустим, изучают закон Архимеда в VII классах. В сильном классе после демонстрации действия архимедовой силы



последовательно одна за другой ставят проблемы:

Объясните причину появления архимедовой силы.

Выведите формулу величины архимедовой силы.

Предложите способ опытного определения величины архимедовой силы.

Предложите способ опытной проверки формулы архимедовой силы.

При выполнении лабораторных работ вариативность проблемности и учет индивидуальных особенностей учащихся обеспечивают в основном тремя способами.

I способ. Все учащиеся класса получают общее задание, никаких указаний к работе, раскрывающих идею решения, вначале не дают. При необходимости могут быть даны лишь указания, не имеющие отношения к идее выполнения работы. Учащимся предлагают подумать над заданием и составить план его выполнения. Учитель заранее предусматривает определенные виды помощи, для чего составляет специальные карточки с указаниями (видами помощи) двух или трех типов.

II способ. Всему классу дают одно общее задание и два-три дополнительных проблемных. Эти задания записывают на доске (или проецируют на экран при помощи кодограмм) в порядке нарастания сложности, о чем сообщают ученикам. Выполнив основное задание, ученики имеют возможность выбрать любое дополнительное. Опыт показал, что ученики почти никогда не идут по пути наименьшего сопротивления предпочитая выбирать более сложное задание, если считают, что оно им по силам. Дополнительные задания всегда носят проблемный характер; основное же задание (в зависимости от содержания работы и ее целей) может быть как проблемным, так и непроблемным, т. е. выполняемым по инструкции. Например, в работе «Определение объема тела» (VII класс) к основному заданию (оно сформулировано в учебнике) дают два следующих дополнительных задания:

Определите «чистый» объем песка (дроби, пшена и т. д.).

Определите возможно точнее объем малого тела (гвоздя, болта).

III способ (применяется при повторении и закреплении материала). Общее задание не дается, а учащимся предлагается на выбор одно из нескольких проблемных заданий по данной теме, также располагаемых в порядке возрастания сложности. При оценке работы учитывают не только качество ее выполнения, но и сложность выбранного задания, о чем учеников предупреждают. Например, после изучения темы «Условие равновесия рычага. Момент силы» (VII класс) для лабораторной работы можно предложить такие задания:

«Определите вес тела, имея в распоряжении рычаг и лабораторный динамометр (вес тела должен составлять 10—20 Н)»,

«Проградуируйте динамометр (шкала динамометра заклеена бумажной полоской). Оборудование: рычаг, динамометр, гирька массой 100 г (вес гирьки принимается равным 1Н)».

^ При решении задач в классе варьирование проблемы и учет индивидуальных особенностей учащихся обеспечивают примерно теми же способами, что и при выполнении проблемных лабораторных работ. Это и понятно. Ведь проблемная лабораторная работа — это по существу та же проблемная задача, только экспериментального характера. Но есть и некоторые отличия. Так, на лабораторных занятиях ученики чаще всего успевают выполнить только одно (реже два) из предложенных им на выбор нескольких проблемных заданий. Они это понимают и поэтому сразу выбирают какое-либо одно. На уроке, когда решаются задачи, если мы предложим на выбор 3—4 задачи, расположив их в порядке возрастания сложности, ученики обычно решают их подряд, поскольку знают, что таких задач они сумеют решить за урок несколько. Однако беды в этом нет, поскольку и здесь выполняется принцип вариативности проблемы и учета индивидуальных особенностей учащихся. Более сильные ученики успевают наряду с простыми задачами решить и более сложные. Надо лишь подобрать такие задачи, чтобы каждый ученик мог подняться до «своей ступеньки». Это позволяет всем работать в полную силу, а учителю объективно оценивать знания учеников и их творческое развитие.

^ При выполнении домашних проблемных заданий трудно программировать работу учеников ввиду отсутствия прямого контакта с ними. Здесь задачу варьирования проблемы и учета индивидуальных особенностей учащихся можно решить двумя способами: предъявить дополнительные (к общему для всего класса) проблемные задания для желающих и использовать индивидуальные или групповые (предложенные нескольким ученикам) задания.

Применение таких заданий позволяет значительно разнообразить творческую работу учащихся, делает ее более интересной. Их ценность еще в том, что часть заданий предусматривает выполнение интересных, связанных с изучаемым материалом опытов, которые показывают затем учащимся всего класса сами авторы.

В целом последовательность действий в ходе проблемного представления учебного материала представлена на рисунке №2 (стр.11).


2.3.2 Оптимизация проблемного обучения при демонстрации физических опытов.


Нет нужды говорить о значении демонстрационного эксперимента в преподавании физики. Глубокое уяснение учащимися большинства изучаемых в школьном курсе вопросов невозможно без постановки демонстрационных опытов. Это хорошо понимают учителя физики и, как правило, насыщают уроки достаточным количеством демонстраций. Однако демонстрационный эксперимент может и должен выполнять не только обучающую, но и развивающую функцию, т. е. содействовать развитию мышления, наблюдательности, творческого воображения учащихся и их способностей. Об этом учителя нередко забывают. Да и в методических пособиях по эксперименту, к сожалению, на эту сторону мало обращают внимания. Поэтому часто


демонстрационные опыты учителя используют только как иллюстрации к объяснению. Роль их при этом заметно обедняется. Как же оптимально использовать демонстрационный эксперимент в целях развития учащихся? Главное внимание нужно обратить на способы вовлечения учащихся в активную работу по осмыслению опытов, и развивающий эффект будет зависеть от этих способов. Можно выделить пять основных способов активизации учащихся, из которых два позволяют создавать проблемную ситуацию в полном смысле этого слова (рисунок №3, стр.13). Однако их все необходимо иметь в виду в системе проблемного обучения. Каждый последующий способ обеспечивает более высокий уровень активизации учащихся.

I способ. ^ Демонстрационный эксперимент служит иллюстрацией к объяснению учителя.

В этом случае учащиеся в обсуждении или объяснении результатов опыта участия не принимают. Самое большее, что может добиться в этом случае учитель (с точки зрения активизации учащихся),— это полное внимание учеников к его объяснению. Данный уровень активизации можно назвать низшим уровнем. Здесь демонстрационный эксперимент используют в тех случаях, когда демонстрации применяют для введения новых понятий, например понятий «механическое движение», «электрическое поле», «магнитная индукция» и т. д., а также когда учащиеся не имеют достаточной базы для того, чтобы принять активное участие в обсуждении эксперимента и получаемых из него результатов. Так, например, учащиеся обычно не могут объяснить, а тем более предсказать результаты первых опытов, иллюстрирующих явление механического резонанса (IX класс). Причину этого явления и условия его возникновения должен объяснить сам учитель, используя опыты как иллюстрации к своим объяснениям. То же самое можно сказать о таких сложных для понимания учащимися демонстрациях, как демонстрация треков в камере Вильсона, газоразрядного счетчика Гейгера (XI класс). Первый способ используют и тогда, когда опыты служат только для ознакомления учащихся с тем или иным явлением без выяснения его природы. В этих случаях опыты носят ознакомительный, но не объяснительный характер и являются лишь иллю­страцией. Так, например, обстоит дело с демонстрацией магнитных спектров постоянных магнитов или линий магнитной индукции тока при помощи железных опилок.

Данный способ организации деятельности учащихся при демонстрации опытов целесообразно использовать также в том случае, когда учитель резко ограничен во времени, так как этот способ, естественно, требует наименьших затрат времени.

II способ. ^ Учитель выполняет опыт, а учащиеся либо делают выводы, из него, либо объясняют полученные результаты.

Этот способ активизации учащихся можно рекомендовать почти во всех случаях, если по каким-либо причинам нельзя применять способы, соответствующие более высокому уровню активизации учащихся.



Ребят следует заранее предупредить о том, что по окончании опыта они должны будут самостоятельно сделать выводы или объяснить его результаты. (Эту работу учащихся целесообразно учитывать при выставлении поурочного балла.)

В тех случаях, когда на опыте устанавливают новую закономерность, задача учащихся — сделать выводы из опыта. Например, при изучении силы, действующей на тело при равномерном вращательном движении, демонстрируем опыты с прибором «Вращающийся диск».На основании наблюдений ученики делают выводы о зависимости величины этой силы от массы тела, радиуса вращения, угловой скорости. Сказанное справедливо и для тех случаев, когда исследуемые закономерности носят не количественный, а качественный характер (закон электромагнитной индукции в качественной форме, правило Ленца, исследование зависимости давления от скорости потока и т. д.).

Задача — объяснить результат опыта — ставится перед учащимися в тех случаях, когда явления и закономерности, на основе которых строится объяснение, ими уже изучены.

III способ. ^ Учащиеся предсказывают результат опыта.

Перед этим учитель сообщает цель опыта и дает необходимые пояснения к собранной им на демонстрационном столе установке. Такой подход к опыту обеспечивает более высокий уровень активизации учащихся, так как объяснить явление, когда оно уже показано, всегда легче, чем предсказать неизвестный результат. Здесь учащиеся активно включаются в работу еще до выполнения опыта. Естественно, что они с повышенным интересом и вниманием ожидают результат опыта, а затем, если результат предсказан неверно, ищут правильное объяснение. Конечно, предсказание должно быть обосновано.

Д
анный способ активизации учащихся целесообразно применять в тех случаях, когда есть уверенность, что хотя бы некоторые учащиеся класса могут высказать обоснованные соображения относительно ожидаемых результатов опыта. Естественно, что это возможно при условии, когда необходимый материал уже пройден. Так, познакомившись в VIII классе с взаимодействием электрических зарядов, а также с понятием «электростатическое поле» и элементами электронной теории, т. е. зная, что носителями электрического тока в металлических проводниках являются свободные электроны, учащиеся могут самостоятельно предсказать результаты опытов, которые учитель использует для закрепления этого материала. Например, учитель задает вопросы:

Как будет вести себя стрелка отрицательно заряженного электрометра, если к ней приближать положительно или отрицательно заряженные палочки?

Окажутся ли заряженными электрометры (и если да, то как именно), если, не убирая палочки, вызвавшей их электризацию через влияние, снять разрядник (рис. 13)?

Здесь предсказание результатов опыта учащимися может обеспечить их наиболее активную работу, так как могут быть высказаны противоречивые предположения, что весьма полезно обсудить.

Второй и третий способы могут применяться при выполнении большинства школьных демонстраций. Их следует широко использовать на практике. Опыт показывает, что учащиеся быстро «приобретают вкус» к такой работе; их внимание и активность заметно повышаются, а это ведет к интенсивному развитию мышления и способностей учащихся.

IV способ. ^ Учитель ставит перед учениками какой-либо вопрос и предлагает им самостоятельно найти способ экспериментального решения (исследования) этого вопроса. При этом работу учеников можно ограничить поиском только общей идеи исследования без ее детализации, в некоторых же случаях можно обсудить также отдельные детали исследования (после того, как учащимися будет предложена общая идея его выполнения).

V способ. ^ Учащимся дается домашнее задание на проектирование опыта.

Этот способ можно использовать в тех случаях, когда нужно показать вариант (или несколько вариантов) основного опыта, показанного учащимся. Дополнительные опыты ставятся для того, чтобы учащиеся лучше запомнили и глубже усвоили только что изученное новое явление, понятие или закон и увидели какие-либо новые стороны введенного понятия или явления.

Данный уровень активизации является самым высоким, поскольку дома каждый ученик работает самостоятельно и без всякой помощи учителя. Конечно, такая работа требует много времени, поэтому задания данного типа часто предла­гать нельзя. Эти задания могут быть общими (для всего класса) или только для желающих. Выбирают те демонстрации, описание которых отсутствует в учебнике

Вот некоторые примеры такого рода задания:

XI класс. «Укажите возможные способы возбуждения ЭДС индукции в катушке, замкнутой на гальванометр, используя установку, изображенную на рисунке 14, а также следующие приборы: реостат, выключатель, железный стержень, железную пластинку».

Учитель поясняет, что победителем этого своеобразного конкурса будет назван тот, кто предложит наибольшее количество различных способов возбуждения ЭДС индукции, а следовательно, и индукционного тока в катушке с гальванометром.

Возможные решения: а) постепенно приближайте или удаляйте одну катушку от другой; б) не изменяя расстояния между катушками, поворачивайте ось одной из них относительно оси другой; в) постепенно вводите железный стержень в одну из катушек или выводите из нее; г) вводите или выводите в промежуток между катушками железную пластину; д) изменяйте силу тока во второй катушке с помощью реостата, предварительно вводя его в цепь этой катушки, и т. д.

Задания для желающих:

Эти задания можно сделать более разнообразными и сложными. Их дают тем ученикам, которые интересуются физикой и полны жажды творческой деятельности. Такие учащиеся есть почти в каждом классе, и они охотно выполняют подобные задания. Им нужно разрешить пользоваться приборами и работать в физкабинете (конечно, под наблюдением учителя или опытного лаборанта).

Покажем несколько примеров заданий для желающих.

VIII класс. «Придумайте установку, с помощью которой можно показать, что скорость переноса энергии путем конвекции в жидкости зависит от рода взятой жидкости».

X класс. «Придумайте и подготовьте опыт, с помощью которого можно показать электризацию воды».

Решение. Стакан с водой поставьте на столик с изолирующими ножками. Воду можно наэлектризовать при помощи гибкого проводника, один конец которого соединен с одним из кондукторов электрофорной машины, другой опущен в воду, посредине проводник придерживается стеклянной палочкой. Если при помощи разрядника соединить воду с электрометром, то последний зарядится.

Итак, от активного наблюдения до самостоятельной творческой разработки опыта — таков диапазон возможных уровней активизации учащихся при постановке демонстрационного эксперимента.

Целесообразность применения того или иного уровня активизации учащихся зависит от многих обстоятельств: от бюджета времени, подготовленности и развития учащихся класса, конкретной дидактической задачи, решаемой учителем на уроке, и т. д. Но важно, чтобы, во-первых, учитель при подготовке демонстраций всегда имел в виду отмеченные выше возможности активизации учащихся и, во-вторых, чтобы в обучении имела место тенденция к возрастанию роли способов, обеспечивающих их высокую активность. Выполнение этих условий и будет означать оптимизацию деятельности учащихся при выполнении демонстрационных опытов по физике.


2.3.3 Обучение творчеству


К оптимизации проблемного обучения прямое отношение имеет вопрос, касающийся обучения учащихся основам творческой деятельности. Ведь проблемное обучение будет тем успешнее, чем лучше будут подготовлены ученики к решению различных творческих задач. Но можно ли обучать творчеству? Исследования психологов и дидактов давно уже дали положительный ответ на этот вопрос. Говоря об обучении творчеству, целесообразно выделить две стороны этого вопроса

- общие предпосылки успешной творческой деятельности учащихся

- специальные приемы развития их творческих способностей.

К общим предпосылкам прежде всего следует отнести целенаправленную работу по развитию интеллектуальных умений учащихся, в особенности таких мыслительных операций, как анализ и синтез, сравнение и классификация, абстрагирование и обобщение. Подобная работа является основой умственного развития учащихся, а следовательно, и основой обучения творчеству, ибо без развития общих мыслительных способностей нельзя говорить и о развитии творческих способностей.

Но полезно знакомить учеников и со специальными приемами и правилами творческого труда. Применительно к физике речь должна идти о творческой деятельности двух видов: конструкторской — это область применения физических знаний — и исследовательской. К сожалению, пока еще приемы творческой деятельности в названных ее видах изучены недостаточно. Все же некоторые из них известны, и с ними полезно знакомить учащихся на уроках или во внеурочной работе. Например, В. Г. Разумовский в своей книге «Развитие творческих способностей учащихся» рассматривает такие творческие методы, используемые при конструировании, как агглютинация, т. е. новое получается путем присоединения к одному объекту признаков другого объекта, расчленение или объединение объектов, замещение отдельных, частей объекта другими, более эффективными, а также рассматривает метод аналогии, метод сведения сложного к простому. Приучение учащихся к использованию этих методов делает поиск их конструкторских идей при выполнении заданий более разнообразным, способствует развити75

Установление связей данного явления с другими, ранее изученными явлениями, и объяснение природы явления, или причины его возникновения. Например, при изучении явления конвекции обнаруживается связь с ранее изученными явлениями, такими, как тепловое расширение тел и всплывание тел в жидкостях или газах. В результате установления этой связи выясняют причину изучаемого явления — конвекции, которая заключается в следующем: нагретые части жидкости или газа всплывают, при этом происходит перенос энергии от нижних слоев жидкости или газа к верхним.

Введение новых физических величин и констант, характеризующих изучаемое явление. Представление о физическом явлении будет полным лишь в том случае, если ученик ясно представляет себе типичные черты и характерные особенности данного явления, отличающие это явление от других, известных ученику ранее. Наиболее лаконично характерные особенности явлений обычно выражаются посредством введения физических величин. Например, важнейшими особенностями явлений плавления и отвердевания кристаллических тел являются постоянство температуры и необходимость сообщения телу строго определенного (при данных условиях) количества теплоты в течение всего процесса. Эти особенности характеризуются температурой плавления и удельной теплотой плавления. Соответственно при изучен
еще рефераты
Еще работы по разное