Реферат: Методические указания по определению вредных веществ в сварочном аэрозоле (твердая фаза и газы)




ИНФОРМАЦИОННО-ИЗДАТЕЛЬСКИЙ ЦЕНТР
ГОСКОМСАНЭПИДНАДЗОРА РОССИЙСКОЙ ФЕДЕРАЦИИ

УТВЕРЖДАЮ

Заместитель Главного государственного
санитарного врача СССР

__________________А. И. ЗАИЧЕНКО

22 декабря 1988 г.

№ 4945-88

МЕТОДИЧЕСКИЕ УКАЗАНИЯ
ПО ОПРЕДЕЛЕНИЮ ВРЕДНЫХ ВЕЩЕСТВ В СВАРОЧНОМ АЭРОЗОЛЕ

(твердая фаза и газы)

МП «Рарог»
Москва 1992

Аннотация

«Методические указания по контролю воздуха при сварочных и плазменных процессах» разработаны взамен утвержденных в 1981 г. Минздравом СССР «Методических указаний на определение вредных веществ в сварочном аэрозоле твердая фаза и газы» № 2348-81 и в развитие ГОСТ 12.1.005-76 «ССБТ. Воздух рабочей зоны. Общие санитарно-гигиенические требования» и ГОСТ 12.1.016-79 «ССБТ. Воздух рабочей зоны. Требования к методикам измерения концентраций вредных веществ» и методических указаний «Контроль содержания вредных веществ в воздухе рабочей зоны» № 3936-85 Минздрава СССР.

С введением настоящих методических указаний утрачивают силу «Методические указания на определение вредных веществ в сварочном аэрозоле (твердая фаза и газы)» № 2348-81 Минздрава СССР.

Необходимость издания настоящего документа вызвана тем. что МУ № 2348-81 содержат в основном фотометрические методы, разработанные в 60-х годах, многие из которых не удовлетворяют современным требованиям, изложенным в МУ «Контроль содержания вредных веществ в воздухе рабочей зоны» № 3936-85. Кроме того, большое количество ошибок и неточностей, содержащихся в документе № 2348-81, затрудняет использование его на практике.

Внедрение новых технологий сварочных и плазменных процессов, усложнение композиций свариваемых материалов выдвигают задачу совершенствования методов санитарно-химического контроля воздуха рабочей зоны с применением современной аппаратуры.

В настоящее время получили развитие методы переменно-токовой полярографии, атомно-абсорбционной спектрофотометрии, потенциометрии с ионоселективными электродами, позволяющие значительно повысить чувствительность, селективность, точность определения и увеличить оперативность получения результатов.

Анализ оснащенности санитарно-химических лабораторий СЭС, промышленных предприятий показал, что они располагают полярографами, атомно-абсорбционными спектрофотометрами, ионоселективными электродами и др. Однако отсутствие систематизированного сборника МУ, включающего утвержденные физико-химические методы, сдерживает эксплуатацию этих приборов.

Предлагаемый документ позволяет восполнить этот пробел. В документ включено 12 новых методик взамен устаревших, остальные методики апробированы, откорректированы в соответствии с ГОСТ 12.1.016-79 и МУ № 3936-85.

Настоящие методические указания предназначены для санитарных лабораторий промышленных предприятий и учреждений санитарно-эпидемиологической службы, осуществляющих контроль за содержанием вредных веществ в воздухе рабочей зоны, а также организаций и специалистов, проводящих работы по гигиенической оценке сварочных материалов и способов сварки, наплавки и термической резки металлов, являющихся источником выделения сварочных аэрозолей (СА), с целью проведения оздоровительных мероприятий и оценки их эффективности.

Методические указания подготовлены Киевским институтом гигиены труда и профзаболеваний (Горбань Л.Н.); Ленинградским научно-исследовательским институтом охраны труда (Буренко Т.С.); Ленинградским научно-исследовательским институтом гигиены труда и профзаболеваний (Якимова В.И.); Ордена Трудового Красного Знамени научно-исследовательским институтом гигиены труда и профзаболеваний Российской АМН (Муравьева С.И., Бабина М.Д.); Центральным научно-исследовательским институтом охраны труда (Прохорова Е.К., Зайцева З.В.).

Ответственные редакторы: Антонов Н.М., Мартынова Н.М., Подольский В.М.

Содержание

1 ОБЩАЯ ХАРАКТЕРИСТИКА СВАРОЧНЫХ АЭРОЗОЛЕЙ

2. ОСНОВНЫЕ ТРЕБОВАНИЯ К ОТБОРУ ПРОБ ВОЗДУХА

3. МЕТОДЫ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ ВРЕДНЫХ ВЕЩЕСТВ В ВОЗДУХЕ

3.1. ФОТОМЕТРИЧЕСКИЕ МЕТОДЫ

РАЗДЕЛЬНОЕ ИЗМЕРЕНИЕ КОНЦЕНТРАЦИИ ЖЕЛЕЗА, НИКЕЛЯ, МАРГАНЦА, ТИТАНА И ОКСИДОВ ХРОМА (III И VI)

ИЗМЕРЕНИЕ КОНЦЕНТРАЦИИ МЕДИ

ИЗМЕРЕНИЕ КОНЦЕНТРАЦИИ ЦИНКА И ОКСИДА ЦИНКА

ИЗМЕРЕНИЕ КОНЦЕНТРАЦИИ МОЛИБДЕНА

^ ИЗМЕРЕНИЕ КОНЦЕНТРАЦИИ КОБАЛЬТА И ОКСИДА КОБАЛЬТА

ИЗМЕРЕНИЕ КОНЦЕНТРАЦИИ ОКСИДОВ ВАНАДИЯ

ИЗМЕРЕНИЕ КОНЦЕНТРАЦИЙ ВОЛЬФРАМА

ИЗМЕРЕНИЕ КОНЦЕНТРАЦИИ ЦИРКОНИЯ И ОКСИДА ЦИРКОНИЯ (IV)

ИЗМЕРЕНИЕ КОНЦЕНТРАЦИИ АЛЮМИНИЯ И ОКСИДА АЛЮМИНИЯ

ИЗМЕРЕНИЕ КОНЦЕНТРАЦИИ МАГНИЯ И ОКСИДА МАГНИЯ

ИЗМЕРЕНИЕ КОНЦЕНТРАЦИИ СВИНЦА

^ ИЗМЕРЕНИЕ КОНЦЕНТРАЦИИ БОРНОЙ КИСЛОТЫ И БОРНОГО АНГИДРИДА

ИЗМЕРЕНИЕ КОНЦЕНТРАЦИИ ДИОКСИДА КРЕМНИЯ

ИЗМЕРЕНИЕ КОНЦЕНТРАЦИЙ ФТОРИСТОГО ВОДОРОДА И СОЛЕЙ ФТОРИСТОВОДОРОДНОЙ КИСЛОТЫ

ИЗМЕРЕНИЕ КОНЦЕНТРАЦИИ ОЗОНА

МЕТОД 1

МЕТОД 2

ИЗМЕРЕНИЕ КОНЦЕНТРАЦИИ ОКСИДОВ АЗОТА (II) И (IV)

3.2. ПОЛЯРОГРАФИЧЕСКИЕ МЕТОДЫ

ИЗМЕРЕНИЕ КОНЦЕНТРАЦИЙ МЕДИ, НИКЕЛЯ, КАДМИЯ, ЦИНКА

ИЗМЕРЕНИЕ КОНЦЕНТРАЦИЙ МЕДИ, НИКЕЛЯ И КОБАЛЬТА

^ ИЗМЕРЕНИЕ КОНЦЕНТРАЦИИ ЖЕЛЕЗА, ТИТАНА, МОЛИБДЕНА, ОКСИДОВ ХРОМА (III И VI) И ВАНАДИЯ

ИЗМЕРЕНИЕ КОНЦЕНТРАЦИИ ЖЕЛЕЗА И МАРГАНЦА

ИЗМЕРЕНИЕ КОНЦЕНТРАЦИИ ВОЛЬФРАМА

^ ИЗМЕРЕНИЕ КОНЦЕНТРАЦИИ МОЛИБДЕНА

ИЗМЕРЕНИЕ КОНЦЕНТРАЦИИ ТИТАНА

ИЗМЕРЕНИЕ КОНЦЕНТРАЦИИ СВИНЦА, ОЛОВА, КАДМИЯ И МЕДИ

3.3. ИОНОМЕТРИЧЕСКИЕ МЕТОДЫ

ИЗМЕРЕНИЕ КОНЦЕНТРАЦИЙ БОРНОЙ КИСЛОТЫ И БОРНОГО АНГИДРИДА

ИЗМЕРЕНИЕ КОНЦЕНТРАЦИИ ФТОРИСТОГО ВОДОРОДА И СОЛЕЙ ФТОРИСТОВОДОРОДНОЙ КИСЛОТЫ

3.4. АТОМНО-АБСОРБЦИОННЫЕ МЕТОДЫ

ИЗМЕРЕНИЕ КОНЦЕНТРАЦИИ КОБАЛЬТА, НИКЕЛЯ, МЕДИ, ЦИНКА, КАДМИЯ, СВИНЦА, ЖЕЛЕЗА, МАРГАНЦА, МОЛИБДЕНА, ОЛОВА, ВОЛЬФРАМА, ОКСИДА ВАНАДИЯ И ОКСИДОВ ХРОМА

ИЗМЕРЕНИЕ КОНЦЕНТРАЦИИ ОКСИДА АЛЮМИНИЯ

ИЗМЕРЕНИЕ КОНЦЕНТРАЦИИ ОКСИДА КАЛЬЦИЯ

3.5. ГАЗОХРОМАТОГРАФИЧЕСКИЕ МЕТОДЫ

ИЗМЕРЕНИЕ КОНЦЕНТРАЦИИ ОКСИДА УГЛЕРОДА*

3.6. ТИТРИМЕТРИЧЕСКИЕ МЕТОДЫ

ИЗМЕРЕНИЕ КОНЦЕНТРАЦИИ ОКСИДА КАЛЬЦИЯ

ПРИЛОЖЕНИЯ

Приложение 1 ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ВРЕДНЫХ ВЕЩЕСТВ, ВЫДЕЛЯЮЩИХСЯ В ВОЗДУХ ПРИ ПРОВЕДЕНИИ ДУГОВЫХ И ПЛАЗМЕННЫХ ПРОЦЕССОВ

^ Приложение 2 ПРЕДЕЛЬНО-ДОПУСТИМЫЕ КОНЦЕНТРАЦИИ ВРЕДНЫХ ВЕЩЕСТВ, ВЫДЕЛЯЮЩИХСЯ В ВОЗДУХ В ВИДЕ ТВЕРДОЙ И ГАЗОВОЙ СОСТАВЛЯЮЩИХ СВАРОЧНЫХ АЭРОЗОЛЕЙ

Приложение 3 ПРАВИЛА ТЕХНИКИ БЕЗОПАСНОСТИ ПРИ РАБОТЕ В ЛАБОРАТОРИИ С ВРЕДНЫМИ ВЕЩЕСТВАМИ И АППАРАТУРОЙ

Приложение 4 РАСЧЕТ КОНЦЕНТРАЦИИ ВРЕДНЫХ ВЕЩЕСТВ В ВОЗДУХЕ

4.1. Приведение объема отобранного воздуха к стандартным условиям

4.2. Расчет результатов анализа с использованием градуировочных графиков

4.3. Расчет результатов анализа с использованием метода добавки

Приложение 5 РАСЧЕТ ПОГРЕШНОСТИ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИЙ ВРЕДНЫХ ВЕЩЕСТВ В ВОЗДУХЕ

Приложение 6 Примерный перечень основных элементов и соединений, выделяющихся в составе ТССА н ГССА при процессах сварки, наплавки, напыления и резки металлов, а также наиболее характерные и опасные вредные вещества (III III), по которым необходимо проводить контроль воздушной среды в зоне дыхания работающих и в воздухе рабочей зоны

Приложение 7
^ 1 ОБЩАЯ ХАРАКТЕРИСТИКА СВАРОЧНЫХ АЭРОЗОЛЕЙ
1.1. СА представляют собой сложные газо-аэрозольные смеси химических веществ, выделяющихся при дуговых, плазменных и других высокотемпературных газопламенных способах сварки, наплавки, резки и напыления металлов.

Дисперсная фаза или же твердая составляющая СА (ТССА) состоит из мельчайших частиц перенасыщенных паров металлов и других веществ, входящих в состав сварочных, присадочных, напыляемых материалов и основного металла, которые конденсируются за пределами зоны высокотемпературного нагрева.

Газовая составляющая СА (ГССА) представляет собой смесь газов, образующихся при термической диссоциации газо-шлакообразующих компонентов этих материалов (СО, СО2, HF и др.) или же за счет фотохимического действия ультрафиолетового излучения дугового разряда (плазмы) на молекулы газов воздуха (NO, NO2, О3).

1.2. Химический состав СА зависит от состава сварочных, присадочных, напыляемых материалов (электроды, проволоки, ленты, флюсы, порошки и др.), состава основного (свариваемого, направляемого либо разрезаемого) металла, режимов сварки, наплавки, резки, напыления, состава защитных газов и газовых смесей. По данным современных физико-химических исследований (рентгеноструктурного, спектрального и др. методов анализа) ТССА представляет собой сложную смесь металлов, простых и сложных оксидов металлов и шпинелей MnFe2O4, CaFe2O4, (Fe,Mn)O.Fe2O3, К2Сr2О7, Na2Cr2O7, Fе3O4 и др., фторидов (NaF, KF, K3FeF6, K2SiF6, CaF2 и др.), силикатов (СаSiO3,-Si-О-Si-О-Si-, Fe2[SiO4], Мn2[SiO4] и др.).

1.3. Частицы ТССА - полидисперсны, имеют размеры от тысячных долей мкм до 0,4-0,6 мкм и более, неоднородное морфологическое строение (многослойны, многоядерны). Газы ГССА способны адсорбироваться на поверхности твердых частиц, захватываться внутрь их скоплений. При этом локальные концентрации газов, адсорбированных на частицах ТССА, могут существенно превышать их концентрации непосредственно в ГССА.

1.4. Независимо от способа высокотемпературной обработки металлов, СА могут иметь близкий химический состав и соотношение отдельных веществ-ингредиентов ТССА и ГССА. В связи с этим их целесообразно группировать в укрупненные классы газо-аэрозольных смесей относительно постоянного состава, контроль за содержанием которых в воздухе рабочей зоны допускается проводить по наиболее опасным и характерным компонентам ТССА и ГССА.

В тех случаях, когда состав известен не полностью, необходима предварительная его расшифровка для определения ведущих ингредиентов, по которым целесообразно и оправдано осуществление контроля за состоянием воздушной среды. В тех случаях, когда величина ПДК вредного вещества зависит от его процентного содержания в СА (Приложение 2, п. 12, 15), необходимо предварительно определить навеску СА на фильтре, которая должна быть не менее 5 мг.
^ 2. ОСНОВНЫЕ ТРЕБОВАНИЯ К ОТБОРУ ПРОБ ВОЗДУХА
2.1. Отбор проб воздуха для определения уровня загрязнения воздушной среды при сварочных, наплавочных работах, резке и напылении металлов следует проводить в зоне дыхания работающих под наголовным или ручным щитом.

При измерении концентраций вредных веществ в зоне дыхания рабочих, занятых автоматическими способами сварки, наплавки и резки (контактной, под флюсом, электрошлаковой и др.) и не пользующихся защитными щитками, зоной дыхания следует считать пространство, ограниченное радиусом 50-60 см вокруг головы работающего.

2.2. Для характеристики общего фона загрязнения воздуха производственного помещения, где проводятся сварочные, наплавочные работы, резка и напыление металлов, отбор проб воздуха следует осуществлять в рабочей зоне на расстоянии не менее 2 м от рабочего места.

2.3. Отбор проб должен производиться при характерных производственных условиях. Любые нарушения технологического процесса (превышение либо занижение силы сварочного тока, напряжения, применение «нетипичных» сварочных и наплавочных материалов и др.) или неправильная эксплуатация оборудования и всех предусмотренных средств предотвращения загрязнения воздуха вредными веществами (устройств местной вентиляции, общеобменной вентиляции, укрытий и др.) подлежат устранению до начала проведения измерений.

2.4. Разовое определение концентраций вредных веществ должно производиться при непрерывном или последовательном отборе проб ТССА и ГССА в течение 15-минутного стандартного отрезка времени. Если чувствительность методов анализа позволяет в течение 15 минут отобрать не одну, а несколько последовательных проб, то для сопоставления с величинами ПДКм.р. концентрацию того или иного наиболее опасного и характерного вредного вещества, выделяющегося в составе ТССА и/или ГССА, следует находить как среднюю величину из результатов измерений, выполненных за указанный период времени.

Для вредных веществ, метод определения которых не позволяет обнаружить 0,5 ПДКм.р. за 15 минут отбора пробы, допускается увеличение времени отбора, но не более чем до 30 мин.

Допустимая объемная скорость отбора проб воздуха на фильтры АФА из подручного или наголового щитка составляет 10 л/мин.

2.5. Отбор проб ТССА осуществляется на аналитические аэрозольные фильтры АФА-ХП, АФА-ВП или АФА-ХА с объемным расходом 10-15 л/ мин. Тип фильтра, применяемого для концентрирования компонентов ТССА, определяется ходом последующего химического анализа и должен строго соблюдаться. В случаях, когда материал фильтра на ход анализа не влияет, в соответствующих разделах методик тип фильтра не указывается.

Отбор проб ГССА проводится с концентрированием в жидкостные поглотительные приборы, сорбционные трубки либо без концентрирования в медицинские шприцы или пипетки.

2.6. Если стадия технологического процесса (операции) непродолжительна и не позволяет отобрать пробу воздуха за один цикл (расплавление одного электрода, «прихватка» деталей и т.д.), отбор пробы воздуха на этот же фильтр или в один и тот же поглотитель необходимо продолжить при повторении операции.

2.7. Для получения достоверных результатов при санитарно-гигиенических исследованиях воздушной среды на каждом обследуемом рабочем месте сварщика, наплавщика, резчика металлов, операторов установок напыления порошков металлов должно быть последовательна отобрано не менее 5 проб воздуха для определения концентраций ведущего токсического ингредиента ТССА и не менее 5 проб наиболее характерного токсического ингредиента ГССА.

Средние величины из результатов выполненных измерений и их доверительный интервал следует находить с учетом требований методических указаний «Контроль содержания вредных веществ в воздухе рабочей зоны» № 3936-85 Минздрава СССР.

2.8. Периодичность санитарного контроля за соблюдением гигиенических требований к качеству воздушной среды при выполнении сварочных, наплавочных и газорезательных работ определяется по согласованию с территориальными учреждениями санитарно-эпидемиологической службы с учетом методических указаний «Контроль содержания вредных веществ в воздухе рабочей зоны» № 3936-85 Минздрава СССР и результатов предшествующих измерений.

2.9. Санитарный контроль воздуха рабочей зоны при сварочных, наплавочных работах, а также резке и напылении металлов, сопровождающихся выделением вредных веществ, относящихся к I и II классам опасности, следует осуществлять с помощью физико-химических методов анализа. Гравиметрический метод контроля воздуха рабочей зоны допускается в случаях загрязнения его ТССА, состоящей из веществ, относящихся к III н IV классам опасности (ТiO2, окислы железа и др.), а также при оперативном контроле эффективности работы средств вентиляции по согласованию с учреждениями санитарно-эпидемиологической службы.

2.10. Для наиболее опасных и характерных вредных веществ - ингредиентов ТССА и ГССА, которые имеют соответствующую среднесменную ПДК (ПДКсс), допускается осуществлять контроль путем измерения среднесменных концентраций.

Для характеристики уровня среднесменных концентраций, воздействующих на рабочих-сварщиков, наплавщиков, резчиков металлов, а также обслуживающих установки для напыления металлов, занятых однотипными производственными операциями (с использованием одних и тех же электродов, проволок одного и того же диаметра, флюсов и др.; при сварке, наплавке и резке одних и тех же металлов и пр.), необходимо проводить обследование не менее 5 человеко-смен. Расчет среднесменных концентраций производится в соответствии с методическими указаниями «Контроль содержания вредных веществ в воздухе рабочей зоны» № 3936-85 Минздрава СССР.
^ 3. МЕТОДЫ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ ВРЕДНЫХ ВЕЩЕСТВ В ВОЗДУХЕ 3.1. ФОТОМЕТРИЧЕСКИЕ МЕТОДЫ РАЗДЕЛЬНОЕ ИЗМЕРЕНИЕ КОНЦЕНТРАЦИИ ЖЕЛЕЗА, НИКЕЛЯ, МАРГАНЦА, ТИТАНА И ОКСИДОВ ХРОМА (III И VI)
Характеристика метода

Определение основано на колориметрических реакциях отдельных металлов с органическими реагентами.

Отбор проб воздуха проводится с концентрированием на фильтр.

Основные метрологические характеристики методик измерения концентраций приведены при описании определения каждого металла.

Определение отдельных металлов проводят в аликвотных частях раствора плава.

Время подготовки проб к определению 5-6 часов, включая отбор проб 20 минут. Время самого определения указано в каждой методике отдельно.

Приборы, аппаратура, посуда

Фотоэлектроколориметр марки ФЭК-56 М или другой системы, ГОСТ 15150-74, 1-й класс.

Аспирационное устройство.

Фильтродержатель, ТУ 95.72.05-77.

Печь муфельная МП-2УМ.

Тигли фарфоровые, ГОСТ 9147-80Е.

Тигли платиновые, ГОСТ 6563-75.

Щипцы тигельные.

Ступка фарфоровая, ГОСТ 9147-80Е.

Колбы мерные, ГОСТ 1770-74Е, вместимостью 25, 50, 500, 1000 мл.

Цилиндры мерные, ГОСТ 1770-74Е, вместимостью 25 и 50 мл.

Пипетки, ГОСТ 20292-74Е, вместимостью 0,2, 1, 2,5 и 10 мл.

Пробирки колориметрические с пришлифованными пробками, ГОСТ 10515-75.

Стаканы химические, ГОСТ 25336-82Е.

Воронки стеклянные, ГОСТ 25336-82Е.

Реактивы, растворы, материалы

Натрий углекислый (карбонат натрия), ГОСТ 83-79, хч.

Калий азотнокислый (нитрат калия), ГОСТ 4217-77, хч.

Кислота серная, ГОСТ 4204-77, хч, 10 % раствор (по объему).

Плавень: Смешивают две части карбоната натрия и одну часть нитрата калия. Смесь растирают в фарфоровой ступке. Плавень хранят в банке с притертой пробкой.

Фильтры АФА-ХП, АФА-ВП или АФА-ХА, ТУ 95.743-80

Фильтры обеззоленные «синяя лента», ГОСТ 12026-76.

Отбор пробы воздуха

Воздух с объемным расходом 5-15 л/мин аспирируют через фильтр АФА. Пробы не следует хранить из-за возможных потерь шестивалентного хрома. Для определения перечисленных металлов на уровне 1/2 ПДК следует отобрать 200 л воздуха.

Подготовка пробы к раздельному измерению компонентов

Определение растворимого оксида хрома (VI) производят в водном фильтрате. Для этого фильтр с отобранной пробой помещают на чистый обеззоленный фильтр «синяя лента», вложенный в воронку, смачивают этиловым спиртом (0,2-0,3 мл) и обрабатывают 10 мл теплой (40-50°С) воды.

Для определения 3-валентного хрома, марганца, железа, титана и никеля фильтр АФА после обработки его водой и фильтр «синяя лента», через который фильтровали исследуемую пробу, помещают в фарфоровый тигель, подсушивают на воздухе и ставят в холодную муфельную печь, постепенно повышая температуру до 750-800°С.

После озоления фильтров тигель вынимают из муфельной печи и остаток по охлаждении тщательно смешивают и растирают лопаточкой с 0,5-1,0 г плавня. Далее тигель помещают в охлажденный до 350-400°С муфель, снова повышают температуру по 800-850°С и оставляют в нем тигель на 25-30 минут до полного сплавления смеси. По охлаждении тигля плав обрабатывают 25 мл раствора серной кислоты под тягой до полного растворения.

Примечание. При использовании фарфоровых тиглей разных партий возможно появление мути в контрольных растворах плавня за счет различного состава фарфора и качества глазури. В связи с этим обязательна постановка контрольных опытов для каждой партии тиглей с использованием чистых фильтров (не менее 5-7 тиглей) В случае, если оптическая плотность растворов превышает 0,04-0,05 партия тиглей бракуется. Для анализа могут быть использованы также платиновые или кварцевые тигли.

Измерение концентрации оксида хрома (VI)

Характеристика метода

Определение основано на реакции взаимодействия шестивалентного хрома с дифенилкарбазидом в кислой среде с образованием соединения, окрашенного в красно-фиолетовый цвет.

Нижний предел измерения содержания оксида хрома (VI) в фотометрируемом растворе составляет 0,5 мкг.

Нижний предел измерения в воздухе 0,003 мг/м3 (при отборе 200 л воздуха).

Диапазон измеряемых концентраций от 0,003 до 0,06 мг/м3.

Измерению не мешает марганец. Мешают железо при содержании более 1 мг и молибден в количестве более 8 мг.

Суммарная погрешность измерения не превышает ±10 %.

Время выполнения измерения 20-25 мин.

Реактивы, растворы и материалы

Калий двухромовокислый, ГОСТ 4220-75, хч.

Кислота уксусная ледяная, ГОСТ 61-75, хч.

Этиловый спирт, ГОСТ 18300-72, хч или ГОСТ 5963-67.

Дифенилкарбазид, ГОСТ 5859-78, чда, 0,5 % раствор, 0,1 г дифенилкарбазида растворяют в 2,0 мл ледяной уксусной кислоты и прибавляют 20 мл этилового спирта.

Стандартный раствор оксида хрома (VI) № 1 с концентрацией 1 мг/мл готовят растворением в воде 0,1471 г двухромовокислого калия в мерной колбе вместимостью 1 л. Раствор устойчив в течение 2-х месяцев.

Стандартный раствор оксида хрома (VI) № 2 с концентрацией 10 мкг/мл готовят путем разбавления 2 мл стандартного раствора № 1 водой в мерной колбе вместимостью 200 мл. Применяют свежеприготовленный раствор.

Подготовка к измерению

Градуировочные растворы (устойчивы в течение 2-х час.) готовят согласно таблице 1.

Таблица 1

Шкала градуировочных растворов для определения хромового ангидрида

№ стандарта

Стандартный раствор №2, мл

Дистиллированная вода, мл

Содержание оксида хрома (VI) в градуировочном растворе, мкг

1

0

10

0

2

0,05

9,95

0,5

3

0,1

9,90

1,0

4

0,2

9,80

2,0

5

0,4

9,60

4,0

6

0,6

9,40

6,0

7

0,8

9,20

8,0

8

1,0

9,00

10,0

Во все пробирки шкалы добавляют по 1 мл 0,5 % раствора дифенилкарбазида, взбалтывают и выдерживают 15 минут. Затем измеряют оптическую плотность при длине волны 540 нм в кюветах с толщиной поглощающего слоя 2 см по отношению к контрольному раствору (раствор № 1 таблицы).

Строят градуировочный график зависимости оптической плотности градуировочных растворов от содержания оксида хрома (VI) (мкг), проверку которого проводят 1 раз в квартал в случае использования новой партии реактивов.

Проведение измерения

9 мл водного фильтрата вносят в колориметрические пробирки и доводят объем пробы дистиллированной водой до 10 мл. Далее измерение идет аналогично приготовлению градуировочных растворов. Оптическую плотность измеряют по сравнению с контролем, который готовят одновременно и аналогично пробам.

Содержание оксида хрома (VI) в анализируемом объеме раствора пробы (мкг) определяют по градуировочному графику.

Концентрацию оксида хрома (VI) в воздухе (мг/м3) рассчитывают по формуле 1 (Приложение 4.2).

Измерение концентрации оксида хрома (III)

Характеристика метода

Определение основано на окислении трехвалентного хрома персульфатом аммония до шестивалентного хрома. После разрушения избытка персульфата аммония определение Сr (VI) проводят по реакции с дифенилкарбазидом.

Нижний предел измерения оксида хрома (VI) в фотометрируемом объеме раствора 0,5 мкг, оксида хрома (III) 0,4 мкг.

Нижний предел измерения оксида хрома (III) в воздухе - 0,5 мг/м3 (при отборе 200 л). Диапазон измеряемых концентраций от 0,5 до 9,5 мг/м3. Измерению не мешают сопутствующие металлы. Суммарная погрешность измерения не превышает ±25 %. Время выполнения измерения 3 часа.

Реактивы, растворы и материалы

Аммоний надсернокислый (персульфат аммония), ГОСТ 20478-75, хч.

Серебро азотнокислое, ГОСТ 1277-75 хч, 2 % раствор.

Остальные реактивы и растворы приведены на стр. 5 и 6.

Проведение измерения

В коническую колбу вносят 10 мл раствора пробы в 10 % серной кислоте, добавляют 0,5 мл раствора нитрата серебра и 0,2 г персульфата аммония. Колбу ставят на газовую горелку с сеткой или электроплитку и интенсивно кипятят 20-25 минут. По мере испарения в колбу доливают дистиллированную воду так, чтобы объем жидкости был 10-15 мл. Цвет жидкости становится сначала желтым (окисление хрома), а затем розовым (окисление марганца). После полного разрушения персульфата аммония в колбу добавляют по каплям раствор соляной кислоты для разрушения марганцевой кислоты. Хромовая кислота при этом не разрушается. Раствор соляной кислоты следует добавлять несколько раз по 0,3-0,5 мл до исчезновения розового оттенка. После разрушения марганцевой кислоты раствор охлаждают и количественно переносят в мерную колбу вместимостью 100 мл, многократно промывая коническую колбу дистиллированной водой и собирая промывные воды в ту же мерную колбу, объем которой доводят до метки водой.

Полученный раствор в количестве 1,0 мл вносят в колориметрическую пробирку, доводят до 10 мл водой и далее обрабатывают и фотометрируют аналогично градуировочным растворам для измерения концентрации оксида хрома (VI).

Содержание оксида хрома (VI) в анализируемом объеме раствора пробы (мкг) определяют по градуировочному графику.

Концентрацию оксида хрома (III) в воздухе (мг/м3) рассчитывают по формуле 1 (Приложение 4.2).

Коэффициент пересчета оксида хрома (VI) на оксид хрома (III) - 0,76.

Измерение концентрации марганца

Характеристика метода

Определение основано на реакции окисления соединений марганца персульфатом аммония в присутствии нитрата серебра как катализатора с образованием марганцевой кислоты, окрашенной в малиново-красный цвет.

Нижний предел измерения содержания марганца в объеме анализируемого раствора 1,0 мкг.

Нижний предел измерения в воздухе 0,05 мг/м3 (при отборе 200 л воздуха)*.

Диапазон измеряемых концентраций для марганца от 0,05 мг/м3 до 1,25 мг/м3.

Определению марганца мешает железо, влияние которого устраняют добавлением ортофосфорной кислоты. Определению не мешает хром.

Суммарная погрешность измерения не превышает ±20 %.

Время выполнения измерения 1,5 часа.

* Расчет предела обнаружения проведен с учетом значения ПДК для Мn - 0,1 мг/м3

Реактивы, растворы и материалы

Марганец сернокислый, 5-водный, ГОСТ 435-77, чда.

Серебро азотнокислое, ГОСТ 1277-75, хч, 2 % раствор.

Аммоний надсернокислый, ГОСТ 20478-75, хч, 10 % раствор, свежеприготовленный.

Кислота ортофосфорная, ГОСТ 6552-58, хч, 50 % раствор.

Кислота серная, ГОСТ 4204-77, хч, 10 % раствор.

Стандартный раствор № 1, содержащий 100 мкг/мл марганца, растворяют 0,0439 г 5-водного сернокислого марганца в мерной колбе вместимостью 200 мл в 10 % растворе серной кислоты. Раствор устойчив в течение 2-х месяцев.

Стандартный раствор № 2 с концентрацией марганца 10 мкг/мл готовят разведением раствора № 1 10 % раствором серной кислоты в 10 раз. Раствор свежеприготовленный.

Подготовка к измерению

Градуировочные растворы (устойчивы в течение 2-х часов) готовят согласно таблице 2.

Таблица 2

Шкала градуировочных растворов для определения марганца

№ стандарта

Стандартный раствор № 2, мл

Раствор серной кислоты, 10 %, мл

Содержание марганца в градуировочном растворе, мкг

1

0

5,0

0

2

0,1

4,9

1,0

3

0,2

4,3

2,0

4

0,4

4,6

4,0

5

0,6

4,4

6,0

6

0,8

4,2

8,0

7

1,0

4,0

10,0

Во все пробирки шкалы прибавляют по 0,2 мл 2 % раствора нитрата серебра и по 1 мл растворов 10 % персульфата аммония и 50 % ортофосфорной кислоты. После прибавления каждого реактива растворы взбалтывают и погружают в кипящую баню на 5-10 минут.

По охлаждении растворов измеряют величину оптической плотности при 545 нм в кюветах с толщиной слоя 1 см по сравнению с контрольным раствором (раствор № 1 таблицы).

Строят градуировочный график зависимости оптической плотности растворов от содержания марганца в градуировочном растворе (мкг), проверку которого проводят 1 раз в квартал или в случае использования новой партии реактивов.

Проведение измерения

1-2,5 мл раствора пробы в 10 % серной кислоте вносят в колориметрические пробирки, доводят до 5 мл кислотой и далее обрабатывают и фотометрируют аналогично градуировочным растворам.

Содержание марганца в анализируемом объеме раствора пробы (мкг) находят по градуировочному графику.

Концентрацию марганца в воздухе (мг/м3) рассчитывают по формуле 1 (Приложение 4.2).

Измерение концентрации железа

Характеристика метода

Определение основано на реакции взаимодействия ионов железа с сульфосалициловой кислотой в аммиачной среде с образованием окрашенного соединения.

Нижний предел измерения содержания железа в объеме анализируемого раствора 1 мкг.

Нижний предел измерения железа в воздухе 1,5 мг/м3 (при отборе 200 л воздуха).

Диапазон измеряемых концентраций от 1,5 до 15 мг/м3.

Определению не мешают молибден, ванадий, хром, марганец. Мешают кобальт, никель в количествах более 1,2 мг, медь в количествах более 0,2 мг.

Суммарная погрешность измерения не превышает ±20 %.

Время выполнения измерения 40 минут.

Реактивы, растворы и материалы

Железо металлическое, ТУ 6-09-3000-78, осч или ТУ 6-09-2227-81, ч.

Серная кислота, ГОСТ 4204-77, хч, 10 % раствор.

Сульфосалициловая кислота, двуводная, ГОСТ 4478-78, чда, 10 % раствор.

Соляная кислота, ГОСТ 3118-77, хч, раствор 1:1.

Азотная кислота, ГОСТ 4461-77, хч.

Аммиак водный, ГОСТ 3760-79, хч.

Основной раствор железа с концентрацией 1 мг/мл. 1,0000 г железа растворяют в термостойком химическом стакане вместимостью 50-100 мл в смеси 20 мл соляной кислоты 1:1 и 5 мл азотной кислоты. Раствор осторожно нагревают на плитке, не допуская разбрызгивания. Приливают в стакан 10 мл дистиллированной воды и кипятят раствор до удаления паров оксида азота (IV). По охлаждении раствор количественно переносят в мерную колбу вместимостью 1 л путем многократного промывания стакана дистиллированной водой. Объем раствора доводят до метки водой.

Стандартный раствор железа № 1 с концентрацией 100 мкг/мл готовят путем соответствующего разбавления основного раствора 10 % серной кислотой в мерной колбе.

Стандартный раствор железа № 2 с концентрацией 10 мкг/мл готовят разбавлением раствора № 1 в 10 раз 10 % серной кислотой. Применяют свежеприготовленным.

Подготовка к измерению

Градуировочные растворы (устойчивы в течение суток) готовят согласно таблице 3.

Таблица 3

Шкала градуировочных растворов для определения железа

№ стандарта

Стандартный раствор № 2, мл

Раствор серной кислоты, 10 %, мл

Содержание железа в градуировочном растворе, мкг

1

0

5,0

0

2

0,1

4,9

1,0

3

0,2

4,8

2,0

4

0,4

4,6

4,0

5

0,6

4,4

6,0

6

0,8

4,2

8,0

7

1,0

4,0

10,0

Во все пробирки шкалы прибавляют по 0,5 мл 10 % раствора сульфосалициловой кислоты, взбалтывают, добавляют по 1 мл концентрированного раствора аммиака, снова взбалтывают и измеряют оптическую плотность растворов при длине волны 420-430 нм в кюветах с толщиной слоя 1 см по сравнению с контрольным раствором (раствор № 1 таблицы).

Строят градуировочный график зависимости оптической плотности от содержания железа в градуировочном растворе (мкг), проверку которого проводят 1 раз в квартал или в случае использования новой партии реактивов.

Проведение измерения

1 мл раствора пробы в 10 % серной кислоте вносят в мерную колбу вместимостью 25 мл и доводят до метки 10 % серной кислотой, 2 мл полученного раствора вносят в колориметрическую пробирку, доводят объем до 5 мл кислотой и далее обрабатывают и фотометрируют аналогично градуировочным растворам. Содержание железа в анализируемом объеме раствора пробы находят по градуировочному графику.

Расчет концентрации



где а - содержание железа в анализируемом объеме раствора пробы, найденное по градуировочному графику, мкг;

V - объем воздуха, отобранный для анализа и приведенный к стандартным условиям, л;

К - коэффициент пересчета железа на оксид железа - 1,43.

Измерение концентрации никеля

Характеристика метода

Фотометрическое определение основано на реакции взаимодействия иона никеля с диметилглиоксимом в щелочной среде в присутствии окислителя с образованием комплексного соединения, окрашенного в розово-коричневый цвет.

Нижний предел измерения содержания никеля в объеме анализируемого раствора 1,0 мкг.

Нижний предел измерения в воздухе 0,025 мг/м3 (при отборе 200 л воздуха).

Диапазон измеряемых концентраций от 0,025 до 1,25 мг/м3.

Определению никеля не мешают железо, медь и кобальт в количествах меньших 0,2 мг.

Суммарная погрешность измерения не превышает ±20 %.

Время выполнения измерения 40-45 минут.

Реактивы, растворы, материалы

Никель сернокислый, 7-водный, ГОСТ 4465-74, хч.

Кислота серная, ГОСТ 4204-77, хч, 10 % раствор.

Аммоний надсернокислый (персульфат аммония), ГОСТ 20478-75, хч, 3 % раствор, свежеприготовленный.

Натрий лимоннокислый, 5,5-водный, ГОСТ 22280-76, чда, 20 % раствор.

Натрия гидроксид, ГОСТ 4328-77, хч 5 % и 40 % растворы.

Диметилглиоксим, ГОСТ 5828-77, чда, 1 % раствор в 5 % растворе гидроксида натрия.

Спирт этиловый, ГОСТ 18300-72, хч или ГОСТ 5963-67.

Аммиак водный, ГОСТ 3760-79, хч, 5 % и 25 % растворы.

Хлороформ, ТУ 6-09-06-800-76, хч.

Бумага лакмусовая, красная.

Стандартный раствор никеля № 1 с концентрацией 100 мкг/мл готовят путем растворения 0,0478 г сернокислого никеля в 10 % растворе серной кислоты в мерной колбе вместимостью 100 мл. Устойчив 2 месяца.

Стандартный раствор никеля № 2 с концентрацией 10 мкг/мл готовят соответствующим разбавлением раствора № 1 10 %-ной серной кислотой. Применяют свежеприготовленный раствор.

Подготовка к измерению

Градуировочные растворы (устойчивы в течение 2-х часов) готовят согласно таблице 4.

Таблица 4

Шкала градуировочных растворов для определения никеля

№ стандарта

Стандартный раствор № 2, мл

Серная кислота, 10 % раствор, мл

Содержание никеля в градуировочном растворе, мкг

1

0

5,0

0

2

0,1

4,9

1,0

3

0,2

4,8

2,0

4

0,4

4,6

4,0

5

0,6

4,4

6,0

6

0,8

4,2

8,0

7

1,0

4,0

10,0

Во все пробирки шкалы добавляют по 0,4 мл раствора лимоннокислого натрия, 0,2 мл персульфата аммония, нейтрализуют 40 % раствором едкого натра при перемешивании до слабощелочной реакции по лакмусовой бумаге, прибавляют 0,5 мл раствора диметилглиоксима и взбалтывают. Через 15 минут измеряют оптическую плотность градуировочных растворов при длине волны 530 нм в кюветах с толщиной слоя 1 см относительно контрольного раствора (раствор № 1 таблицы).

Строят градуировочный график зависимости оптической плотности от содержания никеля в градуировочном растворе (мкг), проверку графика проводят 1 раз в квартал или в случае использования новой партии реактивов.

Проведение измерения

1-5 мл раствора пробы в 10 % серной кислоте переносят в колориметрические пробирки, доводят объем до 5 мл раствором серной кислоты и далее обрабатывают и фотометрируют аналогично градуировочным растворам.

При наличии в пробе железа, меди и кобальта в количествах, превышающих 0,2 мг, никель необходимо отделять. Для этого в делительную воронку отбирают 5-10 мл раствора пробы, нейтрализуют его 25 % раствором аммиака до слабощелочной реакции по индикаторной бумаге, приливают 2 мл 1 % раствора диметилглиоксима, 5 мл хлороформа и встряхивают 30 секунд. Хлороформенный слой, содержащий диметилглиоксиматы никеля и кобальта, отделяют. В воронку вводят еще 5 мл хлороформа и повторяют экстракцию. Хлороформенные экстракты объединяют и промывают в делительной воронке дважды 20-30 мл 5 % раствора аммиака для удаления частично извлеченной меди.

Реэкстрагируют никель путем двукратной обработки хлороформенной вытяжки 5 мл 10 % азотной кислоты. При этом комплекс разлагается и н
еще рефераты
Еще работы по разное