Реферат: Муниципальное общеобразовательное учреждение – средняя школа №2





Муниципальное общеобразовательное учреждение – средняя школа №2

Г. Асино Томской области


Множества


Выполнили: Ольшевская Мария, Ульященко Ольга


Руководитель: Чугунова Наталья Васильевна, учитель математики

высшей квалификационной категории


2006

Оглавление

Введение стр. 2-4

Что говорят словари? стр.2-3

Число – одно из основных понятий математики стр.3-4

Основная часть стр.4-28

Натуральные числа стр.4-5

Нумерация и дроби на Руси стр.5

Дроби в других государствах древности стр.5-6

Десятичные дроби стр.6-7

Проценты стр.7-8

Рациональные числа. Целые числа. Отрицательные числа стр.8

Иррациональные числа стр.9-10

Мнимые числа. Комплексные числа стр.11-12

Геометрическое истолкование комплексных чисел стр.12

Векторные числа стр.13

Матричные числа стр.13

Трансфинитные числа стр.13-14

Функциональные числа. Развитие функциональных чисел стр.14-16

Алгебра Дж. Буля стр.16-21

Математическая логика стр.21-23

Калькуляция высказываний стр.23-28

высказывания

отрицание и коньюнкция

алгебра логических значений

другие логические операции

импликация

эквивалентность

3. Заключение стр.28

4. Список литературы стр.29


“Послушайте, что смертным сделал я …

Число им я подарил и буквы научил соединять…

Эсхил, “Закованный Прометей”

“Если бы ни число и его природа, ничто

существующее нельзя было бы постичь им

само по себе, ни в его отношениях к другим

вещам. Мощь чисел проявляется во всех

деяниях и помыслах людей,

во всех ремеслах и в музыке”

Пифагореец Филолай, 5 в. до н. э.


Введение


Теория множеств – это раздел математики, изучающий общие свойства множеств (преимущественно бесконечных).


^ Что говорят словари?


Словарь Даля:

Множество – большое число, великое количество, много, в избытке, обильно, тьма, пропасть, бездна, без числа.

Толковый словарь С.И. Ожегова:

Множество - очень большое количество, число чего-нибудь.


Словарь русского языка:

Множество – очень большое количество чего-либо. В математике – совокупность элементов, объединенных по какому либо признаку.

Популярный энциклопедический словарь:

Определения множества нет.


Математическая энциклопедия:

Множество (множественная категория) – набор, совокупность, собрание каких-либо объектов, обладающих общим для всех их характеристическим свойством.

“Множество есть многое, мыслимое нами, как единое”. (Г. Кантор)


Для того чтобы некоторую совокупность элементов можно было назвать множеством, необходимо, чтобы выполнялись следующие условия:

Должно существовать правило, позволяющее определить, принадлежит ли указанный элемент данной совокупности.

Должно существовать правило, позволяющее отличать элементы друг от друга (Это в частности означает, что множество не может содержать двух одинаковых элементов).

 



Число является одним из основных понятий математики. Понятие числа развивалось в тесной связи с изучением величин; эта связь сохраняется и теперь. Во всех разделах современной математики приходится рассматривать разные величины и пользоваться числами. Существует большое количество определений понятию “число”. Первое научное определение числа дал Эвклид в своих “Началах”, которое он, очевидно, унаследовал от своего соотечественника Эвдокса Книдского (около 408 – около 355 гг. до н. э.): “Единица есть то, в соответствии с чем каждая из существующих вещей называется одной. Число есть множество, сложенное из единиц”. Так определял понятие числа и русский математик Магницкий в своей “Арифметике” (1703 г.). Еще раньше Эвклида Аристотель дал такое определение: “Число есть множество, которое измеряется с помощью единиц”. Со слов греческого философа Ямвлиха, еще Фалес Милетский – родоначальник греческой стихийно-материалистической философии – учил, что “число есть система единиц”. Это определение было известно и Пифагору.

В своей “Общей арифметике” (1707 г) великий английский физик, механик, астроном и математик Исаак Ньютон пишет: “Под числом мы подразумеваем не столько множество единиц, сколько абстрактное отношение какой-нибудь величины к другой величине такого же рода, взятой за единицу. Число бывает трех видов: целое, дробное и иррациональное. Целое число есть то, что измеряется единицей; дробное – кратной частью единицы, иррациональное – число, не соизмеримое с единицей”.

Мариупольский математик С.Ф.Клюйков также внес свой вклад в определение понятия числа: “Числа – это математические модели реального мира, придуманные человеком для его познания”. Он же внес в традиционную классификацию чисел так называемые “функциональные числа”, имея в виду то, что во всем мире обычно именуют функциями.

Первоначальные представления о числе появились в эпоху каменного века, при переходе от простого собирания пищи к ее активному производству, примерно 100 веков до н. э. Числовые термины тяжело зарождались и медленно входили в употребление. Древнему человеку было далеко до абстрактного мышления, хватило того, что он придумал числа: “один” и “два”. Остальные количества для него оставались неопределенными и объединялись в понятии “много”.

Натуральные числа

Считается, что термин “натуральное число” впервые применил римский государственный деятель, философ, автор трудов по математике и теории музыки Боэций (480 – 524 гг.), но еще греческий математик Никомах из Геразы говорил о натуральном, то есть природном ряде чисел.

Понятием “натуральное число” в современном его понимании последовательно пользовался выдающийся французский математик, философ-просветитель Даламбер (1717-1783 гг.).

Натуральные числа появились с потребностью счета предметов. Постепенно люди осознали бесконечность множества натуральных чисел. Сейчас в математике множество натуральных чисел вводится аксиоматически. Множество натуральных чисел 1, 2, 3, 4, 5,… будем обозначать буквой N. На этом множестве определяются две операции: сложение и умножение. Натуральные числа можно складывать, причем сумма двух натуральных чисел есть число натуральное, поэтому говорят, что операция на множестве N выполнима. Натуральные числа можно перемножать. Произведение натуральных чисел – натуральное число.

Операции сложения и умножения натуральных чисел обладают следующими свойствами:

a+b=b+a - переместительный закон сложения;

a+(b+c)=(a+b)+c – сочетательный закон сложения;

a•b=b•a - переместительный закон умножения;

a• (b•c)=(a•b) •c – сочетательный закон умножения;

a• (b+c)=a•b+a•c – распределительный закон умножения относительно

сложения.

В множестве натуральных чисел существует также единица, такое число 1, что a•1=1•a=a .

Первым расширением понятия натурального числа явилось присоединение к множеству натуральных чисел дробных чисел. Возникновение дробных чисел было вызвано необходимостью измерять величины. Измерение какой-нибудь величины заключается в сравнении ее с другой качественно однородной с ней величиной, принимаемой за единицу.

С развитием арифметики – науки о числах и операциях над ними – люди стали рассматривать дробные числа с любыми натуральными знаменателями и дробное число представлять как частное двух натуральных чисел, из которых делимое нацело не делится на делитель. Вообще же обыкновенной дробью называют число вида m/n, где m и n – натуральные числа.


Нумерация и дроби на Руси

Как свидетельствуют старинные памятники русской истории, наши предки-славяне, находившиеся в культурном общении с Византией, пользовались десятичной алфавитной славянской нумерацией, сходной с ионийской. Над буквами-числами ставился особый знак, названный титло. Для обозначения тысячи применялся другой знак, который приставлялся слева от букв.

В русских рукописных арифметиках XVII века дроби называли долями, позднее “ломаными числами”. В старых руководствах находим следующие названия дробей на Руси:

1 / 2 - половина, полтина

1 / 3 – треть

1 / 4 – четь

1 / 6 – полтреть

1 / 8 - полчеть

1 / 12 –полполтреть

1 / 16 - полполчеть

1 / 24 – полполполтреть (малая треть)

1 / 32 – полполполчеть (малая четь)

1 / 5 – пятина

1 / 7 - седьмина

1 / 10 - десятина

Славянская нумерация употреблялась в России до XVI века, затем в страну начала постепенно проникать десятичная позиционная система счисления. Она окончательно вытеснила славянскую нумерацию при Петре I.

Дроби в других государствах древности

В китайской “Математике в девяти разделах” уже имеют место сокращения дробей и все действия с дробями.

У индийского математика Брахмагупты мы находим достаточно развитую систему дробей. У него встречаются разные дроби: и основные, и производные с любым числителем. Числитель и знаменатель записываются так же, как и у нас сейчас, но без горизонтальной черты, а просто размещаются один над другим. Арабы первыми начали отделять чертой числитель от знаменателя. Леонардо Пизанский уже записывает дроби, помещая в случае смешанного числа, целое число справа, но читает так, как принято у нас. Иордан Неморарий (XIII ст.) выполняет деление дробей с помощью деления числителя на числитель и знаменателя на знаменатель, уподобляя деление умножению. Для этого приходится члены первой дроби дополнять множителями:

.

В XV – XVI столетиях учение о дробях приобретает уже знакомый нам теперь вид и оформляется приблизительно в те самые разделы, которые встречаются в наших учебниках.

Следует отметить, что раздел арифметики о дробях долгое время был одним из наиболее трудных. Недаром у немцев сохранилась поговорка: “Попасть в дроби”, что означало – зайти в безвыходное положение. Считалось, что тот, кто не знает дробей, не знает и арифметики.

Десятичные дроби

Со временем практика измерений и вычислений показала, что проще и удобнее пользоваться такими мерами, у которых отношение двух ближайших единиц длины было бы постоянным и равнялось бы именно десяти – основанию нумерации. Этим требованиям отвечает метрическая система мер.

Она возникла во Франции как одно из следствий буржуазной революции. Новые меры должны были удовлетворять следующим требованиям:

основой общей системы мер должна быть единица длины;

меры длины, площади, объема, вместимости и веса должны быть связаны между собой;

основную меру длины следовало выбрать так, чтобы она была постоянной “для всех времен и всех народов”;

основанием системы мер необходимо было взять число, равное основанию системы счисления .

Во Франции за основную меру длины приняли одну десятимиллионную часть четверти земного меридиана и назвали ее метром (от греческого слова “метрон”, означающего “мера”). На основании измерений меридиана, сделанных французскими учеными Мешеном и Деламбром, был изготовлен впоследствии платиновый эталон метра. Число 10 легло в основу подразделений метра. Вот почему метрическая система мер, применяемая ныне в большинстве стран мира, оказалась тесно связанной с десятичной системой счисления и с десятичными дробями. Однако следует отметить, что европейцы не первые, кто пришел к необходимости использовать десятичные дроби в математике.

Зарождение и развитие десятичных дробей в некоторых странах Азии было тесно связано с метрологией (учением о мерах). Уже во II веке до н.э. там существовала десятичная система мер длины.

Примерно в III веке н.э. десятичный счет распространился на меры массы и объема. Тогда и было создано понятие о десятичной дроби, сохранившей, однако метрологическую форму.

Например, в Китае в Х веке существовали следующие меры массы: 1 лан = 10 цянь = 10 2 фэнь = 10 3 ли = 10 4 хао = 10 5 сы = 10 6 хо.

Если вначале десятичные дроби выступали в качестве метрологических, конкретных дробей, то есть десятых, сотых и т.д. частей более крупных мер, то позже они по существу стали все более приобретать характер отвлеченных десятичных дробей. Целую часть стали отделять от дробной особым иероглифом “дянь” (точка). Однако в Китае как в древние, так и в средние века десятичные дроби не имели полной самостоятельности, оставаясь в той или иной мере связанными с метрологией. Более полную и систематическую трактовку получают десятичные дроби в трудах среднеазиатского ученого ал-Каши в XV веке. Независимо от него, в 80-тых годах XVI века десятичные дроби были “открыты” заново в Европе нидерландским математиком Стевином. С начала XVII века начинается интенсивное проникновение десятичных дробей в науку и практику. В Англии в качестве знака, отделяющего целую часть от дробной, была введена точка. Запятая, как и точка, в качестве разделительного знака была предложена в 1617 году математиком Непером. Развитие промышленности и торговли, науки и техники требовали все более громоздких вычислений, которые с помощью десятичных дробей легче было выполнять. Широкое применение десятичные дроби получили в XIX веке после введения тесно связанной с ними метрической системы мер и весов. Например, в нашей стране в сельском хозяйстве и промышленности десятичные дроби и их частный вид – проценты – применяются намного чаще, чем обыкновенные дроби.

Проценты

Слово “процент” происходит от латинских слов pro centum, что буквально означает “за сотню” или “со ста”. Процентами очень удобно пользоваться на практике, так они выражают части целых чисел в одних и тех же сотых долях. Это дает возможность упрощать расчеты и легко сравнивать части между собой и с целым. Проценты были особенно распространены в Древнем Риме. Римляне называли процентами деньги, которые платил должник заимодавцу за каждую сотню. От римлян проценты перешли к другим народам Европы. Ныне процент – это частный вид десятичных дробей, сотая доля целого (принимаемого за единицу). В некоторых вопросах иногда применяют и более мелкие, тысячные доли, так называемые промилле (от латинского pro mille – “с тысячи”), обозначаемые ‰ по аналогии со знаком процента - %. Однако на практике в большинстве случаев “тысячные” - слишком мелкие доли, десятые же доли слишком крупные. Поэтому больше всего удобны сотые доли, иначе говоря, проценты. В нашей стране ими пользуются при составлении и учете выполнения производственных планов в промышленности и сельском хозяйстве. при разных денежных расчетах.

Таким образом, исторически первым расширением понятия о числе является присоединение к множеству натуральных чисел множества всех дробных чисел


Дальнейшее расширение понятия о числе было вызвано потребностями самой математики. В связи с решением линейных уравнений с одной переменной стало необходимым введение отрицательных чисел. Особенно отчетливо проявился смысл отрицательного числа с введением координаиной прямой и координатной плоскости. Важным моментом в математике явилось введение числа нуль.

Рациональные числа

Обходиться только натуральными числами неудобно. Например, ими нельзя вычесть большее из меньшего. Для такого случая были введены отрицательные числа: китайцами – в Х в. до н. э., индийцами – в VII веке, европейцами – только в XIII веке.

Множество целых чисел (^ N, нуля и противоположных натуральным) обозначают буквой Z. Z={…, -5, -4,-3, -2, -1, 0, 1, 2, 3, 4, 5,…}.

Объединение множества целых и множества дробных чисел называют множеством рациональных чисел и обозначают буквой Q.

На множестве рациональных чисел определены операции сложения, умножения, вычитания и деления (кроме деления на нуль, которое не имеет смысла). Это означает, что результат выполнения названных операций над двумя рациональными числами есть опять число рациональное. Указанные операции обладают следующими свойствами:

a+b=b+a - переместительный закон сложения;

a+(b+c)=(a+b)+c – сочетательный закон сложения;

a•b=b•a - переместительный закон умножения;

a• (b•c)=(a•b) •c – сочетательный закон умножения;

a• (b+c)=a•b+a•c – распределительный закон умножения относительно

сложения;

a+0=a - существует число нуль (0)

a+(-a)=0 - сумма противоположных чисел равна нулю;

a•1=1•a=a - существует число единица (1);

a• (1/a)=1, где a≠0 – произведение двух взаимно обратных чисел равно

1;

a•0=0 - произведение любого числа на нуль равно нулю.

Множество рациональных чисел упорядочено относительно понятий «меньше» и «больше». Подчеркнем еще одно свойство рациональных чисел: между любыми двумя различными рациональными числами находится бесконечно много рациональных чисел. Это свойство называют свойством плотности рациональных чисел.

Каждому рациональному числу соответствует единственная точка на координатной прямой, причем двум различным рациональным числам соответствуют различные точки координатной прямой. Обратное утверждение неверно. Другими словами, несмотря на то что рациональные числа обладают свойством плотности, они все же не «заполняют» всю координатную прямую, т.е. существуют точки прямой, которым соответствуют другие числа.

Иррациональные числа

Еще в Древнем Египте и Вавилоне ХХ веков назад были известны так называемые несоизмеримые отрезки ( , , π…), κоторые нельзя было выразить отношением, относительными, рациональными числами. Точно не известно, исследование каких вопросов привело к открытию несоизмеримости. Это могло произойти:

в геометрических расчетах при нахождении общей меры стороны и диагонали квадрата;

в теории музыки при попытках поделить октаву пополам, что сводится к определению среднего геометрического между 1 и 2;

в арифметике при определении дроби, квадрат которой равняется двум.

Речь шла об отыскании и исследовании величины, которую мы теперь обозначаем . Открытие факта, что между двумя отрезками – стороной и диагональю квадрата – не существует общей меры, привело к настоящему кризису основ, по крайней мере, древнегреческой математики. Факт существования несоизмеримых отрезков, тем не менее, не тормозил развитие геометрии в древней Греции. Греки разработали теорию отношения отрезков, которая учитывала возможность их несоизмеримости. Они умели сравнивать такие соотношения по величине, выполнять над ними арифметические действия в чисто геометрической форме, иначе говоря, пользоваться такими соотношениями как числами. Индийцы рассматривали иррациональные числа как числа нового вида, но допускающие над ними такие же арифметические действия, как и над рациональными числами. Например, индийский математик Бхаскара уничтожает иррациональность в знаменателе, умножая числитель и знаменатель на тот же самый иррациональный множитель. У него мы встречаем выражения:

.

Развивая тригонометрию как самостоятельную научную дисциплину, азербайджанский ученый XIII столетия Насретдин ат-Туси (1201- 1274 гг.) трактует соотношение несоизмеримых величин как числа: “Каждое из этих соотношений может быть названо числом, которое измеряется единицей так же само, как один из членов соотношения обозначается другим из этих членов”. Похожую трактовку числа давал и Омар Хайям.

В Европе существование геометрически несоизмеримых величин в средние века не оспаривалось, но для многих иррациональные числа были лишь символами, лишенными точно определенного содержания, поэтому их называли “глухими”, “недействительными”, “фиктивными” и т.д..

Только после появления геометрии Декарта (1637 г) началось применение иррациональных , как впрочем, и отрицательных чисел . Идеи Декарта привели к обобщению понятия о числе. Между точками прямой и числами было определено взаимно однозначное соответствие. В математику была введена переменная величина.

В начале XVIII столетия существовало три понятия иррационального числа:

иррациональное число рассматривали как корень n -ой степени из целого или дробного числа, когда результат извлечения корня нельзя выразить “точно” целым или дробным числом;

иррациональное число трактовали как границу, к которой его рациональные приближения могут подойти как угодно близко;

число рассматривали как отношение одной величины к другой величине того же самого рода, взятой за единицу; когда величина несоизмерима с единицей, число называли иррациональным.

Позднее Эйлер, Ламберт показали, что иррациональные числа можно представить бесконечными непериодическими десятичными дробями (например, π = 3,141592…). Свое дальнейшее развитие теория иррациональных чисел получила во второй половине XIX века в трудах Дедекинда, Кантора и Вейерштрасе в связи с потребностями математического анализа.

Рациональные и иррациональные числа на 3-ем уровне обобщения образовали действительные числа.

Мнимые числа

Еще более странными, чем иррациональные, оказались числа новой природы, открытые итальянским ученым Кардано в 1545 году. Он показал, что система уравнений , не имеющая решений во множестве действительных чисел, имеет решения вида , . Нужно только условиться действовать над такими выражениями по правилам обычной алгебры и считать, что · = - . Кардано называл такие величины “чисто отрицательными” и даже “софистически отрицательными”, считал их бесполезными и старался не употреблять. Долгое время эти числа считали невозможными, несуществующими, воображаемыми. Декарт назвал их мнимыми, Лейбниц – “уродом из мира идей, сущностью, находящейся между бытием и небытием”. В самом деле, с помощью таких чисел нельзя выразить ни результат измерения какой-нибудь величины, ни изменение какой-нибудь величины. Мнимым числам не было места на координатной оси. Однако ученые заметили, что если взять действительное число b на положительной части координатной оси и умножить его на , то получим мнимое число b , неизвестно где расположенное. Но если это число еще раз умножить на , то получим -b , то есть первоначальное число, но уже на отрицательной части координатной оси. Итак, двумя умножениями на мы перебросили число b с положительного в отрицательные, и ровно на середине этого броска число было мнимым. Так нашли место мнимым числам в точках на мнимой координатной оси, перпендикулярной к середине действительной координатной оси. Точки плоскости между мнимой и действительной осями изображают числа, найденные Кардано, которые в общем виде a + b·i содержат действительные числа а и мнимые b·i в одном комплексе (составе), поэтому называются комплексными числами. Это был 4-ый уровень обобщения чисел.

Постепенно развивалась техника операций над мнимыми числами. На рубеже XVII и XVII веков была построена общая теория корней n -ных степеней сначала из отрицательных, а затем из любых комплексных чисел, основанная на следующей формуле английского математика А. Муавра:

.

С помощью этой формулы можно было также вывести формулы для косинусов и синусов кратных дуг.

Леонард Эйлер вывел в 1748 году замечательную формулу:

,

которая связывала воедино показательную функцию с тригонометрической. С помощью формулы Эйлера можно было возводить число е в любую комплексную степень. Любопытно, например, что . Можно находить sin и cos комплексных чисел, вычислять логарифмы таких чисел и т.д

Долгое время даже математики считали комплексные числа загадочными и пользовались ими только для математических манипуляций. Так, швейцарский математик Бернулли применял комплексные числа для решения интегралов. Чуть позже с помощью мнимых чисел научились выражать решения линейных дифференциальных уравнений с постоянными коэффициентами. Такие уравнения встречаются, к примеру, в теории колебаний материальной точки в сопротивляющейся среде.

Геометрическое истолкование комплексных чисел

Около 1800-го года сразу несколько математиков (Вессель, Арган, Гаусс) поняли, что комплексными числами можно моделировать векторные величины на плоскости. Если действительные числа (состоящие из одного элемента) одномерны – они размещаются на одной координатной оси. Комплексные числа состоят из двух элементов, для их представления необходима уже плоскость и две координатные оси. Это значит, что они двумерны. Оказалось, что комплексное число z = a + b · i можно изобразить точкой М(a,b) на координатной плоскости. Позднее выяснили, что удобнее всего изображать число не самой точкой М , а в виде вектора , идущего из начала координат в точку с координатами а и b. Вектор можно задавать не только его координатами a и b , но также длиной r и углом φ , который он образует с положительным направлением оси абсцисс. При этом a = r · cos φ , b = r · sin φ и число z принимает вид z = r ·(cos φ + i · sin φ) , который называется тригонометрической формой комплексного числа. Число r называют модулем комплексного числа z и обозначают . Число φ называют аргументом z и обозначают Arg Z . Заметим, что если z = 0, значение Arg Z не определено, а при z ≠ 0 оно определено с точностью до кратного 2π. Упомянутая ранее, формула Эйлера позволяет записать число z в виде z = r · e iּ φ (показательная форма комплексного числа). Геометрическое истолкование комплексных чисел позволило определить многие понятия, связанные с функцией комплексного переменного, расширило область их применения.


Векторные числа

В дальнейшем стали разыскивать некие трехмерные числа, которые моделировали бы векторные величины в пространстве с его тремя координатными осями. Бился над этой задачей и ирландский ученый Гамильтон. После 15-ти лет работы в 1843 году Гамильтон придумал таки трехмерные числа a + bi + cj + dk , где i = j = k = и откладываются каждый на своей оси. Такие числа - комплексные a + bi и мнимые cj и dk по двум дополнительным осям – Гамильтон назвал кватернионами (quaterni в переводе с латыни – четыре). Позже, в 1853 году, как вариант кватернионов, Гамильтон предложил более удобные числа bi + cj + dk и назвал их векторными числами. Они и обобщили все предыдущие числа на 5-ом уровне обобщения.

Матричные числа

Алгебраические операции над векторными величинами создали многоэлементные числовые объекты, названные по предложению Эйнштейна тензорными величинами. Для их моделирования Артур Кэли в 1850 году ввел числа, в которых элементы (более трех) записывались уже квадратными и прямоугольными таблицами (матрицами) и рассматривались как единый числовой объект.

Векторные числа + тензорные величины породили матричные числа. Это был 6-ой уровень обобщения чисел.

Выделим особенность всех сложных ( комплексных, векторных, матричных ) чисел : они моделируют сразу два свойства – количество и направление моделируемых величин.

Трансфинитные числа

Наконец, в 1883 году немецкий ученый Георг Кантор, по-видимому, оценив многовековую историю последовательного обобщения чисел, в которой натуральные числа были обобщены с рациональными, а те в свою очередь – с действительными, те – с комплексными, те – с векторными, те – с матричными, создал на этом материале свою теорию трансфинитных (бесконечных, запредельных) чисел.

Для этого он назвал множеством всякий набор элементов, который можно сопоставить с частью самого себя, как например, целые числа сопоставляются с четными числами: Кантор заметил, что такое множество должно содержать бесконечное число элементов. А если эти элементы сопоставимы с множеством натуральных чисел, то их количество образует первое трансфинитное число א 0 (алеф-нуль – с иврита). Но множество א 0 тоже бесконечно много, и они вместе, как количество элементов нового множества, образуют следующее трансфинитное число א 1 . И так далее…

Такой красивой теорией Кантор завершил обобщение чисел на 7-ом уровне. И до настоящего времени абстрактнее ее нет: пока ничто не поглотило трансфинитные числа . Однако правда и то, что трансфинитные числа не нашли еще применения за пределами самой математики. История с нулем и комплексными числами снова повторяется для трансфинитных чисел : что ими можно моделировать? Уже больше века не знают. Может, Кантор породил красивую, но мертвую теорию? Кантор долго анализировал трансфинитные числа и установил, что они могут моделировать либо просто количество (тогда это количественные, кардинальные трансфинитные числа, например – множество учеников в классе), либо количество и направление (тогда это порядковые, ординальные трансфинитные числа, например – то же множество учеников, но упорядоченное по успеваемости). Но эти свойства (количество и направление) успешно моделируются числа меньших уровней обобщения. А таблица чисел подсказывает закономерность: чтобы стать абстрактнее, новые числа должны моделировать больше, развиваясь от уровня к уровню либо экстенсивно, меняясь количественно (например, в учете моделирующих элементов числами уровней 1, 2, 3: натуральные + ноль + отрицательные + иррациональные ; или в учете моделируемых направлений числами уровней 3, 4, 5, 6: одномерно-двумерные-трехмерные-многомерные и т.п).

Функции = функциональные числа?

Наш земляк С.Ф.Клюйков утверждает, что принятые во всем мире и представленные в таблице 1 уровни обобщения чисел не совсем полны, они включает не все уже известные числа.

Функциональная зависимость

Так, система координат была предложена в 1637 году Рене Декартом не для изображения комплексных чисел , а для представления функций, уравнений, описывающих различные кривые линии, поверхности, объемы тел – моделирующих аналитически любые геометрические формы. Но не только один Декарт, много других ученых до и после него приложило немало усилий в формирование нового общего понятия – функциональная зависимость. Для этого пришлось перейти от конкретных чисел к их буквенным символам, которые могли принимать то одно, то другое количественное значение, могли меняться, были переменными. Эти переменные величины назвали аргументами и функциями, а выражения, связывающие их, - уравнениями, формулами, функциональными зависимостями. И так увлеклись этими названиями, отражающими только одно из свойств чисел, что забыли: аргументы и функции первоначально все-таки числа, но уже иные – функциональные числа. Это такие же математические модели, как и предыдущие ( натуральные, рациональные, действительные ) числа, но с новым свойством – способностью моделировать не только количество, но и его функциональную зависимость от других количеств . Это позволило моделировать не только “стада баранов”, но и изменяющиеся процессы, движение, саму жизнь…

С.Ф.Клюйков выделяет функциональные числа как 8-ой уровень обобщения чисел. И.Бернулли (1718 г) и Л.Эйлер (1748 г) называли функцией “количество”, образованное переменными и постоянными величинами, зависящее от них. П.Дирихле (1837 г) называл то же “количество” - “значение”, которому соответствует определенное значение аргумента. Н.И.Лобачевскмй (1834 г) назвал функцией “число”, зависящее от аргумента. БСЭ (1978 г) называет функцией “зависимость” двух переменных величин.

Таким образом, разные авторы дают разное определение функции: “количество”, “число”, “зависимость”, акцентируясь на разных гранях этого сложного понятия, так как функция одновременно и “количество”, и “число”, и “зависимость”, а именно: функция – это число, моделирующее количество и зависимость.

Развитие функциональных чисел

История зарождения и развития функциональных чисел чрезвычайно длительна и богата. Их совершенствовали уже ученые Древнего Востока (Х в. до н. э.), находя объемы сосудов для зерна, сдаваемого в виде налога; античные греки (III в. до н.э.), исследуя конические сечения; Галилей (1638 г.), проверяя опытом свои формулы движения тел. Впервые ясно и отчетливо функциональные числа были представлены Лагранжем (1797 г.) в теории функций действительного переменного и ее приложении к разнообразным задачам алгебры и геометрии. Однако в наши дни функциональные числа продолжают совершенствовать, несмотря на громадный накопленный опыт: весь математический анализ с его бесконечными рядами, пределами, минимумами и максимумами, с дифференциальным, интегральным и вариационным исчислением, уравнениями и методами их решения. Но еще более значительными были успехи математики при добавлении способности моделировать функциональную зависимость комплексным числам (Даламбер, 1746 г.). Так возникли комплексно-функциональные числа (9-ый уровень обобщения) в форме функций комплексного переменного, с помощью которых были построены многие полезные математические модели сложных процессов, упрощенно доказательство многих теорем, выполнено описание двухмерных векторов, скалярных и векторных полей, отображение одной плоскости на другую и т.д.

Благодаря соединению способности моделировать функциональную зависимость с векторными числами (Гамильтон, 1853 г.), возникли векторно-функциональные числа (10-ый уровень обобщения). А это – векторный анализ, векторные функции, моделирование переменных полей в сплошных средах и многие достижения теоретической физики…

Добавление матричным числам способности моделировать функциональную зависимость (Клебш, 1861 г.) создало матрично-функциональные числа (11-ый уровень обобщения), а с ними: алгебру матриц, матричное представление линейных векторных пространств и линейных преобразователей, много новых математических моделей, тензорный анализ пространств с кривизной. теорию поля в физике и т.д.

Если добавить трансфинитным числам Кантора способность моделировать функциональную зависимость, то возникнут новые, трансфинитно-функциональные числа (12-ый уровень обобщения), функции трансфинитного переменного, которые, благодаря максимальному на сегодняшний день обобщению, позволят с большей простотой и стандартностью промоделировать все доступное предыдущим числам и откроют новые перспективы в моделировании еще более сложных задач.

Алгебра Дж. Буля

Информация, с которой имеют дело различного рода автоматизированные информационные системы, обычно называется данными., а сами такие системы — автоматизированными системами обработки данных (АСОД). Различают исходные (входные), промежуточные и выходные данные. Данные разбиваются на отдельные составляющие, называемые элементарными данными или элементами данных. Употребляются элементы данных различных типов. Тип данных (элементарных) зависит от значений, которые эти данные могут принимать. В современной безбумажной информатике среди различных типов элементарных данных наиболее употребительными являются целые и вещественные числа, слова (в некотором подалфавите байтового алфавита) и так называемые булевы величины. Первые два типа величин нуждаются в пояснении только в связи с конкретными особенностями их представления в современных ЭВМ. Прежде всего различают двоичное и двоично-десятичное представления чисел. В двоичном представлении используется двоичная система счисления с фиксированным числом двоичных разрядов (чаще всего 32 или, для малых ЭВМ, 16 разрядов, включая разряд для представления знака числа). Если нулем обозначать плюс, а единицей — минус, то 00001010 означает целое число +(2 3 +2 l )= + l0, а 10001100— число— (2 3 + 2 2 ) = —12 (для простоты взято 8-разрядное представление). Заметим, что знак числа в машинном представлении часто оказывается удобным ставить не в начале, а в конце числа. В случае вещественных чисел (а фактически, с учетом ограниченной разрядности, дробных двоичных чисел) употребляются две формы представления: с фиксированной и с плавающей запятой. В первом случае просто заранее уславливаются о месте нахождения занятой, не указывая ее фактически в коде числа. Например, если условиться, что запятая стоит между 3-м и 4-м разрядами справа, то код 00001010 будет означать число 00001,010= (1 + 0 • 2 -1 + 1 • 2 -2 + 0 • 2 -3 ) = 1,25. Во втором случае код числа разбивается на два кода в соответствии с представлением числа в виде х = а • 2b . При этом число а (со знаком) называется мантиссой, а число b (со знаком) — характеристикой числа х. О положении кода характеристики и мантиссы (вместе с их знаками) в общем коде числа также устанавливаются заранее. Для экономии числа разрядов в характеристике b
еще рефераты
Еще работы по разное