Лекция: 10 страница

 

Нужно искать новые формы сотрудничества свеклосеющих хозяйств с сахарными заводами, создавать совместные предприятия с иностранными фирмами. Не должны стоять в стороне от подъема свеклосахарного производства коммерческие банки, финансово-промышленные группы, другие предприятия и структуры, которые могут оказать материальную и финансовую поддержку этой жизненно важной отрасли.

 

В условиях, когда резко сократились государственные субсидии, заводы столкнулись с проблемами реализации продукции и не могут нормально вести производственную деятельность из-за отсутствия оборотных средств. Нужно снижать себестоимость производства сахара, сокращать потери, — только таким путем придет на рынок высококачественная и более дешевая продукция, способная конкурировать с поступающей из ближнего и дальнего зарубежья.

 

В последующие годы в условиях резкого спада сельскохозяйственного производства в России наблюдалось:

 

общее снижение площадей под сахарной свеклой;

 

во всех зонах свеклосеяния к минимуму были сведены площади, возделываемые по интенсивной технологии;

 

произошло резкое падение урожайности сахарной свеклы (менее 20 т/га);

 

заготовка свеклы снизилась по сравнению с 1986 — 1990 гг. примерно на 45%.

 

Свеклосахарный комплекс отброшен на уровень шестидесятых годов. Произошло это по ряду причин, среди которых:

 

· ухудшение финансового положения хозяйств и сахарных заводов;

 

· резкое снижение объемов закупок удобрений, средств защиты растений, сельскохозяйственной техники;

 

· несовершенство экономических отношений свеклосеющих хозяйств с сахарными заводами;

 

· резкое сокращение государственного финансирования и ограничение кредитования;

 

· усиление диспаритета цен в товарообмене между свеклосахарным комплексом и другими отраслями.

 

Одной из причин ухудшения финансового состояния свеклосахарного комплекса является то, что в последние годы не осуществляются государственные закупки сахарной свеклы для поставки ее и выработанного из нее сахара-песка в государственные фонды, вся свекла заготавливается и перерабатывается на давальческих условиях. И 25 — 30% сахара от выработанного, что остается сахарным заводам, не компенсирует полностью затраты на переработку сырья.

 

Для предотвращения дальнейшего спада производства разработана концепция формирования организационно-экономического механизма в свеклосахарном производстве. Она направлена на совершенствование организационных структур и управления в отрасли, формирование оптимального механизма взаимовыгодных экономических отношений сельхозпроизводителей и переработчиков, создание благоприятных условий для инвестиционной деятельности.

 

 

1.2 Пищевая ценность сахара-песка

 

сахар качество потребительский экспертиза

 

Таблица1- Пищевая ценность сахара-пескаНаименование сахар-песок

Калорийность, ккал/кДж 387

Углеводы, г 99,9

Белки и жиры отсутстуют

 

 

38. Производство сахара-песка

 

Основные стадии производства сахара-песка: переработка свеклы — удаление примесей, мойка и нарезка в стружку (в узкие тонкие пластины); получение диффузионного сока; очистка сока от механических примесей и несахаров; на следующей стадии сок сгущают путем выпаривания, затем следует кристаллизация сахара из сиропа, отделение кристаллов сахара от межкристальной жидкости; на последней стадии проводят сушку, охлаждение и освобождение кристаллов от ферромагнитных примесей и комков сахара.

 

Для извлечения сахара из свеклы применяется обработка тонко нарезанной свеклы водой при нагревании. Из тонко нарезанной стружки сахар извлекается более быстро и полно, чем из толстой. Переход сахара и растворимых несахаров из свеклы в воду совершается вследствие диффузии. Поэтому такой метод получения сока из свеклы называется диффузионным. Свекольную стружку загружают в диффузоры с водой, имеющей температуру 80С. Диффузия происходит только в том случае, если стенки клеток разрушены нагреванием, иначе белковые вещества, выстилающие стенки, задерживают этот процесс. Загрузка диффузоров и подача воды осуществляется по принципу противотока: с одной стороны в батарею загружают свекольную стружку, с другой — подают теплую воду. Для получения более концентрированных соков вода подается на наиболее обессахаренную стружку, а жидкие первоначальные соки переходят из диффузора в диффузор, повышая концентрацию сахара. Из последнего диффузора, заполненного свежей стружкой, сок выходит с максимальной концентрацией сахара.

 

Полученный таким образом диффузионный сок содержит 15-17% сухих веществ, состоящих на 80-90% из сахарозы. Вместе с сахарозой, которая экстрагируется почти полностью, из свекловичной стружки в диффузионный сок переходит и часть несахаров: общего азота и оксидов калия, натрия, магния — 60-70%, аминного и аммиачного азота — до 95%, оксидов кальция — 10%, фосфора — 75-80%. Из разорванных клеток стружки вымывается до 30% белка. Остальная масса несахаров удерживается в клеточных стенках свеклы.

 

Присутствие в соке несахаров затрудняет непосредственное получение кристаллического сахара. Редуцирующие вещества в процессе производства сахара претерпевают большие превращения: при нагревании образуется оксиметилфурфурол, в щелочной среде они способны осмоляться с образованием сахарумовой, глициновой и других кислот, темноокрашенных гумминовых веществ. При взаимодействии редуцирующих веществ с аминокислотами накапливаются меланоидины коричневого цвета. Продукты щелочного разложения редуцирующих веществ и меланоидины являются основными компонентами красящих веществ, содержащихся в кристаллах готового сахара.

 

Около 40% сапонинов сахарной свеклы переходит в диффузионный сок. Они отличаются большой поверхностной активностью, вызывают ценообразование в растворах. С кальцием сапонин образует нерастворимую соль, которая при очистке сока полностью осаждается. Однако следы сапонина часто находят в готовом сахаре. Рафиноза, присутствующая в диффузионном соке, способствует образованию кристаллов сахарозы неправильной формы. Пектиновые вещества затрудняют очистку сока, продукты их распада ухудшают качество сахара. Из минеральных веществ не полностью удаляются при очистке диффузионного сока катионы калия и натрия, анионы соляной и азотной кислот. Минеральные вещества свеклы определяют в основном состав золы сахара. Кроме того, в диффузионном соке содержится много мелких частиц мезги свеклы, он быстро темнеет и пенится.

 

Известно много способов очистки диффузионного сока, но на практике применяются только самые дешевые и эффективные. Такими в настоящее время являются способ обработки диффузионного сока известью — дефекация с последующим удалением ее избытка диоксидом углерода — сатурация.

 

Дефекация проводится в два этапа: преддефекация и основная дефекация.

 

На преддефекации происходит коагуляция частиц коллоидной дисперсности и высокомолекулярных соединений (белковых и пектиновых веществ). Коагуляция происходит в результате образования ионом кальция с анионами белка нерастворимых соединений. Также ионы кальция, присутствующие в диффузионном соке, вступая в реакцию с анионами ряда органических кислот, образуют слаборастворимые, выпадающие в осадок соли кальция. При такой нейтрализации осаждается большая часть анионов щавелевой и винной кислот, частично анионы лимонной, яблочной и уксусной кислот. Другие безазотистые органические кислоты, а также аминокислоты и бетаин остаются в растворе.

 

Кислоты, реагирующие с кальцием, находятся в диффузионном соке не только в свободном состоянии, но и в виде растворимых солей калия, натрия и других металлов. Поэтому происходит еще одна химическая реакция — реакция осаждения, или двойного обмена. Из минеральных кислот почти полностью осаждаются анионы фосфорной и частично — серной кислот. Кроме ионов кальция осаждающим действием обладают и гидроксильные ионы, вызывающие осаждение катионов магния, алюминия, железа, имеющихся в соке в небольшом количестве.

 

Таким образом, на преддефекации под действием ионов гидроксила и кальция полностью заканчиваются реакции нейтрализации кислот, коагулирует большая часть веществ коллоидной дисперсности и осаждается около половины анионов фосфорной, щавелевой, уксусной, лимонной, яблочной, винной кислот, катионов солей магния, алюминия, железа. Однако реакции разложения амидов кислот, редуцирующих и пектиновых веществ, жира из-за недостаточной концентрации гидроксильных ионов только начинаются, и для их завершения требуются длительное время, высокая щелочность и высокая температура.

 

При основной дефекации происходит разложение солей аммония и амидов кислот с выделением аммиака и в растворе накапливаются растворимые соли кальция. Они увеличивают потери сахарозы и затрудняют ее кристаллизацию. Редуцирующие сахара в щелочной среде быстро разрушаются, образуя молочную и муравьиную, уксусную и другие кислоты. Часть продуктов распада редуцирующих Сахаров и аминосоединений идет на образование различных групп красящих веществ. Жиры в щелочной среде омыляются, образуя глицерин и нерастворимые кальциевые соли высших жирных кислот. При этом соли выпадают в осадок, а глицерин остается в растворе. Пектин разлагается с образованием метилового спирта, уксусной и полигалактуроновой кислот. Метиловый спирт при выпаривании сока улетучивается, уксусная кислота остается в растворе в виде уксусно-кальциевой соли, а нолигалактуроновая кислота дает желатинообразный осадок пектата кальция.

 

Таким образом, дефекованный сок содержит: в растворе — сахарозу, гидроксиды калия и натрия, растворенные частицы извести, растворимые кальциевые соли некоторых аминокислот, амидов, а также всех органических кислот, образующихся в результате разложения редуцирующих веществ, другие растворимые несахара; в осадке — коагулят белковых и пектиновых веществ, сапонина, соли щавелевой, фосфорной и других кислот, не растворившиеся частицы извести.

 

После дефекации нефильтрованный диффузионный сок обрабатывают сатурационным газом, содержащим диоксид углерода. Сатурация проходит также в два этапа. После каждой сатурации диффузионный сок фильтруют под давлением через специальные фильтры.

 

При сатурации диоксид углерода вступает в реакцию с гидроксидом кальция и образует карбонат кальция. На положительно заряженной поверхности кристаллов карбоната кальция адсорбируются несахара сока, в том числе продукты распада пектиновых веществ, аминокислоты, соли карбоповых кислот, красящие вещества. Кроме того, образующийся кристаллический осадок СаСО, служит основой для создания фильтрующего слоя и улучшает процесс фильтрации.

 

После фильтрования сок становится прозрачным, но имеет еще слабо желтую окраску. Чтобы обесцветить сок и улучшить цвет сахара, проводят операцию сульфитирования, т. е. через сок пропускают сернистый газ, который восстанавливает красящие вещества, осаждает известь, делая раствор бесцветным. Кроме того, сернистый газ улучшает и процесс кристаллизации сахарозы.

 

В настоящее время в сахарной промышленности применяют метод более глубокой очистки соков, который повышает их качество и позволяет получить полностью обесцвеченные соки. Этот метод заключается в том, что очищенный обычным способом сок обрабатывают активными ионообменниками или ионитами. Иониты представляют собой искусственные смолы, насыщенные группами SO3H или NH. Иониты обладают способностью отдавать свои водородные или гидроксильные ионы и поглощать взамен их из раствора содержащиеся в нем другие ионы одноименного заряда.

 

Смолы, содержащие группу SO3H, называют катионитами. При пропускании через них сока все катионы посторонних веществ задерживаются смолами, раствор же получает ионы Н+. В результате этого количество минеральных веществ сока снижается. Смолы, насыщенные группой NH2 и обладающие функциональной группой ОН, называются анионитами; в процессе фильтрации сока они поглощают анионы, отдавая в раствор свой ион ОН.

 

Очищенный таким образом диффузионный сок, потерявший значительную часть несахаров и получивший взамен чистую воду (Н+ + ОН-), поступает на выпаривание и уваривание.

 

Для получения кристаллического сахара из очищенного сока необходимо удалить из него большое количество воды. При этом образуется пересыщенный сахаром раствор.

 

На сахарных заводах удаление воды из сока осуществляется в два приема. Сначала в выпарных аппаратах, обогреваемых паром, концентрация сока доводится с 14-15 до 65-70% сухих веществ (при этом выпаривается около 95-100% воды к массе свеклы). Затем из полученного сиропа в вакуум-аппаратах выпаривается еще около 15-20% воды к массе свеклы. При таком уваривании выделяются кристаллы сахара и сироп превращается в утфель I кристаллизации (смесь кристаллов сахарозы и межкристальной жидкости), содержащий около 93% сухих веществ.

 

Выпаривание воды из сока в два приема необходимо по следующим причинам.

 

Во-первых, при нагревании сок темнеет и из него выделяется осадок. Поэтому перед вторым увариванием сироп подвергается дополнительной очистке (сульфитация, фильтрование). Такая очистка сиропа может быть проведена при концентрации не более 70% сухих веществ. Во-вторых, за короткое время (2-3 ч) сформировать хороший кристалл сахара при уваривании можно только при достаточной концентрации сиропа. Наиболее подходящая концентрация — 65-70% сухих веществ.

 

Готовый утфель I кристаллизации (утфель I) центрифугируется с отбором двух оттеков: первого (межкристального раствора утфеля), называемого зеленой патокой, и второго, полученного в результате промывания (пробеливания) кристаллов сахара горячей водой, называемого белой патокой. Пробеленный сахар влажностью 0,8-1,2% выгружается из центрифуг и транспортерами направляется на сушку. Таким образом получают товарный сахар-песок.

 

Белая и зеленая патоки, полученные при центрифугировании утфеля I, поступают на уваривание утфеля II кристаллизации. При центрифугировании утфеля II получают также два оттека (белая и зеленая патока) и сахар II кристаллизации. Он удерживает на своей поверхности пленку межкристального раствора, поэтому интенсивно окрашен в желтый цвет. Сахар II кристаллизации растворяют в фильтрованном соке 2-й сатурации и полученный раствор называют клеровкой. Клеровка идет на сульфитацию, а затем на уваривание утфеля I кристаллизации При уваривании утфеля III кристаллизации в вакуум-аппараты последовательно забирают второй и первый оттеки утфеля II кристаллизации. Содержание сухих веществ в готовом утфеле доводят до 93,5-94,0%, спускают его в кристаллизационную установку. Здесь в течение 24-28 ч происходит дополнительная кристаллизация сахара охлаждением от 63-67 до 35-40 °С. Утфель III кристаллизации поступает в центрифуги, в которых сахар не пробеливается водой. Оттек, отбираемый из этих центрифуг, называется мелассой, она является отходом производства.

 

Сахар III кристаллизации необходимо аффинировать, т. е. удалить маточную пленку с поверхности кристаллов сахарозы, заменяя ее на более чистую, без растворения кристаллов. Для этого сахар III кристаллизации смешивается с зеленой патокой утфеля I кристаллизации, разбавленной очищенным соком. При этом образуется аффинационный утфель с содержанием 89-90% сухих веществ. В процессе перемешивания утфеля (в течение 20 мин.) часть несахаров из пленки на кристаллах сахара переходит (диффундирует) в более чистый межкристальный раствор. После аффинации утфель центрифугируется вместе с утфелем II.

 

После этого сахар II и III кристаллизации растворяется (клеруется) в соке II сатурации до содержания 65-70% сухих веществ. Образующаяся при этом клеровка вместе с сиропом из выпарной установки направляется на сульфитацию.

 

Меласса представляет собой коричневое вязкое вещество, содержащее ощутимое количество сахара, которое не может быть легко кристаллизировано. Однако меласса может быть представлена в виде порошка.

 

Свеклосахарная меласса (или кормовая патока) сама по себе обычно не пригодна в пищу, но некоторые рафинированные фракции мелассы сахарного тростника и кукурузной мелассы пригодны для употребления в пищу человеком и поступают в продажу в виде патоки или столового сиропа. Меласса используется главным образом как крахмалсо-держащее сырье, из которого получают спирт и спиртные напитки (например, ром из мелассы сахарного тростинка), при приготовлении корма для крупного рогатого скота и заменителей кофе. Иногда ее также используют для экстракции сахара.

 

39. 1.1 Процесс производства и виды сахара-рафинада

 

 

Сахар — это пищевой продукт, состоящий из сахарозы высокой степени чистоты. Вырабатывается два вида сахара: сахар-песок и сахар-рафинад. Сахар — ценный пищевой продукт, который состоит почти из чистой сахарозы с небольшим количеством других веществ и влаги. Он легко усваивается организмом, повышает работоспособность человека, укрепляет нервную систему, снимает усталость. В день человек должен употреблять в среднем 100 г сахара. Однако избыточное употребление сахара приводит к ожирению. Калорийность 100 г сахара 374--375 ккал (1565--1569 кДж).

 

Сахароза имеет приятный сладкий вкус. В водных растворах сладость сахарозы ощущается при концентрации около 0,4%. Растворы, содержащие свыше 30% сахарозы, приторно-сладкие.

 

Сахароза быстро и легко усваивается. В организме под действием ферментов она расщепляется на глюкозу и фруктозу. Сахароза используется организмом человека как источник энергии и как материал для образования гликогена, жира, белковых и углеродных соединений.

 

Ощущение сладкого вкуса сахара возбуждающе действует на центральную нервную систему, способствует обострению зрения и слуха.

 

Сырьем для выработки сахара служат сахарная свекла (около 45%) и сахарный тростник, произрастающий в районах с тропическим и субтропическим климатом. Для производства сахара используют также такие растения-сахароносы, как сорго, кукуруза, пальма. Отечественная промышленность вырабатывает сахар из сахарной свеклы. Тростниковый сахар ввозят в виде полуфабриката — сахара-сырца, который перерабатывают в товарный белый сахар.

 

У нас в стране ежегодно вырабатывается из сахарной свеклы до 9 млн.-т сахара, из тростникового сахара-сырца — до 2--3 млн. т. Потребление сахара на человека в год составляет 42 кг при физиологически обоснованной норме 36,5 кг.

 

Выпускают сахар следующих видов: сахар-песок, сахар-рафинад, рафинадную пудру.

 

41. Большинство применяемых в пивоварении дрожжей относятся к роду Saccharomyces, виду Carlsbergensis. Пивное сусло сбраживают дрожжами низового и верхового брожения. Верховые дрожжи во время брожения собираются на поверхности сусла в виде шапки. Для них характерно взвешенное в сусле состояние. Поэтому их называют пылевидными.

Дрожжи низового брожения после брожения оседают на дно аппарата плотным слоем. В сусле они собираются в виде хлопьев, поэтому их называют хлопьевидными. Эта способность дрожжей имеет важное практическое значение — быстро осветляется пиво и появляется возможность собирать дрожжи из бродильных танков и многократно их использовать.

По степени сбраживания дрожжи делятся на высоко- и низкосбраживающие.

Процесс брожения зависит от ряда факторов: способа сбраживания, состава сусла, температуры брожения, величины бродильного аппарата, но наибольшее значение имеет штамм дрожжей, от которого зависят вкус и аромат готового пива. Наиболее пригодными считаются быстросбраживающие дрожжи, дающие хорошее осветление и мягкий чистый вкус пива.

В производстве пива наибольшее распространение получили штаммы низовых дрожжей: 776, 11, 41, 44, 8а(М) Н, 37 и др.

Штамм 776 — дрожжи среднесбраживающие. Хорошо осветляют сусло, образуют плотный осадок. К качеству сырья неприхотливы. Форма клеток яйцевидная. Они наиболее приемлемы на пивоваренных заводах.

Штаммы 11, Н — дрожжи сильно- и быстросбраживающие. К качеству сырья нетребовательны. Форма клеток овальная. Флокуляционная способность хорошая. Вкус пива полный.

Штаммы 41, 44 — дрожжи среднесбраживающие. Форма клеток овальная. Способность к агглютинации хорошая. Вкус пива чистый, мягкий.

Штамм 8а(М) —дрожжи сильносбраживающие. Форма клеток овальная. Флокуляционная способность хорошая. Вкус пива чистый, мягкий.

Для отдельных сортов темного пива применяются специальные расы дрожжей верхового брожения.

Дрожжи чистой культуры разводят обычно в лаборатории завода. Для этой цели применяют различную аппаратуру, которая должна обеспечить стерильность сусла и стерильную передачу бродящих дрожжей из стадии в стадию.

3.3 Брожение

 

 

Процесс брожения представляет собой переваривание дрожжами сахаров сусла с выделением дрожжами этилового спирта и углекислого газа, как основных продуктов процесса. В ходе брожения происходит образование сотен сложных органических веществ, которые обуславливают аромат, вкус, цвет готового пива.

 

В охлажденное сусло добавляют специальные культурные дрожжи. На первом этапе брожения они размножаются, их количество увеличивается в несколько раз, потом они (с уменьшением количества питательных веществ в среде и накоплением спирта) прекращают свою активность, объединяются в группы по несколько клеток и оседают на дно ЦКТ (цилиндро-конический танк — емкость, в которой происходит процесс брожения).

 

Процесс активного брожения занимает около недели, после чего температура в ЦКТ снижается с 15° С до 0° С. При охлаждении дрожжи еще активнее и плотнее осаждаются на дно ЦКТ.

 

Осевшие дрожжи удаляются со дна ЦКТ насосом и собираются в дрожжевые сборники, откуда могут повторно (несколько раз) добавляться в свежее сусло для проведения нового процесса брожения. Цикл жизни дрожжей за время одного брожения называется генерацией. Дрожжи, сделавшие пиво из сусла, например, 3 раза, называются дрожжами третьей генерации.

 

42. Производство пива. Дображивание и выдержка пива

 

Эти операции необходимы для насыщения пива углекислым газом, осветления и созревания, в процессе которого улучшается вкус и аромат пива.

 

При дображивании, как и при главном брожении, основным процессом является спиртовое брожение, но оно протекает медленно, потому что ведется при температуре 0—2°С. Молодое пиво содержит около 0,2% (к массе) углекислого газа. Для насыщения пива до стандартной концентрации углекислоты (0,3—0,35%) в молодом пиве на дображивание оставляют около 1 % экстрактивных веществ. Чтобы повысить растворимость углекислого газа, дображивание проводят при давлении 0,03—0,05 МПа. Осветление пива наступает после окончания брожения, когда оседающие дрожжи захватывают, частицы белков и хмелевых смол и увлекают их в осадок, при этом пиво не только осветляется, но и теряет грубую горечь. При созревании пива уменьшается количество альдегидов и нарастает содержание эфиров, высших спиртов и кислот, в результате чего пиво приобретает тонкий вкус и аромат.

 

В лагерный танк молодое пиво подается снизу. После наполнения танка шпунтовое отверстие оставляют приоткрытым, чтобы выпустить воздух, вытесняемый из газового пространства выделяющейся при дображивании углекислотой. Затем танк шпунтуют, присоединяя шпунтаппарат, отрегулированный на давление 0,03—0,05 МПа. Продолжительность дображивания и выдержки зависит от сорта пива. Жигулевское пиво выдерживают 21 сут, рижское и московское — 42, мартовское и украинское — 30, ленинградское — 90 сут. Готовое пиво передают на осветление. По мере опорожнения танка в него подают сжатый воздух или, лучше, углекислый газ, чтобы поддерживать постоянное давление в танке и тем предотвратить вспенивание пива и потери углекислого газа вследствие уменьшения его растворимости.

 

После спуска пива на дне танка остается осадок (лагерный отстой), состоящий из дрожжей, белков и хмелевых смол. Его собирают в сборник, отстаивают, сепарируют или фильтруют. Выделенное пиво используют вместе с другими отходами пива (так называемое смарочное пиво), а густую часть отстоя присоединяют к избыточным дрожжам и реализуют.

 

Брожение сусла и дображивание пива— наиболее длительные процессы в производстве пива, требующие применения большого количества емкостей и больших производственных площадей. Для сокращения производственных площадей бродильно-лагерных отделений переходят на использование танков большой вместимости (диаметром 4— 8 м и высотой 7—10 м), имеющих изоляцию и наружное охлаждение, что позволяет размещать их на открытой площадке. Перспективно использование цилиндро-конических танков, в которых совмещают главное брожение и дображивание пива.

 

ВНИИПБП разработал и внедрил на Москворецком пивоваренном заводе (в Москве) способ непрерывного брожения и дображивания пива в обычных танках, соединенных переточными трубами в батареи. По этому способу весь процесс сбраживания жигулевского пива проходит за 15 сут вместо обычных 28, а коэффициент использования производственной площади увеличивается более чем в 1,5 раза.

 

Ускоренный способ приготовления жигулевского пива, разработанный ВНИИПБПом, основан на сбраживании сусла в отсутствие кислорода, вследствие чего в пиве мало образуется альдегидов, поэтому созревание его происходит быстрее. Дображивание пива ведут при температуре 4°С и в изотермических условиях, когда температура пива в танках и в помещении одинаковая. Это исключает возникновение конвекционных токов в пиве, препятствующих оседанию взвесей, и оно быстрее осветляется.

 

Кислород растворяется главным образом в процессе охлаждения сусла, поэтому охлаждение и осветление сусла ведут в закрытых аппаратах (в сепараторах и пластинчатых теплообменниках). Кроме того, при подаче сусла в бродильный танк в суслопровод вдувают углекислый газ, в результате чего над поверхностью образуется пенный углекислый слой, исключающий соприкосновение сусла с воздухом. Количество семенных дрожжей увеличивают до 0,7—1 л на 1 гл сусла. Главное брожение проводят при температуре 7— 8°С. Для ускорения брожения сусло перемешивают продуванием через барботер углекислого газа 1 раз в смену в течение 5—10 мин. Главное брожение заканчивается через 5—5,5 сут. Молодое пиво охлаждают до 4—5°С и спускают в лагерный танк, при этом в ток пива также вдувают углекислый газ. Когда танк заполнится на 1/10 вместимости, подачу углекислоты прекращают. После заполнения танк немедленно шпунтуют и во время дображивания поддерживают давление 0,04—0,05 МПа. Дображивание и выдержку пива ведут 11 сут, затем его передают на осветление. Перед осветлением пиво охлаждают на пластинчатом теплообменнике до 0—1°С с тем, чтобы удержать СО2, содержащийся в пиве в пересыщенном состоянии, и не допустить вспенивания, связанного с большими потерями пива.

Светлый солод получают высушиванием проросшего ячменя в течение 16 ч при постепенном повышении температуры с 25—30 до 75—80°С. В зависимости от качества светлый солод делят на три класса: высокого качества, первый и второй. В готовом виде он имеет светлую окраску, сладковатый вкус, солодовый аромат, рыхлый мучнистый эндосперм и высокую осахаривающую способность. Используют его для большинства сортов пива.

 

Для получения темного солода проросшее зерно сушат 24—48 ч при более высокой температуре, достигающей 105°С в конце процесса. Темный солод на классы не подразделяют. Помимо коричнево-желтой окраски темный солод отличается от светлого хрупкостью эндосперма и меньшей осахаривающей способностью. Используют его для темных сортов пива.

 

Карамельный солод в зависимости от качества делят на два класса: первый и второй. По окраске он может быть от светло желтого до буроватого с глянцевым отливом. Для его производства используют сухой или зеленый солод с повышенным содержанием Сахаров, который обжаривают при температуре 120—170°С. Поскольку при такой высокой температуре происходит карамелизация Сахаров, а также процессы Майара, то вид зерна на срезе представляет собой спекшуюся коричневую массу. Для этого вида солода не допускается обугливание зерна.

 

Жженый солод— это темнокоричневые зерна, без черного цвета. Его готовят из зеленого солода путем предварительного увлажнения и последующего обжаривания при температуре 210—260°С. В результате формируются вкус и запах, напоминающий кофейный, без привкуса горелого и горечи. Вид зерна на разрезе представляет собой темнокоричневую, но не черную массу.

 

В процессе сушки и обжарки солода происходят интенсивные химические процессы с образованием специфических ароматических и красящих веществ. Накопившиеся в результате гидролиза пентозы преобразуются в фурфурол и другие альдегиды и ароматические вещества, обусловливающие запах солода (ржаной корочки). Окрашенные компоненты солода — это продукты разрушения Сахаров в результате карамелизации и меланоидинообразования, протекающие наиболее интенсивно при температурах выше 80°С. Меланоидины, обладающие поверхностно-активными свойствами, являются хорошими пенообразователями, и поэтому темные сорта пива дают более обильную пену.

еще рефераты
Еще работы по биологии