Реферат: Комплект технологической документации по оптической контактной литографии

--PAGE_BREAK--Выбор и описание технологического оборудования


Внешний вид установки отмывки и сушки OSTEC ADT 976 представлен на рис. 6 а, принципиальная схема рис. 6 б. Установка последовательно осуществляет струйную обработку пластин деионизованной водой и сушку горячим азотом при одновременном центрифугировании.

Блок отмывки и сушки выполнен в виде цилиндрической камеры 11, через дно которой введен вал центрифуги 14. Привод вращения центрифуги 10 содержит электродвигатель постоянного тока с регулируемым числом оборотов. На валу центрифуги закреплены держатели для 8и пластин. Камера закрывается сверху крышкой 8, которая в рабочем состоянии прижимается к торцу камеры через прокладку 7 с помощью вакуумной рубашки 6. В центре установки закреплен патрубок 9 с форсунками, через которые подается вода для струйной обработки и азот для сушки. Подача воды и азота управляется последовательным включением электромагнитных клапанов 3, в магистрали подачи азота установлен электрический подогреватель 4. В дне камеры выполнено дренажное отверстие 13, сбоку расположен патрубок для соединения с вытяжной вентиляцией 12. Патрубок 1 деионизированная вода патрубок 2 азот патрубок 5 вакуум

Установка совмещения и экспонирования OSTEC EVG620 представлена на рис 7, она состоит из модуля предварительного позиционирования рис 8, манипулятора рис. 9, калибратора рис 10, блока экспонирования рис 11.

Модуль предварительного позиционирования рис 8 состоит из блока предварительного позиционирования a, транспортера b и манипулятора c. Механизм позиционирования подложек a выполнен в виде столика 2 с вакуумным зажимом, вокруг которого установлены 3и ролика, Ролики 1 не имеют собственного привода, ролик 3 получает вращение от электродвигателя. Вращение подложки контролирует датчик 4, определяя положение ее бокового среза, раструб воздушной завесы 11 не дает пыли подлетать к столику. После предварительного позиционирования рука 6 транспортера b накрывает подложку вакуумным захватом 8 подключенного к шлангу вакуума 5. Вращаясь на шарнире 7, рука транспортера устанавливает подложку на поворотный диск 10 манипулятора 9.

<img width=«648» height=«296» src=«ref-1_828208783-7000.coolpic» v:shapes="_x0000_s1121 _x0000_s1122 _x0000_s1123 _x0000_s1124 _x0000_s1125 _x0000_s1126 _x0000_s1127 _x0000_s1128 _x0000_s1129 _x0000_s1130 _x0000_s1131 _x0000_s1132 _x0000_s1133 _x0000_s1134 _x0000_s1135 _x0000_s1136 _x0000_s1137 _x0000_s1138 _x0000_s1139 _x0000_s1140 _x0000_s1141 _x0000_s1142 _x0000_s1143 _x0000_s1144 _x0000_s1145 _x0000_s1146 _x0000_s1147 _x0000_s1148 _x0000_s1149 _x0000_s1150 _x0000_s1151 _x0000_s1152 _x0000_s1153 _x0000_s1154 _x0000_s1155 _x0000_s1156 _x0000_s1157 _x0000_s1158 _x0000_s1159 _x0000_s1160 _x0000_s1161 _x0000_s1162 _x0000_s1163 _x0000_s1164 _x0000_s1165 _x0000_s1166 _x0000_s1167 _x0000_s1168 _x0000_s1169 _x0000_s1170 _x0000_s1171 _x0000_s1172 _x0000_s1173 _x0000_s1174 _x0000_s1175 _x0000_s1176">

<img width=«512» height=«24» src=«ref-1_828215783-216.coolpic» v:shapes="_x0000_s1177 _x0000_s1178 _x0000_s1179 _x0000_s1180">

Рис. 8 Принципиальная схема модуля предварительного позиционирования уст. OSTEC EVG620

Манипулятор рис. 9 обеспечивает перемещение подложки по ортогональным осям и ее поворот при совмещении с фотошаблоном.

<img width=«156» height=«224» src=«ref-1_828215999-3265.coolpic» v:shapes="_x0000_s1181 _x0000_s1182 _x0000_s1183 _x0000_s1184 _x0000_s1185 _x0000_s1186 _x0000_s1187 _x0000_s1188 _x0000_s1189 _x0000_s1190 _x0000_s1191 _x0000_s1192 _x0000_s1193 _x0000_s1194 _x0000_s1195 _x0000_s1196 _x0000_s1197 _x0000_s1198 _x0000_s1199 _x0000_s1200 _x0000_s1201 _x0000_s1202 _x0000_s1203 _x0000_s1204 _x0000_s1205 _x0000_s1206 _x0000_s1207 _x0000_s1208 _x0000_s1209 _x0000_s1210 _x0000_s1211 _x0000_s1212 _x0000_s1213 _x0000_s1214 _x0000_s1215 _x0000_s1216 _x0000_s1217 _x0000_s1218 _x0000_s1219 _x0000_s1220 _x0000_s1221 _x0000_s1222 _x0000_s1223 _x0000_s1224 _x0000_s1225 _x0000_s1226 _x0000_s1227 _x0000_s1228 _x0000_s1229 _x0000_s1230 _x0000_s1231 _x0000_s1232 _x0000_s1233 _x0000_s1234 _x0000_s1235 _x0000_s1236 _x0000_s1237 _x0000_s1238 _x0000_s1239 _x0000_s1240 _x0000_s1241 _x0000_s1242 _x0000_s1243 _x0000_s1244 _x0000_s1245 _x0000_s1246 _x0000_s1247 _x0000_s1248 _x0000_s1249 _x0000_s1250 _x0000_s1251 _x0000_s1252 _x0000_s1253 _x0000_s1254 _x0000_s1255 _x0000_s1256 _x0000_s1257 _x0000_s1258 _x0000_s1259 _x0000_s1260 _x0000_s1261 _x0000_s1262 _x0000_s1263 _x0000_s1264 _x0000_s1265 _x0000_s1266 _x0000_s1267 _x0000_s1268 _x0000_s1269 _x0000_s1270 _x0000_s1271 _x0000_s1272 _x0000_s1273 _x0000_s1274 _x0000_s1275 _x0000_s1276 _x0000_s1277 _x0000_s1278 _x0000_s1279 _x0000_s1280 _x0000_s1281 _x0000_s1282 _x0000_s1283 _x0000_s1284">

Рис. 9 Принципиальная схема манипулятора установки OSTEC EVG620

Внутри литого корпуса 1 установлен поворотный диск 7 с вакуумным зажимом, соединенный с механизмом вертикальных перемещений рис 10. Поворотный диск центрируется тремя подшипниками 5. Угловой поворот диска 7 производится электродвигателем 9, который по средствам тяги 6, и связанного с ней упора 11, поворачивает диск 7. Перемещение по оси X осуществляется с помощью электродвигателя 10, который по средствам тяги 6, и связанного с ней эксцентрика 4, воздействует на панель 3. Для перемещения по оси Y используется электродвигатель 8, который по средствам тяги 6, и связанного с ней эксцентрика 4, воздействует на панель 3. С противоположных эксцентрикам сторон панель 3 зажимается подпружиненными подшипниковыми упорами 2.

Механизм подготовки совмещения — калибратор рис 10, предназначен для параллельного выравнивания поверхностей подложки и фотошаблона (удаления ЅклинаЅ) и установления между ними микрозазора. Эти операции необходимы для качественного выполнения совмещения и экспонирования. При уменьшении микрозазора и появление ЅклинаЅ возрастает вероятность контакта фотошаблона с подложкой в отдельных зонах, что приводит к износу фотошаблона, и повреждению фоторезиста на подложке. Выравнивания поверхности подложки ведем не по всей поверхности, а лишь по периферийной части. Для этого между подложкой 7 и фотошаблоном 2 вводят калибратор 3, который имеет выступающую отбортовку по краям, выступающий край калибратора защищает рабочую часть фотошаблона и фоторезиста от повреждений. Затем запуская поочередно электродвигатели 9, добиваемся одинакового усилия давления каждого из поршней 8 на площадку 4, что означает полное прилегание подложки 7 к калибратору 3 и калибратора фотошаблону 2.

<img width=«382» height=«252» src=«ref-1_828219264-4533.coolpic» v:shapes="_x0000_s1285 _x0000_s1286 _x0000_s1287 _x0000_s1288 _x0000_s1289 _x0000_s1290 _x0000_s1291 _x0000_s1292 _x0000_s1293 _x0000_s1294 _x0000_s1295 _x0000_s1296 _x0000_s1297 _x0000_s1298 _x0000_s1299 _x0000_s1300 _x0000_s1301 _x0000_s1302 _x0000_s1303 _x0000_s1304 _x0000_s1305 _x0000_s1306 _x0000_s1307 _x0000_s1308 _x0000_s1309 _x0000_s1310 _x0000_s1311 _x0000_s1312 _x0000_s1313 _x0000_s1314 _x0000_s1315 _x0000_s1316 _x0000_s1317 _x0000_s1318 _x0000_s1319 _x0000_s1320 _x0000_s1321 _x0000_s1322 _x0000_s1323 _x0000_s1324 _x0000_s1325 _x0000_s1326 _x0000_s1327 _x0000_s1328 _x0000_s1329 _x0000_s1330 _x0000_s1331 _x0000_s1332 _x0000_s1333 _x0000_s1334 _x0000_s1335 _x0000_s1336 _x0000_s1337 _x0000_s1338 _x0000_s1339 _x0000_s1340 _x0000_s1341 _x0000_s1342 _x0000_s1343 _x0000_s1344 _x0000_s1345 _x0000_s1346 _x0000_s1347 _x0000_s1348 _x0000_s1349 _x0000_s1350 _x0000_s1351 _x0000_s1352">

Рис. 10 Принципиальная схема калибратора установки OSTEC EVG620

Установка и снятие калибратора осуществляется кривошипно-шатунным механизмом 5 при помощи тяги 6. трех опорная система обеспечивает надежную фиксацию подложкодержателя, исключая его разворот.

Блок экспонирования контактного типа рис 11 в качестве источника используется ртутно-кварцевая лампа 1, излучение которой рефлектором 2

<img width=«340» height=«224» src=«ref-1_828223797-9172.coolpic» v:shapes="_x0000_s1353 _x0000_s1354 _x0000_s1355 _x0000_s1356 _x0000_s1357 _x0000_s1358 _x0000_s1359">

Рис. 11 Принципиальная схема блок экспонирования установки OSTEC EVG620

направляется на зеркало 3 и далее в блок линзовых растров 4. Зеркало 5 направляет расходящиеся пучки излучения на конденсор 7, преобразующий его в параллельный (в пределах угла коллимации) поток актиничного излучения, который падает на фотошаблон 8. Фотоприемник 6 служит для контроля дозы экспонирующего излучения

Установка нанесения, проявления и снятия фоторезиста OSTEC EVG®101 представлена на рис. 12. Качество нанесения фоторезиста влияет на качество выходящего продукта в целом и является основополагающим. Одними из главных характеристик данной установки являются: защита от пыли рабочей зоны и точность соблюдения скорости вращения центрифуги. Схема установки OSTEC EVG®101 в общем виде представлена на рис. 13 aвнешняя камера аппарата снабжена раструбами воздушной завесы 1, также для удаления пыли, которая может слететь с оператора, установлен раструб воздушной завесы 7. Что обеспечивает минимальное количество включений в сыром фоторезисте.

<img width=«630» height=«251» src=«ref-1_828232969-6585.coolpic» v:shapes="_x0000_s1360 _x0000_s1361 _x0000_s1362 _x0000_s1363 _x0000_s1364 _x0000_s1365 _x0000_s1366 _x0000_s1367 _x0000_s1368 _x0000_s1369 _x0000_s1370 _x0000_s1371 _x0000_s1372 _x0000_s1373 _x0000_s1374 _x0000_s1375 _x0000_s1376 _x0000_s1377 _x0000_s1378 _x0000_s1379 _x0000_s1380 _x0000_s1381 _x0000_s1382 _x0000_s1383 _x0000_s1384 _x0000_s1385 _x0000_s1386 _x0000_s1387 _x0000_s1388 _x0000_s1389 _x0000_s1390 _x0000_s1391 _x0000_s1392 _x0000_s1393 _x0000_s1394 _x0000_s1395 _x0000_s1396 _x0000_s1397 _x0000_s1398 _x0000_s1399 _x0000_s1400 _x0000_s1401 _x0000_s1402 _x0000_s1403 _x0000_s1404 _x0000_s1405 _x0000_s1406 _x0000_s1407 _x0000_s1408 _x0000_s1409 _x0000_s1410 _x0000_s1411 _x0000_s1412 _x0000_s1413 _x0000_s1414 _x0000_s1415 _x0000_s1416 _x0000_s1417 _x0000_s1418 _x0000_s1419 _x0000_s1420 _x0000_s1421 _x0000_s1422 _x0000_s1423 _x0000_s1424 _x0000_s1425 _x0000_s1426 _x0000_s1427 _x0000_s1428 _x0000_s1429 _x0000_s1430 _x0000_s1431 _x0000_s1432 _x0000_s1433 _x0000_s1434 _x0000_s1435 _x0000_s1436 _x0000_s1437 _x0000_s1438 _x0000_s1439 _x0000_s1440 _x0000_s1441 _x0000_s1442 _x0000_s1443 _x0000_s1444 _x0000_s1445 _x0000_s1446 _x0000_s1447 _x0000_s1448 _x0000_s1449 _x0000_s1450 _x0000_s1451 _x0000_s1452 _x0000_s1453">

<img width=«481» height=«23» src=«ref-1_828239554-208.coolpic» v:shapes="_x0000_s1454 _x0000_s1455 _x0000_s1456 _x0000_s1457 _x0000_s1458">

Рис. 13 Принципиальная схема установки нанесения и проявления фоторезиста OSTEC EVG®101

Для облегчения установки подложек из кассеты на подставку 6 установлен ручной вакуумный захват 2. После установки на подставку рис. 13-d подложка ориентируется под транспортер с при помощи упора 16 и двух роликов, 18 без привода и 17 с электроприводом. Затем рука 5 транспортера рис. 13-с, накрывает подложку вакуумным захватом 8 подключенного к шлангу вакуума 14. Вращаясь на шарнире 15, рука транспортера устанавливает подложку в центрифугу 3 на рабочий стол 9 рис. 13-b. После закрытия крышки 4 трубка подачи фоторезиста 11 поворачивается электроприводом 12 в рабочее положение (жиклером 10 над центром подложки). Центрифуга 3 подробно изображена на рис. 14.

<img width=«365» height=«266» src=«ref-1_828239762-3518.coolpic» v:shapes="_x0000_s1459 _x0000_s1460 _x0000_s1461 _x0000_s1462 _x0000_s1463 _x0000_s1464 _x0000_s1465 _x0000_s1466 _x0000_s1467 _x0000_s1468 _x0000_s1469 _x0000_s1470 _x0000_s1471 _x0000_s1472 _x0000_s1473 _x0000_s1474 _x0000_s1475 _x0000_s1476 _x0000_s1477 _x0000_s1478 _x0000_s1479 _x0000_s1480 _x0000_s1481 _x0000_s1482 _x0000_s1483 _x0000_s1484 _x0000_s1485 _x0000_s1486 _x0000_s1487 _x0000_s1488 _x0000_s1489 _x0000_s1490 _x0000_s1491 _x0000_s1492 _x0000_s1493 _x0000_s1494 _x0000_s1495 _x0000_s1496 _x0000_s1497 _x0000_s1498 _x0000_s1499 _x0000_s1500 _x0000_s1501 _x0000_s1502 _x0000_s1503 _x0000_s1504 _x0000_s1505 _x0000_s1506 _x0000_s1507 _x0000_s1508 _x0000_s1509 _x0000_s1510 _x0000_s1511 _x0000_s1512 _x0000_s1513 _x0000_s1514 _x0000_s1515 _x0000_s1516 _x0000_s1517 _x0000_s1518 _x0000_s1519 _x0000_s1520 _x0000_s1521 _x0000_s1522 _x0000_s1523 _x0000_s1524 _x0000_s1525 _x0000_s1526 _x0000_s1527">

Рис. 14 Принципиальная схема центрифуги установки OSTEC EVG®101

Рабочий стол центрифуги 9 приводится в движение полым валом 26 по средствам электродвигателя 21 через ременную передачу 20. Электродвигатель постоянного тока обеспечивает резкий старт и точный контроль числа оборотов, что важно для хорошего распределения фоторезиста и соблюдения необходимой толщины. Подача вакуума идет через отстойник 29 и штуцер 25, герметичность обеспечивает сальник 27, пробка 28 позволяет сливать попавшие в отстойник жидкости из камеры центрифугирования. Подача фоторезиста на подложку 22 осуществляется через штуцер 19 по трубке 11 в жиклер 10. Обработка подложки едкими составами (проявитель и смыватель) осуществляется через форсунку 13 рис. 13-b подключаемую через штуцер 23. Также аппарат может использоваться для промывки составами низкой активности и сушки центрифугированием. Слив отработанных жидкостей осуществляется через дренажное отверстие 24 в камере центрифугирования 3.
Сушильный аппарат рассмотренный на рис. 15, предназначен для предварительного прогрева, и сушки подложек. Максимальная температура разогрева подложек 150 0С точность удержания ее +/-10Cна 1000C. Преимуществами данного аппарата являются: простота конструкции, компактные размеры, низкое (350 Вт.) энергопотребление.

Подложку устанавливаем на крышку 1 рис. 16, с отверстиями вакуумного зажима 2, крышка 1 на шарнирах 5, для загрузки откидывается на угол 1800. СВЧ генератор 7 на базе магнетрона передает излучение по волноводу 6 в рупорную антенну 3 с корректирующей диэлектрической линзой (она применяется для создания плоского фронта СВЧ волн). Закрываем крышку 1 и подложка оказывается над рупорной антенной 3 отделенной от нее защитным экраном 4

<img width=«285» height=«247» src=«ref-1_828243280-3053.coolpic» v:shapes="_x0000_s1528 _x0000_s1529 _x0000_s1530 _x0000_s1531 _x0000_s1532 _x0000_s1533 _x0000_s1534 _x0000_s1535 _x0000_s1536 _x0000_s1537 _x0000_s1538 _x0000_s1539 _x0000_s1540 _x0000_s1541 _x0000_s1542 _x0000_s1543 _x0000_s1544 _x0000_s1545 _x0000_s1546 _x0000_s1547 _x0000_s1548 _x0000_s1549 _x0000_s1550 _x0000_s1551 _x0000_s1552 _x0000_s1553 _x0000_s1554 _x0000_s1555 _x0000_s1556 _x0000_s1557 _x0000_s1558 _x0000_s1559 _x0000_s1560 _x0000_s1561 _x0000_s1562 _x0000_s1563 _x0000_s1564 _x0000_s1565 _x0000_s1566 _x0000_s1567 _x0000_s1568 _x0000_s1569 _x0000_s1570 _x0000_s1571 _x0000_s1572 _x0000_s1573">

Рис. 16 Принципиальная схема сушильной установки Sawatec HP 150

Магнетрон рис. 17 состоит из анодного блока 1, который представляет собой, металлический толстостенный цилиндр с прорезанными в стенках полостями, выполняющих роль объёмных резонаторов 2. Резонаторы образуют кольцевую колебательную систему. Соосно анодному блоку закрепляется цилиндрический катод 3. Внутри катода закреплён подогреватель. Магнитное поле, параллельное оси прибора, создается внешними электромагнитом. Для вывода СВЧ энергии 5 используется, проволочная петля 6, закреплённая в отверстие из резонатора наружу цилиндра. Так как в магнетроне с одинаковыми резонаторами разность частот получается недостаточной, её увеличивают введением связок 4 в виде

<img border=«0» width=«212» height=«211» src=«ref-1_828246333-10602.coolpic» v:shapes="_x0000_i1051">

Рис.17 Принципиальная схема магнетрона.

металлических колец, одно из которых соединяет все чётные, а другое все нечётные ламели 7 анодного блока.

Микроскоп Nikon Eclipse L200A рис. 18 это идеальный инструмент для полуавтоматической инспекции полупроводниковых пластин в светлом и темном поле, диаметром до 200мм и интегральных микросхем в отраженном свете на наличие дефектов.

Для темнопольнои микроскопии пользуются обычными объективами и специальными темнопольными конденсорами. Основная особенность темнопольных конденсоров заключается в том, что центральная часть у них затемнена и прямые лучи от осветителя в объектив микроскопа не попадают. Объект освещается косыми боковыми лучами и в объектив микроскопа попадают только лучи, рассеянные частицами. Чтобы в объектив не попадали прямые лучи от осветителя, апертура объектива должна быть меньше, чем апертура конденсора. Для уменьшения апертуры в обычный объектив помещают диафрагму или пользуются специальными объективами, снабженными ирисовой диафрагмой.

При темнопольной микроскопии частицы выглядят ярко светящимися на черном фоне. При этом способе микроскопии могут быть обнаружены мельчайшие частицы, размеры которых лежат за пределами разрешающей способности микроскопа. Однако темнопольная микроскопия позволяет увидеть только контуры объекта, но не дает возможности изучить внутреннюю структуру. Для темнопольной микроскопии применяют более мощные осветители и максимальный накал лампы.

Часто повторяющиеся операции такие как: смена методов контрастирования и объективов, управление апертурой, фокусировка и регулировка интенсивности освещения выполнены на передней панели рис. 19, моторизированы и могут управляться с панели управления рис. 20. Моторизация и внешняя панель управления, обеспечивает быстрое и простое управление микроскопом не отрывая глаз от объекта исследования. При этом фактически отсутствует необходимость каких либо ручных манипуляций над образцом, что предотвращает его загрязнение по вине оператора. Элементы микроскопа покрытые составом, обеспечивающим электростатическое разряжение, для предотвращения электростатических разрядов, и адгезии посторонних частиц к микроскопу, что минимизируют вероятность загрязнения объекта исследования, увеличивая производительность.

Оптимальные условия наблюдения могут быть сохранены отдельно для каждого объектива и восстановлены лишь простой сменой увеличения.

Такая возможность обеспечивает полную воспроизводимость результатов исследования, а так же существенно ускоряет работу с микроскопом. Процесс инспекции может меняться в зависимости от типа подложки и предпочтений пользователя. Поэтому возможность программирования исключает рутинный процесс подстройки. Чтобы начать работу, нужно лишь выбрать сохраненный файл с именем оператора, и применить предустановки в зависимости от метода контрастирования, увеличения объектива, объекта исследования, фокусировки, позиции столика, апертуры и интенсивности света.

Оценка технологического процесса

Основными контролируемыми параметрами являются геометрические размеры, топология и наличие дефектов покрытия. Контроль проводится при помощи полу автоматизированного микроскопа Nikon Eclipse L200А (описанного выше) в светлом и темном поле.

 1. Процесс отмывки, описанный выше в п. 1 описания технологического процесса, оканчивается контролем качества отмывки. Посторонние частицы и другие точечные загрязнения на подложке дают преломление света, в темном поле микроскопа и выглядят ЅзвездамиЅ на темном фоне. Количество этих частиц практически пропорционально количеству забракованных ИМС, оценку их количества проводим подсчитывая число потенциального брака, визуально. При большом количестве точек, больше расчетного относительно ранее проведенного процесса, проводится более тщательная очистка.

2. После проявления и полимеризации фоторезиста п. 8 описания технологического процесса, контроль рельефа в пленке фоторезиста проводим визуально под микроскопом. Проверяя всю рабочую поверхность подложки с имеющимися на ней элементами рисунка из пленки фоторезиста. Контролируются следующие основные критерии качества пленки: чистота рабочего поля пленки фоторезиста, наличие проколов и их количество, геометрические размеры элементов рельефа, неполное удаление фоторезиста в окнах, искажение формы элементов рисунка, наличие ореола и клина в рельефе рисунка. При обнаружении того или иного дефекта в пленке фоторезиста проводят анализ возможных причин его появления. После этого составляют план мероприятий по доработке отдельных технологических операций.

3. После удаления фотомаски п. 11 описания технологического процесса, контроль рельефа в подложки проводим визуально под микроскопом. Контролируя рабочую поверхность на соответствие ее топологии и геометрии элементов плану. Контролируются следующие основные критерии качества: наличие каверн, разрывов и их количество, геометрические размеры элементов рельефа; неполное удаление фотомаски, искажение формы элементов рисунка, наличие сужений, утолщений и изменений глубины рисунка. При обнаружении того или иного дефекта в пленке фоторезиста проводят анализ возможных причин его появления. После этого составляют план мероприятий по доработке отдельных технологических операций.
    продолжение
--PAGE_BREAK--


еще рефераты
Еще работы по журналистике