Реферат: Федеральное агентство по образованию РФ государственное образовательное учреждение высшего профессионального образования «тюменский государственный нефтегазовый университет» институт транспорта



ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ РФ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ»

ИНСТИТУТ ТРАНСПОРТА


Кафедра Детали машин


ОБЗОР ОСНОВНЫХ ВИДОВ МЕХАНИЗМОВ


МЕТОДИЧЕСКИЕ УКАЗАНИЯ


к практическим занятиям по Теории механизмов и машин для студентов специальностей НР-130503, ПСТ-130501, НБ-130504, МОП-130602, АТХ-190601, СТЭ-190603, ПДМ-190205, СП-150202, ПТИ-260703, ТМ-151001, МКC-151002, МХП-240801, МСО-190207

очной и заочной полной и сокращенной форм обучения


Тюмень 2007

Утверждено редакционно-издательским советом

Тюменского государственного нефтегазового университета


Составители: доцент, к.т.н. Забанов Михаил Петрович

профессор, д.т.н. Бабичев Дмитрий Тихонович

ассистент, Панков Дмитрий Николаевич


© государственное образовательное учреждение высшего профессионального образования

«Тюменский государственный нефтегазовый университет»

2007 г

^ ЦЕЛЬ И СОДЕРЖАНИЕ РАБОТЫ


В процессе занятия необходимо ознакомиться с основными группами и видами механизмов, их графическими изображениями. Научиться представлять реальный механизм в виде схемы.

В отчете необходимо изобразить и описать классические виды механизмов.

Ведущей отраслью современной техники является машиностроение. Про­гресс машиностроения определяется созданием новых высокопроизводитель­ных и надежных машин. Решение этой важнейшей проблемы основывается на комплексном использовании результатов многих научных дисциплин и, в пер­вую очередь, теории механизмов и машин.

По мере развития машин содержание термина "машина" изменялось. Для современных машин дадим следующее определение: машина есть устройство, создаваемое человеком для преобразования энергии, материалов и информации с целью облегчения физического и умственного труда, увеличения его производительности и частичной или полной замены человека в его трудовых и физиологических функциях.

По выполняемым машинами функциям их делят на следующие классы:

Энергетические машины

Транспортные машины

Технологические машины

Контрольно-управляющие машины

Логические машины

Кибернетические машины

Определение термина "механизм" неоднократно менялось по мере того, как появлялись новые механизмы.

Механизм есть система тел, предназначенная для преобразования движения одного или нескольких твердых тел в требуемые движения других тел. Если в преобразовании движения кроме твердых тел участвуют жидкие или газообразные тела, то механизм называется соответственно гидравлическим или пневматическим. С точки зрения функционального назначения механизмы делятся на следующие виды:

Механизмы двигателей и преобразователей

Передаточные механизмы

Исполнительные механизмы

Механизмы управления, контроля и регулирования

Механизмы подачи, транспортировки и сортировки обрабатываемых изделий и объектов

Механизмы автоматического счета, взвешивания и упаковки готовой продукции

Основным признаком механизма является преобразование механического движения. Механизм входит в состав многих машин, т. к. для преобразования энергии, материалов и информации требуется обычно преобразование движения получаемого от двигателя. Нельзя отождествлять понятия "машина" и "механизм". Во-первых, кроме механизмов в машине всегда имеются дополни­тельные устройства, связанные с управлением механизмами. Во-вторых, есть машины, в которых нет механизмов. Например, в последние годы созданы тех­нологические машины, в которых каждый исполнительный орган приводится в движение от индивидуального электро- или гидродвигателя.

При описании механизмов, они были разделены на отдельные группы по признаку их конструктивного оформления (рычажные, кулачковые, фрикцион­ные, зубчатые и др.)

Механизмы образуются последовательным присоединениям звеньев к начальному механизму.

ЗВЕНО – одна или несколько неподвижно соединенных друг с другом деталей, входящих в механизм и движущихся, как одно целое.

ВХОДНОЕ ЗВЕНО – звено, которому сообщается движение, преобразуемое механизмом в требуемые движения других звеньев. Входное звено соединено с двигателем либо с выходным звеном другого механизма.

ВЫХОДНОЕ ЗВЕНО – звено, совершающее движение, для выполнения которого предназначен механизм. Выходное звено соединено с исполнительным устройством (рабочим органом, указателем прибора), либо со входным звеном другого механизма.

Звенья соединяются друг с другом подвижно посредством кинематических пар: вращательных (шарнир) и поступательных (ползун).

ТРАЕКТОРИЯ движения точки (звена) – линия перемещения точки в плоскости. Это может быть прямая линия или кривая.


^ 1. РЫЧАЖНЫЕ МЕХАНИЗМЫ


Рычажными механизмами называют механизмы, в которые входят жесткие звенья, соединенные между собой вращательными и поступательными кинема­тическими парами. Простейшим рычажным механизмом является двухзвенный механизм, состоящий из неподвижного звена-стойки 2 (Рис.1.1) и подвижного рычага 1, имеющего возможность вращаться вокруг неподвижной оси (обычно это начальный механизм).




Рис.1.1 Двухзвенный рычажный механизм

К двухзвенным рычажным механизмам относятся механизмы многих ро­тационных машин: электромоторов, лопастных турбин и вентиляторов. Меха­низмы всех этих машин состоят из стойки и вращающегося в неподвижных подшипниках звена (ротора).

Более сложными рычажными механизмами являются механизмы, состоя­щие из четырех звеньев, так называемые четырехзвенные механизмы.

На Рис.1.2 показан механизм шарнирного четырехзвенника, состоящего из трех подвижных звеньев 1, 2, 3 и одного неподвижного звена 4. Звено 1, со­единенное со стойкой, может совершать полный оборот и носит название кри­вошипа. Такой шарнирный четырехзвенник, имеющий в своем составе один кривошип и одно коромысло называется кривошипно-коромысловым меха­низмом, где вращательное движение кривошипа посредством шатуна преобразуется в качательное движение коромысла. Если кривошип и шатун вытянуты в одну линию, то коромысло займет крайнее правое положение, а при наложении друг на друга – левое.



Рис. 1.2 Механизм шарнирного четырехзвенника


Примером такого механизма является механизм представленный на Рис.1.3, где звено 1 – кривошип (входное звено), звено 2 – шатун, звено 3 – ко­ромысло. Точка MS двигаясь по кривой описывает траекторию . Одни траектории могут быть воспроизведены рычажными механизмами теоретически точно, другие – приближенно, с достаточной для практики степе­нью точности.

Рассматриваемый механизм, называемый симметричным механизмом Чебышева, часто применяют в качестве кругового направляющего механизма, у которого АВ = ВС = ВМ = 1. При указанных соотношениях




Рис. 1.3 Кривошипно-коромысловый механизм


точка М шатуна АВ описывает траекторию, симметричную относительно оси n - п. Угол наклона оси симметрии к линии центров СО определяется: МСО = π – Ω / 2. Часть траектории точки М является дугой окружности радиуса О1М, что может быть использовано в механизмах с остановкой выходного звена.

Другим примером четырехзвенника является широко распро­страненный в технике кривошипно-ползунный механизм (Рис. 1.4).




Рис. 1.4 Кривошипно-ползунный механизм


В этом механизме вместо коромысла устанавливается ползун, движущийся в непод­вижной направляющей. Этот кривошипно-шатунный механизм применяют в поршневых двигателях, насосах, компрессорах и т.д. Если эксцентриситет е равен нулю, то получим центральный кривошипно-ползунный механизм или аксиальный. При е не равном нулю кривошипно-ползунный механизм называ­ется нецентральным или дезаксиальным. Здесь вращение кривошипа ОА через шатун АВ преобразуется в возвратно-поступательное движение ползуна. Есте­ственно крайние положения ползуна, будут при расположении кривошипа и шатуна в одну линию.

Если в рассмотренном механизме заменить неподвиж­ную направляющую на подвижную, которая называется кулисой, то получим четырехзвенный кулисный механизм с кулисным камнем. Примером такого механизма может слу­жить кулисный механизм строгального станка (Рис.1.5). Кривошип 1, враща­ясь вокруг оси, через кулисный камень 2 заставляет кулису 3 совершать качательное движение. При этом кулисный камень относительно кулисы движется возвратно-поступательно.





Рис. 1.5 Четырехзвенный кулисный механизм


Крайние положения кулисы будут при перпендикулярном расположении к ней кривошипа. Построить такие положения просто: изображается окружность радиусом равным длине кривошипа (траектория движения точки А), и проводятся касательные из оси вращения кулисы.

Таким образом звенья могут совершать поступательное, вращательное или сложное движения.


^ 2. КУЛАЧКОВЫЕ МЕХАНИЗМЫ


Широкое распространение в технике получили кулачковые механизмы. Простейший кулачковый механизм – трехзвенный, состоящий из кулачка, тол­кателя и стойки. Входным звеном чаще всего бывает кулачок. Кулачковые механизмы бывают как плоскими, так и пространственными.

Плоские кулачковые механизмы для удобства рассмотрения разобьем на ме­ханизмы в зависимости от движения выходного звена на два вида:

1.Кулачковый механизм с поступательно движущимся толкателем(ползуном).

Кулачковый механизм с поворачивающимся толкателем (коромыслом).

Пример первого кулачкового механизма показан на Рис.2.1. Кулачок 1, вращаясь с заданной угловой скоростью, действует на ролик 3 и заставляет толкатель 2 в виде ползуна дви­гаться в направляющих возвратно-поступательно.

На Рис.2.2 приведена схема кулачкового механизма с поворачивающим­ся толкателем (коромыслом). Кулачок 1, вращаясь с заданной угловой скоростью ω1, действует на толкатель 2 и заставляет последний вращаться вокруг оси вращения А.





Рис.2.1 Механизм с поступательно-

движущимся толкателем

Рис.2.2 Кулачковый механизм с поворачивающимся толкателем


Кулачковые механизмы имеют разновидности в зависимости от геометрических форм элемента выходного (ведомого) звена и взаимного расположения толкателя и кулачка. Например, кулачковый механизм, показанный на Рис.2.1 может иметь разные виды ведомых звеньев (Рис.2.3).





Рис.2.3 Виды ведомых звеньев, применяемые для кулачковых механизмов с поступательно движущимся выходным звеном:

а) толкатель с ост­рием; б) с плоскостью; в) толкатель с роликом;

г) толкатель со сфериче­ским наконечником.

Кулачковые механизмы с поступательно движущимся ведомым звеном можно раз­делить на:

кулачковые механизмы с центральным толкателем, у которых направление движения толкателя совпадает с осью вращения кулачка (Рис.2.4);

кулачковые механизмы со смещенным толкателем (дезаксиальные), если ось толкателя отстоит на расстояние е – дезаксиал от оси вращения ку­лачка (Рис.2.5).








Рис.2.4 Кулачковый механизм с центральным толкателем

Рис.2.5 Кулачковый механизм со смещенным толкателем


При работе кулачковых механизмов необходимо, чтобы было постоянное соприкосновение ведущего и ведомого звеньев. Это может быть обеспечено либо силовым замыканием, чаще всего с помощью пружин (Рис.2.6), либо геометрически, если выполнить профиль кулачка 1 в форме паза, боковые поверхности которого воздействуют на ролик 3 толкателя 2.





Рис.2.6 Кулачковый механизм с силовым замыканием

Рис.2.7 Кулачковый механизм с геометрическим замыканием

Пазовый кулачок обеспечивает геометрическое замыкание высшей пары кулачкового механизма (Рис.2.7).

Все рассмотренные выше кулачковые механизмы плоские. Часто встреча­ются пространственные кулачковые механизмы, которые весьма разнообразны по конструктивному оформлению. Наиболее распространенными пространст­венными кулачковыми механизмами являются механизмы барабанного типа (Рис.2.8). Цилиндрический кулачок 1 с профильным пазом, обеспечивающим кинематическое замыкание высшей пары, вращается с постоянной угловой скоростью и через ролик 3 сообщает качательное движение толкателю 2, закон изменения которого зависит от очертания паза.




Рис.2.8 Пространственный кулачковый механизм барабанного типа


^ 3. ФРИКЦИОННЫЕ МЕХАНИЗМЫ


В фрикционных механизмах передача вращательного движения между звеньями (катками – роликами) осуществляется вследствие трения возникающего между ними. На Рис.3.1 показан фрикционный механизм с цилиндрическими катка­ми. Передача движения от ведущего катка 1 к ведомому катку 2 осуществляет­ся силой трения, возникающей под действием пружины с силой равной Q.

Нами рассмотрен фрикционный механизм с цилиндрическими катками для передачи вращательного движения между параллельными валами. В передачах же с пересекающимися осями применяют фрикционные механизмы с коническими катками.

Достоинствами фрикционной передачи являются плавность работы и возможность осуществления бесступенчатого изменения передаточного отношения, а также реверсирования. Поэтому фрикционные передачи широко применяют в машиностроении в качестве вариаторов. Простейший вариатор, называемый лобовым (Рис.3.2), состоит из диска 1 и ролика 2.




Рис.3.1 Фрикционный механизм с цилиндрическими катками


Ролик можно смещать вдоль оси О2, следствием чего точка контакта М может занимать различные положения, определяемые расстоянием x. Это позволяет плавно регулировать величину и направление угловой скорости выходного звена.



Рис.3.2 Лобовая фрикционная передача


В качестве вариаторов можно применять также фрикционные механизмы с коническими барабанами.

В процессе эксплуатации фрикционных механизмов, вследствие перегрузки или попадания масла на них, может наблюдаться проскальзывание одного кат­ка относительно другого. Поэтому фрикционные механизмы не обеспечивают постоянства передаточного отношения между ведущим и ведомым валами, что является существенным недостатком, который отсутствует у зубчатых механизмов.


^ 4. ЗУБЧАТЫЕ МЕХАНИЗМЫ


Самое широкое применение в машинах и приборах находят зубчатые ме­ханизмы которые позволяют передавать вращательные движения от одного вала к другому с заданными угловыми скоростями.

В зависимости от расположения осей валов, между которыми осуществ­ляется вращательное движение при постоянном значении передаточного отно­шения, различают передачи:

При параллельных валах

При пересекающихся валах

При скрещивающихся валах

1) На Рис.4.1 показаны цилиндрические колеса с внешним зацеплением, а на Рис.4.2 изображены цилиндрические колеса с внутренним зацеплением, где зубья одного из колес расположены по внутренней поверхности.







Рис.4.1 Зубчатый механизм с внешним зацеплением

Рис.4.2 Зубчатый механизм с внутренним зацеплением


Наряду с прямозубыми, широкое распространение получили зубчатые колеса с косыми и шевронными зубьями.

Зубчатый механизм с реечным зацеплением имеет в составе зубчатую рейку 1 и зубчатое колесо 2 (Рис.4.3).




Рис.4.3 Зубчатый механизм с реечным зацеплением


2) При пересекающихся валах применяют конические колеса (Рис.4.4) с прямыми зубьями, а также с косыми, криволинейными и круглыми.





Рис.4.4 Коническая зубчатая передача


3) При скрещивающихся валах используется червячная передача (Рис.4.5), у которой входным звеном является червяк 1, а также могут применяться винтовые конические (гипоидные) колеса и винто­вые цилиндрические (геликоидальные) колеса.





Рис.4.5 Червячная передача

По форме зуба передачи классифицируются:


зубчатые передачи с эвольвентным профилем зубьев;

передачи с циклоидным профилем зуба;

косозубые передачи с зацеплением Новикова М.Л., имеющем в нормальном сечении круговой профиль зуба.

Зубчатые передачи осуществляются не только в виде отдельной пары зубчатых колес в одноступенчатой передаче, но и в более сложных комбинациях, образуя сложные механизмы. Различают два вида таких механизмов: многоступен­чатые зубчатые механизмы с неподвижными осями и зубчатые механизмы с колесами, имеющими подвижные оси.


Многоступенчатые зубчатые механизмы с неподвижными осями подразделяются на рядовые и ступенчатые зубчатые механизмы.

1.1 Рядовое соединение зубчатых колес представляет собой пос-ледовательное соединение нескольких зубчатых колес (Рис.4.6).





Рис.4.6 Рядовое соединение зубчатых колес





Рис.4.7 Двухступенчатый зубчатый механизм

В ступенчатых зубчатых механизмах последовательно соединяются несколько пар колес (Рис.4.7), так что на осях может быть помещено более одного колеса.


2. Специальные многоступенчатые механизмы имеют некоторые зубчатые колеса с подвижными осями (Рис.4.8). Здесь на подвижной оси О2 находится колесо 2, которое при вращении водила Н вокруг центральной оси О1 обегает неподвижное (опорное) колесо 3 и вращается вокруг собственной оси.




Рис.4.8 Планетарный зубчатый механизм


Колеса 1 и 3 называются центральными колесами (солнечным и корончатым), колесо 2 сателлит или планетарное колесо. Рассматриваемый зубчатый механизм называется планетарным и имеет одну степень под-



Рис.4.9 Дифференциальный механизм

вижности, т.к. имеется неподвижное колесо 3. Достаточно задать закон движения одному звену, чтобы все остальные звенья двигались определенно и целесообразно.

Иными словами работу механизма следует описать так: центральное колесо 1 сообщает движение сателлиту 2, который обкатывается по колесу 3 и увлекает за собой по часовой стрелке водило.

Планетарные механизмы компактны и используются для значительного уменьшения числа оборотов на выходе, при этом передаточные отношения мо­гут быть более тысячи,

Планетарные механизмы, в которых все колеса подвижны, обладают двумя степенями подвижности и называются дифференциальными механизмами (Рис.4.9). Такой механизм должен иметь заданными законы движения двух звеньев.

К зубчатым механизмам относятся и устройства прерывистого движения: храповые механизмы, мальтийские механизмы и другие.


^ МЕХАНИЗМЫ С ГИБКИМИ ЗВЕНЬЯМИ


Кроме механизмов с твердыми звеньями, рассмотренными нами выше, в ка­честве промежуточных звеньев применяются гибкие звенья (ремни, канаты, цепи, ленты и т.д.). Механизмы с гибкими звеньями применяются при значительных межосевых расстояниях.





Рис.5.1 Открытая ременная передача


Ременные передачи по конструктивному оформлению подразделяются на:

Передачи с параллельными осями валов.

Передачи с непараллельными осями валов.


На Рис.5.1 показан простейший пример открытой ременной передачи, у которой вращение шкивов 1 и 2 происходит в одном и том же направлении.

Передача ремнем осуществляется за счет трения возникающего между шкивом и ремнем. ^ Ремень может быть плоский, клиновой или зубчатый.

В перекрестной ременной передаче (Рис.5.2) вращение шкивов 1 и 2

происходит в разных направлениях.




Рис.5.2 Перекрестная ременная передача

.




Рис.5.3 Полуперекрестная ременная передача


Примерами передачи с непараллельными осями валов может служить полуперекрестная ременная передача (Рис.5.3), применяемая при передаче вращения между скрещивающимися валами.


^ Для обеспечения необходимой силы трения между ремнем и шкивами, ремень должен быть натянут. Простейшее натяжное приспособление показано на Рис.5.4, где ролик 3 установлен на рычаге 4, который вращается вокруг оси В. На противоположном плече рычага закреплен груз 5, перемещением ко­торого вдоль рычага достигается регулировка силы натяжения.




Рис.5.4 Открытая ременная передача с натяжным роликом

^ 6. КЛИНОВЫЕ И ВИНТОВЫЕ МЕХАНИЗМЫ


Эти механизмы трехзвенные. Они состоят из стойки и двух подвижных звеньев, образующих три кинематические пары.

1) Трехзвенный клиновый механизм простейшего вида, показанный на Рис.6.1, состоит из клиньев 1 и 2 и стойки 3. Он служит для преобразования одного прямолинейного движения в другое. Например, в механизме клинчато­го пресса, клин 1, движущийся под действием силы F1, перемещает вверх клин 2, преодолевая усилие F2. Эти механизмы применяются для различного вида прессов, поглощающих аппаратов железнодорожных автосцепок, зажимов, механизмов подачи деталей и т.д.



Рис.6.1 Простой клиновый механизм


2) Трехзвенный винтовой механизм (Рис.6.2) состоит из винта 1, гайки 2 и стойки 3. Он предназначен для преобразования вращательного движения винта в поступательное движение гайки по направляющим стойки. Винтовой механизм, иначе называемый передачей винт - гайка, применяют для осуществления перемещений, связанных с теми или иными технологическими процессами (винты прессов, ходовые винты станков, домкраты, струбцины, съемники и т. д.).



Рис.6.2 Трехзвенный винтовой механизм

^ 7. МЕХАНИЗМЫ С ГИДРАВЛИЧЕСКИМИ И ПНЕВМАТИЧЕСКИМИ

УСТРОЙСТВАМИ


Простейший механизм с гидравлическим устройством является гидравлический пресс (Рис.7.1). Его можно рассматривать как четырехзвенный механизм, в котором ведущим звеном может быть один из поршней, например 1, ведомым — поршень 2. Жидкость 3 является звеном, передающим движение от ведущего к ведомому поршню с выигрышем в силе. Здесь емкость 4 – стойка.




Рис. 7.1 Гидравлический пресс


Аналогичное устройство имеют многие механизмы, в которых использу­ется сжатый воздух, например, различные станочные приспособления, инструменты.


ЛИТЕРАТУРА



Фролов К.В., Попов С.А. и др. Теория механизмов и механика машин – учебник для ВТУЗов. М.: Высшая школа, 2003 – 265 с.

Марченко С.И., Марченко Е.П., Логинова Н.В. Теория механизмов и машин. Ростов н/Д.: Феникс, 2003 – 312 с.

Фролов К.В., Попов С.А., Мусатов А.К. и др. Теория механизмов и машин. М.: Высшая школа, 2001 – 496.

Артоболевский И.И. Теория механизмов и машин.М.: Наука,1988 – 583 с.

Смелягин А.И. Теория механизмов и машин. Курсовое проектирование - учебное пособие. М.:ИНФРА–М; Новосибирск: Изд–во НГТУ, 2003 - 262 с.

Иосилевич Г.Б. и др. Прикладная механика – учебник для ВУЗов. М.: Высшая школа, 1989 – 398 с.



ОГЛАВЛЕНИЕ

Стр.

Цель и содержание ,

3

Рычажные механизмы .

4

Кулачковые механизмы ,

7

Фрикционные механизмы .

10

Зубчатые механизмы .

12

Механизмы с гибкими звеньями .

16

Клиновые и винтовые механизмы .

18

Механизмы с гидравлическими и пневматическими устройствами .

19

Литература .

20



Д Л Я З А М Е Т О К


^ ОБЗОР ОСНОВНЫХ ВИДОВ МЕХАНИЗМОВ


Методические указания к практическим занятиям по Теории механизмов и машин для студентов специальностей НР, ПСТ, НБ, МОП, АТХ, СТЭ, ПДМ, СП, ПТИ, ТМ, МКC, МХП, МСО___очной и заочной полной и сокращенной форм обучения


Составители: доцент, к.т.н. Забанов Михаил Петрович

профессор, д.т.н. Бабичев Дмитрий Тихонович

ассистент, Панков Дмитрий Николаевич


Подписано к печати Бум. Писч. №1

Заказ № Уч. изд. л.

Формат 60/90 1/16 Усл. печ. л.

Отпечатано на RISO GR 3750 Тираж экз.

Издательство «Нефтегазовый университет»

Государственное образовательное учреждение высшего профессионального образования

«Тюменский государственный нефтегазовый университет»

625000, г.Тюмень, ул.Володарского, 38

Отдел оперативной полиграфии издательства «Нефтегазовый университет»

625039, г.Тюмень, ул. Киевская, 52

еще рефераты
Еще работы по разное