Реферат: Методические указания и контрольные задания по дисциплине Физическая и коллоидная химия для студентов специальности 240505 (2511)


Федеральное агентство по образованию

ФГОУ СПО «Каменский химико-механический техникум»

(ФГОУ СПО «КХМТ»)


Методические указания и контрольные задания


по дисциплине

Физическая и коллоидная химия


для студентов специальности 240505 (2511)

«Технология высокомолекуллярных и высокоэффективных

соединений и устройств»,

заочное отделение



2009 г.

Цели и задачи дисциплины.


Физическая и коллоидная химия является одним их важнейших разделов химии.

^ Курс «Физическая и коллоидная химия» ставит своей целью дать студентам знания основных термодинамических и физико-химических закономерностей протекания химических процессов, способов управления ими в производственных условиях.

В данных методических указаниях раскрывается рекомендуемая последовательность изучения курса, а также показывается распределение учебного времени между темами дисциплины.

Программа состоит из двух разделов «Физическая химия» и «Коллоидная химия». В первый раздел входят следующие темы «Агрегатное состояние вещества», «Химическая термодинамика», «Химическая кинетика», «Катализ», «Фазовое равновесие», «Растворы», «Электрохимия».

В теме «Химическая термодинамика» студенты знакомятся детально с современными методами расчета термодинамических свойств веществ и химического равновесия. С помощью термодинамических расчетов оценивается возможность, направление и пределы самопроизвольного течения процессов в заданных условиях.

В разделе химической кинетики вскрывается механизм реакций, что дает возможность управлять ими. Большое внимание при изложении материала по кинетике уделяется факторам, влияющим на скорость химических реакций. Подробно рассматриваются гомогенные и гетерогенные реакции, каталитические процессы, учитывается их использование в технологии.

Термодинамические, кинетические расчеты используются в теоретических основах химической технологии для описания технологических процессов.

Второй раздел рабочей программы «Коллоидная химия» включает изучение химии поверхностных явлений и дисперсных систем. Это направление химии открывает широкие возможности для развития современных технологий.

Лабораторный практикум знакомит с методами и приборами физико-химических исследований, с методикой выполнения необходимых расчетов, обоснованием определенных закономерностей, дает навык научно-исследовательской работы в целом.

Программой курса предусмотрены практические занятия, в рамках которых студенты выполняют работы по решению задач.

Содержание курса физической химии строится на базе знаний по химии, физики и математики в объеме учебной программы техникума по данной специальности.


^ Требования к уровню освоения содержания дисциплины.


Государственный образовательный стандарт профессионального образования определяет определенные требования к минимуму содержания и уровню подготовки студентов. Так, в результате изучения «Физической и коллоидной химии» студенты должны:


иметь представления об основных термодинамических и физико-химических закономерностях, физико-химических методах анализа;


знать основные свойства агрегатных состояний вещества, первое и второе начала термодинамики и их применение в химических процессах, способы управления химико-технологическими процессами, основные свойства коллоидных растворов, их молекулярно-кинетические свойства;


уметь рассчитывать параметры газов и газовых смесей, теплофизические и электрохимические характеристики веществ, применять таблицы стандартных термодинамических величин для расчета тепловых эффектов химических реакций.

Усвоение материала опирается на знания, полученные студентами при изучении математики, физики, неорганической, органической и аналитической химии, и обеспечивает подготовку к изучению дисциплин «Общей химической технологии», «Процессов и аппаратов химической промышленности».

В процессе самостоятельной работы следует пользоваться конспектами лекций по дисциплине и материалами практических занятий, а также индивидуальными консультациями преподавателя по наиболее сложным вопросам курса.


^ Перечень разделов дисциплины

и распределение часов по видам учебных занятий

для заочного отделения.


Наименование разделов и тем

Макс. учебная нагрузка студента, час

Количество аудиторных часов при очной форме обучения

Самостработа студента

Всего

Лаб. раб.

Практ. заня-

тия


Контр. работы

Введение.

Предмет и задачи

«Физической и коллоидной химии»

3

1










2

Раздел 1. Физическая химия.

128

24

6

4




104

1.1. Молекулярно-кинетическая теория агрегатных состояний вещества.

22

4

1

1




18

1.2. Основы химической термодинамики.

25

5

1

2




20

1.3. Химическая кинетика.

10

2

1







8

1.4. Катализ.

10

2










8

1.5. Химическое равновесие.

10

2

1







8

1.6. Фазовое равновесие.

10

2




1




8

1.7. Растворы.

19

3

1







16

1.8. Электрохимия.

22

4

1







18

Раздел 2. Коллоидная химия

43

7




2




36

2.1. Дисперсные системы.

25

5




2




20

2.2. Растворы высокомолекулярных соединений (ВМС).

18

2










16

Всего:


174

32

6

6




142



Содержание дисциплины

Введение.

Предмет физической и коллоидной химии. Работы русских и зарубежных ученых в области физической и коллоидной химии.

Общенаучное и прикладное значение физической и коллоидной химии. Использование ее законов в целях охраны и восстановления окружающей среды.

Использование физико-химических закономерностей для нахождения оптимальных условий ведения химических процессов и сознательного управления ими в производственных условиях.

Физико-химические методы анализа и их значение для химической технологии.

Достижения современной физической и коллоидной химии и новые направления в ее дальнейшем развитии.


Раздел 1. Физическая химия.


Тема 1.1. Молекулярно-кинетическая теория агрегатных состояний вещества.

Общая характеристика агрегатных состояний вещества. Условия перехода из одного агрегатного состояния в другое.

Газовое состояние. Параметры состояния. Газовые законы и их графическое выражение. Уравнение состояния идеального газа Клапейрона-Менделеева. Универсальная газовая постоянная, ее физический смысл.

Уравнение реальных газов Ван-дер-Ваальса. Изотермы реального газа. Критическое состояние вещества. Сжижение газов. Эффект Джоуля-Томсона. Газовые смеси.

Состав смеси по массовым, объемным и молярным долям. Парциальное давление. Закон Дальтона, следствие из него.

Жидкое состояние вещества. Структура жидкости. Поверхностная энергия и поверхностное натяжение жидкости. Факторы, влияющие на величину поверхностного натяжения.

Вязкость жидкостей и газов. Измерение вязкости и поверхностного натяжения для различных технологических процессов. Температура кипения и ее зависимость от атмосферного давления.

Твердое состояние вещества, особенности. Классификация кристаллических решеток.

Плазма – 4-е агрегатное состояние вещества. Использование плазмы в химической технологии.

^ Практическое занятие. Решение задач с применение газовых законов. Решение задач с целью определения параметров газовой смеси. Расчеты с использованием уравнения состояния идеального газа.

^ Лабораторная работа. Определение поверхностного натяжения жидкости.


Студенты должны:

знать сущность молекулярно-кинетической теории, основные свойства агрегатных веществ, формулировки и математическое изложение газовых законов, численные значения универсальной газовой постоянной.

иметь представление о вязкости жидкостей и газов, значении вязкости и поверхностного натяжения для различных технологических процессов, типах кристаллических решеток твердых веществ, плазменном состоянии вещества, применении плазмы в химической технологии.

уметь производить расчеты параметров газов, газовых смесей, жидкостей; проводить лабораторные исследования жидкостей, обосновывать достоверность результатов лабораторных исследований и расчетов.


^ Тема 1.2. Основы химической термодинамики.


Предмет термодинамики, его сущность и значение для изучения химических процессов. Основные термодинамические понятия: система, процесс, функции состояния и функции процесса.

Первый закон термодинамики. Теплоемкость веществ. Внутренняя энергия и энтальпия системы. Теплоемкость смеси.

Работа расширения газа. Термодинамические свойства газов и газовых смесей.

Термохимия. Тепловой эффект реакции, как мера измерения внутренней энергии (изохорный процесс) и энтальпии (изобарный процесс) в химических системах Соотношения между ними. Закон Гесса – основной закон термохимии. Вычисление тепловых эффектов реакций по стандартным теплотам образования и сгорания компонентов реакции. Теплота растворения. Теплота нейтрализации. Закон Кирхгоффа.

Второй закон термодинамики. КПД термодинамического цикла Карно. Энтропия. Термодинамические свойства пара. Свободная энергия системы. Уравнение Гиббса-Гельмгольца. Принцип минимума свободной энергии.


^ Практические занятия. Расчет тепловых эффектов реакций по закону Гесса и справочной литературе, теплоемкости веществ.

Расчет Энергии Гиббса с применением справочных данных.


^ Лабораторная работа. Определение теплоты растворения соли.


Студенты должны:

знать основные понятия, формулировку и 1-го закона термодинамики, закон Гесса и следствия из него, понятие теплового эффекта реакции и зависимость его от различных факторов, связь между изохорным и изобарным тепловыми эффектами, способы определения направления протекания самопроизвольных процессов;

иметь представление о сущности и значении термодинамики для изучения химических процессов;

уметь производить расчеты теплот сгорания, определять тепловой эффект реакции по теплотам образования и теплотам сгорания веществ, участвующих в реакции, измерять теплоту растворения вещества калориметрическим методом, рассчитывать теплоемкость газовой смеси, рассчитывать изменение свободной и связанной энергии в химической реакции и делать выводы по результатам расчетов.


^ Тема 1.3. Химическая кинетика.


Понятие скорости химической реакции. Факторы, влияющие на скорость реакции. Кинетическая классификация реакций. Период полураспада. Цепные реакции, их особенности, стадии. Работы Н.Н. Семенова.


^ Практическое занятие. Расчеты кинетических параметров реакций и энергии активации.


Лабораторная работа. Изучение зависимости скорости реакции от концентрации исходных веществ и температуры.


Студенты должны:

знать основные кинетические параметры химических реакций, сущность энергии активации, особенности цепных реакций;

иметь представление об особенностях и стадиях цепных реакций, работах Н.Н.Семенова;

уметь определять скорость реакции, рассчитывать энергии активации.


^ Тема 1.4. Катализ.


Поверхностные явления и адсорбция. Изменение величины энергии активации химической реакции. Особенности каталитических реакций. Теория соединений гомогенного катализа. Автокатализ. Механизм гетерогенного катализа. Значение каталитических процессов в химической технологии.


^ Лабораторная работа. Построение изотермы адсорбции по экспериментальным данным (адсорбция уксусной кислоты на активированном угле).


Студенты должны:

знать особенности каталитических реакций, теорию промежуточных соединений гомогенного катализа, механизм действия катализатора;

иметь представление об автокатализе, механизме гетерогенного катализа, значении каталитических процессов в химической технологии;

уметь строить изотерму адсорбции по результатам эксперимента.


^ Контрольная работа по темам «Химическая термодинамика. Химическая кинетика. Катализ»


Тема 1.5. Химическое равновесие.


Обратимость химических реакций. Равновесие в гомогенных системах. Константы химического равновесия, выраженные через равновесные концентрации и равновесные парциальные давления. Связь между ними. Зависимость константы равновесия от различных факторов. Принцип Ле-Шателье. Факторы, влияющие на выход продукта.

Реакционная способность системы. Термодинамическая теория химического сродства.


^ Практические занятия. Расчет констант равновесия и выхода продукта реакции. Решение задач с применением принципа Ле Шателье, уравнения изотермы химической реакции. Расчеты равновесных концентраций


^ Лабораторная работа. Изучение влияния различных факторов на положение химического равновесия.


Студенты должны:

знать признаки истинного химического равновесия, формулы для расчета Кс и Кр, принцип Ле-Шателье, уравнение изотермы химической реакции;

иметь представление о факторах влияющих на константу равновесия, на выход продукта;

уметь пользоваться принципом Ле-Шателье, рассчитывать константы химического равновесия и равновесные концентрации, определять направление протекания химической реакции по величине энергии Гиббса.


^ Тема 1.6. Фазовое равновесие.


Основные понятия фазового равновесия. Равновесие в однокомпонентных системах Фазовые равновесия и свойства растворов. Правило фаз Гиббса. Диаграмма состояния однокомпонентной системы (воды). Фазовое равновесие в двухкомпонентной системе. Диаграмма состояния двух компонентной системы (сплава двух металлов). Эвтектический сплав. Правило рычага. Водно-солевые системы.


Студенты должны:

знать основные закономерности фазовых равновесий;

иметь представление о неизоморфно кристаллизующихся и изоморфно кристаллизующихся двухкомпонентных системах;

уметь читать диаграммы одно- и двухкомпонентных систем.

^ Практические занятия. Диаграмма состояния 1-2-х компонентной системы. Решение задач с применением диаграмм состояния. Построение диаграммы плавкости 2-х компонентной системы.


^ Тема 1.7. Растворы


Общая характеристика растворов. Термодинамические свойства растворов. Растворение как физико-химический процесс. Классификация растворов. Растворы твердых веществ в жидкостях. Гидратная теория растворов Д.И.Менделеева.

Явление осмоса. Обратный осмос, его практическое значение. Закон Вант-Гоффа. Изотонический коэффициент. Коэффициент активности.

Равновесие в системе «раствор-пар». Закон Рауля. Эбуллиоскопия и криоскопия, их применение.

Растворы жидкостей в жидкостях Классификация жидких бинарных систем. Идеальные жидкие смеси. Закон Рауля.

Диаграммы «состав-упругость «пара» и «состав-температура кипения» для идеальных и реальных жидких смесей. Законы Д.П. Коновалова. Разделение азеотропных смесей.

Жидкие смеси с ограниченной растворимостью компонентов. Кривые растворимости.

Гетерогенные жидкие смеси. Перегонка под вакуумом. Экстракция. Закон распределения.

Растворы газов в жидкостях Зависимость растворимости газов от различных факторов. Закон Генри. Закон Генри-Дальтона. Коэффициент абсорбции.


^ Практические занятия. Расчеты с использованием закона Рауля. Расчеты с использованием закона Вант-Гоффа. Расчеты различных способов выражения концентрации раствора.


^ Лабораторная работа. Определение кажущейся степени диссоциации бинарного электролита криоскопическим методом.


Студенты должны:

знать сущность гидратной (сольватной) теории растворов Д.И. Менделеева; способы выражения концентрации растворов; классификация растворов по агрегатному состоянию, законы Вант-Гоффа, Рауля, Коновалова, Генри; классификацию жидких смесей по признаку взаимной растворимости компонентов; разновидности, цели и сущность процессов перегонки;

иметь представление об области применения обратного осмоса, криоскопии, эбуллиоскопии, экстрагирования;

уметь производить расчеты различных способов выражения концентрации, рассчитывать осмотическое давление в разбавленных растворах, определять понижение упругости пара растворителя над раствором.


^ Тема 1.8. Электрохимия.


Основные разделы электрохимии, их прикладное значение. Электрическое сопротивление и проводимость различных сред. Теория сильных и слабых электролитов. Взаимные превращения электрической и химической энергии. Основные особенности химических и электрохимических процессов. Проводники первого и второго рода.

Удельная и эквивалентная электропроводность растворов электролитов. Зависимость их от различных факторов. Эквивалентная электропроводность при бесконечном разбавлении. Закон Кольрауша.

Возникновение скачка потенциала на границе «Электрод – раствор». Равновесный электродный потенциал. Стандартный равновесный электродный потенциал как основная электрохимическая характеристика вещества. Ряд напряжений, его значение. Возникновение ЭДС. Гальванические элементы. Механизм возникновения в них тока. Диффузионный потенциал. Понятие о топливном элементе. Измерение ЭДС компенсационным способом.

Электрохимическая коррозия металлов и сплавов. Методы защиты от коррозии.

Электролиз и законы Фарадея. Выход по току. Практическое применение электролиза.


^ Практические занятия. Расчеты электропроводности с применением закона Кольрауша. Расчеты электродных потенциалов и ЭДС по формуле Нернста. Расчеты по законам Фарадея.


^ Лабораторные работы. Измерение удельной электропроводности растворов электролитов. Определение кажущейся степени диссоциации сильного электролита кондуктометрическим методом.

Изучение способов защиты металлов от коррозии.


Студенты должны:

знать закон Кольрауша; зависимость электропроводности растворов электролитов от различных факторов; механизм возникновения скачка потенциала на границе «электрод-раствор»; принцип построения ряда напряжений металлов, его значение; формулу Нернста; устройство химического и концентрационного элемента; порядок измерения ЭДС компенсационным методом; механизм электрохимической коррозии и методы защиты металлов от коррозии; законы Фарадея;

иметь представление о практическом применении электролиза;

уметь рассчитывать электропроводность по закону Кольрауша и таблицам подвижностей катионов и анионов; рассчитывать ЭДС элемента по формуле Нернста и ряду напряжений металлов; выполнять лабораторные эксперименты по заданию.


Раздел 2. КОЛЛОИДНАЯ ХИМИЯ.


Тема 2.1. Дисперсные системы.


Классификация дисперсных систем. Роль их в природе и технике. Получение дисперсных систем. Очистка и концентрирование. Устойчивость. Коагуляция. Строение дисперсных систем.

Грубодисперсные системы: суспензии, эмульсии, пены, аэрозоли. Факторы устойчивости, условия их образования. Практическое использование грубодисперсных систем.

Адсорбция на поверхности раздела жидкость-жидкость, жидкость-газ.


^ Лабораторная работа. Получение ультрамикрогетерогенных систем. Определение порога коагуляции.


Практические занятия. Построение мицелл золей. Определение заряда частиц у.м.г. систем. Расчет порога коагуляции.


Студенты должны:

знать классификацию дисперсных систем по степени дисперсности и агрегатному состоянию; методы получения и очистки у.м.г. систем; принципиальное отличие истинных растворов от коллоидных;

иметь представление о факторах устойчивости у.м.г. систем и способах их коагуляции; строении частиц у.м.г. системы.

уметь изобразить схему мицеллы коллоидного раствора; рассчитать порог коагуляции; определять природу коагулирующего иона.


^ Тема 2.2. Растворы высокомолекулярных соединений (ВМС).


Общая характеристика растворов полимеров. Сравнение их свойств со свойствами растворов низкомолекулярных соединений и коллоидными растворами. Термодинамическая устойчивость растворов ВМС. Самопроизвольное образование растворов ВМС путем неограниченного набухания полимеров.

Ограниченное набухание полимеров, его практическое значение. Растворение полимеров. Растворы ВМС в природе и технике.

Понижение устойчивости растворов ВМС. Высаливание. Образование объемных структур в растворах ВМС, стабилизация дисперсных систем посредством ВМС, адсорбция ВМС на различных материалах.

Студент должен:

знать структуру ВМС, их отличие от низкомолекулярных соединений; механизм набухания и растворения полимера;

иметь представление о применении полимеров;

уметь определять термодинамическую устойчивость ВМС, выделять условия стабилизации дисперсных систем.

^ Программа лабораторного практикума

- Определение поверхностного натяжения жидкости.

- Определение теплоты растворения соли.

- Изучение зависимости скорости реакции от концентрации исходных веществ и температуры.

- Изучение влияния различных факторов на положение химического равновесия.

- Определение кажущейся степени диссоциации бинарного электролита криоскопическим методом.

- Изучение способов защиты металлов от коррозии

^ План практических (семинарских) занятий.

- Решение задач с применение газовых законов и с целью определения параметров газовой смеси.

- Твердое состояние вещества, особенности. Классификация кристаллических решеток. Плазма, ее использование в химической технологии

- Вычисление тепловых эффектов реакций по стандартным теплотам образования и сгорания компонентов.

- Расчеты кинетических параметров реакций и энергии активации.

- Решение задач с применением диаграмм состояния. Построение диаграммы плавкости 2-х компонентной системы.

- Построение мицелл золей. Определение заряда частиц у.м.г. систем. Расчет порога коагуляции.

^ Самостоятельная работа студентов.

- Общенаучное и прикладное значение физической и коллоидной химии. Использование ее законов в целях охраны и восстановления окружающей среды.

- Использование физико-химических закономерностей для нахождения оптимальных условий ведения химических процессов и сознательного управления ими в производственных условиях.

- Предмет термодинамики, его сущность и значение для изучения химических процессов.

- Цепные реакции, их особенности, стадии. Работы Н.Н. Семенова.

- Значение каталитических процессов в химической технологии.

- Гидратная теория растворов Д.И.Менделеева.

- Явление осмоса. Обратный осмос, его практическое значение.

- Электрическое сопротивление и проводимость различных сред. Теория сильных и слабых электролитов. Взаимные превращения электрической и химической энергии.

- Электрохимическая коррозия металлов и сплавов. Методы защиты от коррозии.

- Роль дисперсных систем в природе и технике.

- Общая характеристика растворов полимеров. Сравнение их свойств со свойствами растворов низкомолекулярных соединений и коллоидными растворами.

- Растворы ВМС в природе и технике.

^ ЗАДАНИЯ ДЛЯ КОНТРОЛЬНЫХ РАБОТ


Данная контрольная работа заключается в выполнении заданий по основным вопросам дисциплины. Студентам предлагается 5 вариантов заданий.

Выбор варианта осуществляется по второй цифре номера зачетной книжки:

1 вариант – 1, 6;

2 вариант – 2, 7;

3 вариант – 3, 8;

4 вариант – 4, 9;

5 вариант – 5, 0.

Структура контрольной работы включает 7 практических и 2 теоретических задания по разным темам курса физической и коллоидной химии. Для выполнения практических заданий рекомендуется воспользоваться «Сборником задач и упражнений по физической и коллоидной химии» Гамеевой О.С. – стр. 4, 8, 15, 42, 59 - 65, 77, 122

По результатам проверки контрольная работа может быть зачтена или не зачтена. В последнем случае работа должна быть доработана студентом с учетом всех замечаний преподавателя и представлена на повторную проверку.

Итоговой формой контроля по дисциплине является экзамен.


^ I вариант


1. При 17оС давление газа в баллоне составляло 1,255 * 107 Па. На сколько понизилась температура газа, если установившееся давление стало на 35% ниже первоначального?


2. Определить массу паров свинца в камере объёмом 12 м3 при 1640С. Давление паров свинца при этой температуре 8941 Па.


3. Вычислить давление 1 кмоль водорода, занимающего при 0оС объём 448 л. Использовать для расчётов уравнения состояния идеального и реального газов. Сравнить полученные результаты в том и другом случае с опытной величиной давления 5,228 * 106 Па. Константы уравнения Ван-дер-Ваальса:

а = 0,0284 Дж*м3/кмоль, b = 0,0219 м3/кмоль

4. Вычислить стандартную теплоту реакции дегидрирования этана

2С2Н6 = 2СН4 + С2Н2 + Н2

проводимой в газовой фазе. Теплоты сгорания этана, метана, ацетилена и водорода (кДж/моль) соответственно равны 1560; 890,2; 1299,0; 285,9.


5. Вычислить изобарно-изотермический потенциал ∆G0 реакций и дать заключение о возможности их протекания при стандартных условиях:

3С2Н2 = С6Н6 + ∆G10

CO2 + 2NH3 = NH2-CO-NH2 + H2O + ∆G20

CH3-CH2-CH2OH = CH3-CH=CH2 + H2O + ∆G30

Значения ∆G0 реагирующих веществ взять из таблицы:

Вещество

кДж/моль

Вещество

кДж/моль

С2Н2

+209,7

NH3

- 16,55

С6Н6

+123,48

NH2-CO-NH2

- 198,0

СО2

- 394,89

C3H7OH

- 171,4

Н2О

- 237, 5

C3H6

+ 61,70


6. Вычислить молярность раствора поваренной соли, если массовая доля NaCl 0,005 (0,5%). Плотность раствора 1 г/см3.


7. В какую сторону сместятся равновесия реакций:

СО + 2Н2 = СН3ОН + 113,13 кДж

N2O4 = 2NO – 56,98 кДж

N2 + 3H2 = 2NH3 + 92,18 кДж

N2+ O2 = 2NO – 181,0 кДж

а) при понижении температуры; б) при понижении давления?

8. Понятие скорости химической реакции. Факторы, влияющие на скорость реакции.

9. Явление осмоса.


II вариант


1. За 1с. при 400оС и некотором давлении через дымовую трубу проходит 300 м3 дымовых газов. Определить их объём за это время при нормальной температуре и постоянном давлении.


2. Сколько килограммов паров эфира (С2Н5)2О содержится в 1 м3 воздуха, насыщенного парами эфира при 20оС? Давление паров эфира при данной температуре 58950 Па.


3. Вычислить давление 1моль сероводорода при 127оС, находящегося в сосуде вместимостью 500 см3, используя для этих целей уравнения Ван-дер-Ваальса и Менделеева - Клапейрона. Константы уравнения Ван-дер-Ваальса:

а = 0,545 Дж*м3/кмоль, b = 0,0520 м3/кмоль


4. Вычислить теплоту образования бензола 6С + 3Н2 = С6Н6, если теплоты сгорания водорода, углерода и бензола соответственно равны (кДж/моль) 285,0; 394,0; 3282,4.


5. Вычислить стандартное изменение изобарного потенциала ∆G0 для реакции хлорирования метана: СН4 + Cl2 = СН3Сl (г)+ НСl + ∆G0


Воспользоваться табличными значениями ∆Н0298 и S0298.

Вещество

∆Н0298, кДж/моль

S0298, Дж/моль*К

СН4

- 74,85

186,27

Cl2

0

222,98

СН3Сl

- 86,31

234,47

НСl

- 92,31

186,79


6. Определите молярность раствора серной кислоты концентрации 91%. Плотность раствора 1,825 г/см3.


7. Как повлияет повышение давления на равновесия реакций

PCl5 = PCl3 + Cl2

4HCl + O2 = 2H2O (пар) + 2Cl2

C3H8 = C2H4 + CH4

CO + H2O (пар) = CO2 + H2

MgCO3 = MgO + CO2

8. Обратимость химических реакций. Факторы, влияющие на смещение равновесия.


9. Растворение как физико-химический процесс.


III вариант


1. При н.у. плотность ацетилена 1,16 кг/м3. Определить плотность этого же газа под давлением 1,251 кг/м3 и 00С.


2. Какое количество гелия потребуется для наполнения оболочки стратостата вместимостью 1 м3 при 270С и нормальном давлении. Как изменится объем этого газа на высоте, когда давление станет 13320 Па, а температура понизится до -500С?


3. По уравнению Ван-дер-Ваальса вычислить температуру, при которой объем 1 кмоль сероводорода под давлением 6,66*106 Па станет равным 500 л.


4. Вычислить тепловые эффекты следующих реакций:

С2Н4 + 2Н2О(ж) = 2СО + 4Н2

Fe3O4 + H2 = 3FeO + H2O (ж),


используя величины ∆Н0298 (С2Н4) = 52,3 кДж/моль, ∆Н0298(Н2О(ж))= - 285,83 кДж/моль, ∆Н0298 (СО)= -11,53 кДж/моль,∆Н0298 (Н2) = 0, ∆Н0298 (Fe3O4) = - 1117,13 кДж/моль,∆Н0298 (FeO) = - 264,85 кДж/моль


5. Вычислить стандартное изменение изобарного потенциала ∆G0 для реакции С2Н4 + Н2О = С2Н5ОН(ж)

Вещество

∆Н0298, кДж/моль

S0298, Дж/моль*К

С2Н5ОН(ж)

-276,98

160,67

С2Н4

52,30

219,45

Н2О (ж)

- 285,83

69,95


6. Раствор хлорида калия содержит 245,7 г соли на 1000 г воды. Плотность раствора 1,131 г/мл. Вычислите молярность и процентную концентрацию раствора.


7. Как повлияет повышение давления и температуры на равновесия реакций

N2 + 3H2= 2NH3

N2 + O2 =2NO

СаСО3= СаО+СО2

CO2 + H2= CO + H2O

C4H10 = C4H8 + H2


8. Электрохимические цепи, стандартные электродные потенциалы, расчеты ЭДС на основе электродных потенциалов.


9. Характеристики агрегатных состояний вещества.


IV вариант


1. Сжатый воздух в баллоне имеет температуру 15оС. Во время пожара температура воздух в баллоне поднялась до 450оС. Взорвётся ли баллон, если при этой температуре он может выдержать давление не более 9,8 *106 Па? Начальное давление 4,8*106 Па.


2. При 17оС и 104000 Па масса 624 см3 газа составляет 1,560 г. Определить молекулярную массу газа.


3. По уравнению Ван-дер-Ваальса вычислить температуру, при которой объем 1 кмоль метана станет равным 2 м3 под давлением 2,0265*106 Па.


4. Определить тепловой эффект реакции, выраженный чере
еще рефераты
Еще работы по разное