Лекция: M - кол-во бит, N - кол-во независимых кодированных знаний.

Представление целых чисел в двоичном коде:Целое число мы делим до тех пор пока у нас не останется 0 или 1 в конечном ответе, затем мы выписываем все наши остатки или отсутствие остатков в обратном порядке с конца к началу.

Система счисления -Целое число мы делим до тех пор пока у нас не останется 0 или 1 в конечном ответе, затем мы выписываем все наши остатки или отсутствие остатков в обратном порядке с конца к началу.

5) кодирование текста — это ASCII — это таблица в которой каждому символу присвоена своя ячейка с двоичным кодом, от 0 до 127 — это основная таблица, а свыше считается дополнительной или расширенной.

1 символу соответствует 1 байт или соответственно 8 разрядный двоичный код.

6) АЦП – аналоговый цифровой преобразователь. ЦАП – обратное устройство. Звук – волновое колебание в некоторой среде.

Во время оцифровки сигнал дискритизируется по времени и по уровню. Весь период разбивают на малые интервалы.

7) Видеопамять– часть оперативной памяти, для хранения данных, которая используется для формирования изображения на экране монитора. В видеопамяти находится двоичная информация об изображении, выводимом на экране.

Графика делится на 2 категории: растровую и векторную.

Растровая– однослойная сетка точек, пиксели, информация и цвет.

Векторная – геометрический объект. В качестве объекта являются геометрические фигуры (точка, прямоугольник, окружность и т.д.)

Цветовая модель – способ разделения цвета на составляющие компоненты, 2 модели: RGB и СМУК (Red, Green, Blue)

СМУК – отраженный цвет, для подготовки печатных документов.

8) Триггер (триггерная система) — класс электронных устройств, обладающих способностью длительно находиться в одном из двух устойчивых состояний и чередовать их под воздействием внешних сигналов. Каждое состояние триггера легко распознаётся по значению выходного напряжения. По характеру действия триггеры относятся к импульсным устройствам — их активные элементы (транзисторы, лампы) работают в ключевом режиме, а смена состояний длится очень короткое время.
Отличительной особенностью триггера как функционального устройства является свойство запоминания двоичной информации. Под памятью триггера подразумевают способность оставаться в одном из двух состояний и после прекращения действия переключающего сигнала. Приняв одно из состояний за «1», а другое за «0», можно считать, что триггер хранит (помнит) один разряд числа, записанного в двоичном коде.

Регистр (цифровая техника) — последовательное или параллельное логическое устройство, используемое для хранения n-разрядных двоичных чисел и выполнения преобразований над ними.

9) Архитектура– описание на некотором общем уровне, функционального взаимодействия основных узлов и блоков компьютера.

Основным отличием вычислительной машины от таких счетных устройств, как счеты, арифмометр, калькулятор, заключается в том, что вся последовательность команд на вычисление предварительно записывается в память вычислительной машины и выполняется последовательно автоматически.

Джон фон Нейман сформировал принципы работы и компоненты современного ПК 1945 г, 5 компонентов ЭВМ: 1) Арифметическо-логическое устройство (АЛУ)

2) Устройство управления (УУ)

3) Память

4) Устройств ввода информации

5) Устройство вывода информации

Архитектура Неймана:

10) Архитектуры с фиксированным набором устройств

Компьютерами с сосредоточенной обработкой называются такие вычислительные системы, у которых одно или несколько обрабатывающих устройств (процессоров) расположены компактно и используют для обмена информацией внутренние шины передачи данных. Компьютеры 1-го и 2-го поколения имели архитектуру закрытого типа с ограниченным набором внешнего оборудования. Компьютер, выполненный по этой архитектуре, не имел возможности подключения дополнительных устройств, не предусмотренных разработчиком.

Укрупненная схема такой компьютерной архитектуры приведена на рис. 1. Оперативная память хранит команды и данные исполняемых программ. АЛУ обеспечивает не только числовую обработку, но и участвует в процессе ввода-вывода информации, осуществляя ее занесение в оперативную память. Канал ввода / вывода представляет собой специализированное устройство, работающее по командам, подаваемым устройством управления. Канал допускает подключение определенного числа внешних устройств. Устройство управления обеспечивает выполнение команд программы и управляет всеми узлами системы.

Компьютеры такой архитектуры эффективны при решении чисто вычислительных задач. Они плохо приспособлены для реализации компьютерных технологий, требующих подключения дополнительных внешних устройств и высокой скорости обмена с ними информацией.

11) Понятие «система» носит двоякий характер. С одной стороны, по общему определению, система — это совокупность взаимодействующих элементов (компонентов), аппаратных и/или программных. С другой стороны, система может выступать в качестве компонента другой, более сложной системы, которая в свою очередь может быть компонентом системы следующего уровня.

В связи с этим нужно уточнить представление об архитектуре систем и средств, как внешнем их описании (reference model) с точки зрения того, кто ими пользуется. Архитектура открытой системы, таким образом, оказывается иерархическим описанием ее внешнего облика и каждого компонента с точки зрения: пользователя (пользовательский интерфейс),
проектировщика системы (среда проектирования),
прикладного программиста (системы и инструментальные средства /среды программирования),
системного программиста (архитектура ЭВМ),
разработчика аппаратуры (интерфейсы оборудования).
Предлагаемый взгляд на архитектуру открытых систем вытекает из указанной выше необходимости комплексной реализации общих свойств открытости и является расширением принятого понятия об архитектуре ЭВМ по Г.Майерсу.
Для примера рассмотрим архитектурное представление системы обработки данных, состоящей из компонентов четырех областей: пользовательского интерфейса (соответственно точкам зрения всех указанных выше групп), средств обработки данных, средств представления и хранения данных, средств коммуникаций. Для этого представления требуется использовать три уровня описаний: среды, которая представляется системой, операционной среды (системы), на которую опираются прикладные компоненты, и оборудования. Каждый из этих уровней разделен для удобства на два подуровня.

Уровень среды для конечного пользователя (user environment) характеризуется входными и выходными описаниями (генераторы форм и отчетов), языками проектирования информационной модели предметной области (языки 4GL), функциями утилит и библиотечных программ и прикладным уровнем среды коммуникаций, когда требуются услуги дистанционного обмена информацией. На этом же уровне определена среда (инструментарий) прикладного программирования (appliсation environment): языки и системы программирования, командные языки (оболочки операционных систем), языки запросов СУБД, уровни сессий и представительный среды коммуникаций.

На уровне операционной системы представлены компоненты операционной среды, реализующие функции организации процесса обработки, доступа к среде хранения данных, оконного интерфейса, а также транспортного уровня среды коммуникаций. Нижний подуровень операционной системы — это ее ядро, файловая система, драйверы управления оборудованием, сетевой уровень среды коммуникаций.

На уровне оборудования легко видеть привычные разработчикам ЭВМ составляющие архитектуры аппаратных средств:

система команд процессора (процессоров),
организация памяти,
организация ввода-вывода и т.д.,
а также физическую реализацию в виде:
системных шин,
шин массовой памяти,
интерфейсов периферийных устройств,
уровня передачи данных,
физического уровня среды хранения.
Представленный взгляд на архитектуру открытой системы обработки данных относится к одно-машинным реализациям, включенным в сеть передачи данных для обмена информацией. Понятно, что он может быть легко обобщен и на многопроцессорные системы с разделением функций, а также на системы распределенной обработки данных. Поскольку здесь явно выделены компоненты, составляющие систему, можно рассматривать как интерфейсы взаимодействия этих компонентов на каждом из указанных уровней, так и интерфейсы взаимодействия между уровнями.
Описания и реализации этих интерфейсов могут быть предметом рассмотрения только в пределах данной системы. Тогда свойства ее открытости проявляются только на внешнем уровне. Однако значение идеологии открытых систем состоит в том, что она открывает методологические пути к унификации интерфейсов в пределах родственных по функциям групп компонентов для всего класса систем данного назначения или всего множества открытых систем.

Стандарты интерфейсов этих компонент (де-факто или принятые официально) определяют лицо массовых продуктов на рынке. Область распространения этих стандартов являются предметом согласования интересов разных групп участников процесса информатизации — пользователей, проектировщиков систем, поставщиков программных продуктов и поставщиков оборудования.

Выше был рассмотрен пример архитектуры открытых систем, реализующих технологию обработки данных. Можно было бы представить аналогичным образом открытые системы для всех классов информационных технологий: обработки текстов, изображений, речи, машинной графики. Особенно актуально проработать подходы открытых систем для мультимедиа-технологий, сочетающих несколько разных представлений информации. Как известно, за рубежом эти работы проводятся различными ассоциациями и консорциумами заинтересованных фирм и академических организаций и международными организациями по стандартизации. К сожалению, российские специалисты в этих работах до сих пор в лучшем случае играют роль наблюдателей.

12) Центральный процессор – интегральная схема микро устройств, электронная схема изготовленная на полупроводниковом принципе и помещенная в неразборный корпус. Процессор преобразует информацию, поступающую из памяти и внешних устройств.

Базовыми командами являются, как правило, следующие:

· арифметические, например «сложения» и «вычитания»;

· битовые, например «логическое и», «логическое или» и «логическое не»;

· присваивание данных, например «переместить», «загрузить», «выгрузить»;

· ввода-вывода, для обмена данными с внешними устройствами;

· управляющие инструкции, например «переход», «условный переход», «вызов подпрограммы», «возврат из подпрограммы».

13) Основные параметры процессоров: Тактовая частота, разрядность, размер при памяти.

Тактовая частота процессора — кол-во частоты с которой осуществляется выборка микрокоманд за 1 секунду.

14) Оперативное запоминающее устройство (ОЗУ) –хранит информацию, запоминающее устройство у современных компьютеров «многоярусно» и включает ОЗУ.

Память компьютера (Memory) — устройство для запоминания данных. В зависимости от характера использования различают внутреннюю или внешнюю память

Оперативная память (ОП)предназначена для временного хранения выполняемых программ и данных, обрабатываемых этими программами. Это энергозависимая память. Физически реализуется в модулях ОЗУ (оперативных запоминающих устройствах) различного типа. При выключении электропитания вся информация в оперативной памяти исчезает.

Объём хранящейся информации в ОЗУ составляет от 32 до 512 Мбайт и более. Занесение информации в память и её извлечение, производится по адресам. Каждый байт ОП имеет свой индивидуальный адрес (порядковый номер). Адрес – число, которое идентифицирует ячейки памяти (регистры). ОП состоит из большого количества ячеек, в каждой из которых хранится определенный объем информации. ОП непосредственно связана с процессором. Возможности ПК во многом зависят от объёма ОП.

Кеш память — очень быстрая память малого объема служит для увеличения производительности компьютера, согласования работы устройств различной скорости.

Специальная — постоянная, Fiash, видеопамять и тд.

Постоянное запоминающее устройство(ПЗУ)– энергонезависимая память для хранения программ управления работой и тестирования устройств ПК. Важнейшая микросхема ПЗУ – модуль BIOS (Basic Input/Output System – базовая система ввода/вывода), в котором хранятся программы автоматического тестирования устройств после включения компьютера и загрузки ОС в оперативную память. Это Неразрушимая память, которая не изменяется при выключении питания

Перепрограммируемая постоянная память(Flash Memory) – энергонезависимая память, допускающая многократную перезапись своего содержимого

CMOS RAM (Complementary Metal-Oxide Semiconductor) — память с невысоким быстродействием и минимальным энергопотреблением от батарейки. Используется для хранения информации о конфигурации и составе оборудования компьютера, о режимах его работы. Содержимое изменяется программой, находящейся в BIOS (Basic Input Output System).

Видеопамять– запоминающее устройство, расположенное на плате управления дисплеем и предназначенное для хранения текстовой и графической информации, отображаемой на экране. Содержимое этой памяти сразу доступно двум устройствам – процессору и дисплею, что позволяет изменять изображение на экране одновременно с обновлением видеоданных в памяти.

Характеристика оперативной памяти: Ёмкость. Внутренняя шина передачи информации характеризуется разрядностью (x64 и x86)

Компьютерная ши́на в архитектуре компьютера — подсистема, служащая для передачи данных между функциональными блоками компьютера. В устройстве шины можно различить механический, электрический (физический) и логический (управляющий) уровни.

15) Внешние запоминающие устройства (ВЗУ)предназначены для долговременного хранения информации и могут использоваться и как устройства ввода, и как устройства вывода. ВЗУ по сравнению с ОЗУ имеют гораздо больший объем памяти, но существенно меньшее быстродействие.

Накопитель состоит из двух частей:

Носитель –устройство, на котором хранится информация

Привод – устройство, предназначенное для считывания информации с носителя и записи информации на носитель.

В настоящее время существует 2 основных типа накопителей: Накопители на магнитной ленте– устройства последовательного доступа, т.к. обратиться к более удаленным частям
данных можно только после считывания менее удаленных данных (находящихся перед
ними)

Дисковые накопители – устройства произвольного доступа, т.к. интересующие данные могут быть получены без обязательного прочтения предшествующих данных. Бывают: накопители на жестком магнитном диске и на гибких магнитных дисках.

16) Перифери́йное устро́йство — аппаратура, которая позволяет вводить информацию в компьютер или выводить ее из него[1].

Периферийные устройства являются опциональными, и, технически, могут быть отключены от компьютера без потери его работоспособности. Однако, абсолютное большинство компьютеров используются вместе с теми или иными периферийными устройствами.

Выделяют три основных типа периферийных устройств:

· Устройства ввода, использующиеся для ввода информации в компьютер: мышь, клавиатура, сенсорный экран, сканер, веб-камера и видеозахват

· Устройства вывода, например мониторы, принтеры

· Устройства хранения, служащие для накопления информации, обрабатываемой компьютером: НЖМД, НГМД, ленточные и дисковые устройства, накопители «флеш»

17) Программное обеспечение (ПО) – совокупность программ, выполняющих вычисления системой. 3 категории: прикладные программы, системные программы, инструментальные программы.

ПО:базовое ПО, операционные ПО, служебные программы, утилиты, драйверы устройств.

18) Операционная система — это базовый комплекс компьютерных программ, который обеспечивает управление аппаратными средствами компьютера, организует работу с файлами (в том числе запуск и управление выполнением программ), а также реализует взаимодействие с пользователем.

Windows – семейство проприетарных операционных систем корпорации Майкрософт (Microsoft), базирующихся на основе графического интерфейса пользователя.

19) Утилиты предоставляют пользователю дополнительные услуги (не требующие разработки специальных программ) в основном по обслуживанию дисков и файловой системы.

Эти программы напрямую в вычислительном процессе не используются, а обеспечивают необходимый и разнообразный сервис при подготовке заданий пользователями.

Средства сжатия данных (архиваторы).Предназначены для создания архивов. Архивирование данных упрощает их хранение за счет того, что большие группы файлов и каталогов сводятся в один архивный файл. При этом повышается и эффективность ис­пользования носителя за счет того, что архивные файлы обычно имеют повышенную плотность записи информации.

Программа управления каждым устройством ввода-вывода, подключенным к компьютеру, называется драйверомустройства.

Драйвер устройства выполняет несколько функций:

1) обработку абстрактных запросов чтения и записи независи­мого от устройств и расположенного над ними программного обес­печения;

2) инициализацию устройства;

3) управление энергопотреблением устройства и регистрацией событий;

4) проверку входных параметров. Если они не удовлетворяют оп­ределенным критериям, драйвер возвращает ошибку. В противном случае драйвер преобразует абстрактные термины в конкретные. На­пример, дисковый драйвер может преобразовывать линейный номер блока в номера головки, дорожки и секторы;

5) проверку использования устройства в данный момент. Если ус­тройство занято, запрос может быть поставлен в очередь. Если уст­ройство свободно, проверяется его состояние. Возможно, требуется включить устройство или запустить двигатель, прежде чем начнется перенос данных. Как только устройство готово, может начинаться собственно управление устройством.

20) Файл (англ. file) — именованная область данных на носителе информации.

Файловые системы: По мере развития вычислительной техники файлов в системах становилось всё больше. Для удобства работы с ними, их, как и другие данные, стали организовывать в структуры (тогда же появились символьные имена). Вначале это был простой массив, «привязанный» к конкретному носителю информации. В настоящее время наибольшее распространение получила древовидная организация с возможностью монтирования и вставки дополнительных связей (то есть ссылок). Соответственно, имя файла приобрело характер пути к файлу: перечисление узлов дерева файловой системы, которые нужно пройти, чтобы до него добраться.

Имя файла: В большинстве файловых систем имя файла используется для указания, к какому именно файлу производится обращение. В различных файловых системах ограничения на имя файла сильно различаются: в FAT16 и FAT12 размер имени файла ограничен 8.3 знаками (8 на имя и 3 на расширение); в других системах имя файла ограничено обычно в 255 байт; в NTFS имя ограничено в некоторых ОС 255 символами Unicode (по спецификации — 32 768 символов).

Расширение: Расширение имени файла (часто расширение файла или расширение) как самостоятельный атрибут файла существует в файловых системах FAT16, FAT32, NTFS, используемых операционными системами MS-DOS, DR-DOS, PC DOS, MS Windows и используется для определения типа файла. Оно позволяет системе определить, каким приложением следует открывать данный файл. По умолчанию в операционной системе Windows расширение скрыто от пользователя.

В остальных файловых системах расширение — условность, часть имени, отделённая самой правой точкой в имени.

21) Логическая структура дисков: Форматирование дисков. Для того чтобы на диске можно было хранить информацию, диск должен быть отформатирован, то есть должна быть создана физическая и логическая структура диска.

Формирование физической структуры диска состоит в создании на диске концентрических дорожек, которые, в свою очередь, делятся на секторы. Для этого в процессе форматирования магнитная головка дисковода расставляет в определенных местах диска метки дорожек и секторов.

После форматирования гибкого диска 3,5" его параметры будут следующими (рис. 4.24):

  • информационная емкость сектора — 512 байтов;
  • количество секторов на дорожке — 18;
  • дорожек на одной стороне — 80;
  • сторон — 2.

Логическая структура гибких дисков. Логическая структура магнитного диска представляет собой совокупность секторов (емкостью 512 байтов), каждый из которых имеет свой порядковый номер (например, 100). Сектора нумеруются в линейной последовательности от первого сектора нулевой дорожки до последнего сектора последней дорожки.

На гибком диске минимальным адресуемым элементом является сектор.

Файлы на магнитные диски записываются и считываются при помощи специальных головок, которые расположены либо в основании диска(HDD), либо же в дисководе.
Эти головки двигаются вдоль центрических окружностей диска именуемые как дорожки или треки.
Количество дорожек, которые могут быть на магнитном диске различается в зависимости какого класса магнитный диск и магнитного покрытия самой пластины диска.

Дорожки могут быть разбиты на сектора.
В одном секторе может поместиться 128-256-512-1024 байт, но как основа взято 512 байт.

Все файлы, размещенные на дисках, расположены согласно структуры самих магнитных дисков. Ведь файловая система устроена так, что части файлов записаны на диск не целиком, а фрагментами (кластерами).
Кластер-это единица размещения файлов на диске, кластер состоит из одного или нескольких соединённых секторов дорожки.

Во время записи файла на диск сам магнитный диск вращается при определённой скорости вокруг своей оси, а контроллер головки, которая либо записывает, либо считывает информацию подводится к нужной для записи дорожке, которая выбрана для записи.

Площадь памяти записываемому файлу, выделяется кратным числом кластеров, при этом кластеры не обязательно должны быть из одной цепочки они могут находиться на больших расстояниях и не из одной цепочки кластеров, файлы которые находятся в разных цепочках кластеров называются фрагментироваными.

22) Прикладная программа или приложение — программа, предназначенная для выполнения определенных задач и рассчитанная на непосредственное взаимодействие с пользователем. В большинствеоперационных систем прикладные программы не могут обращаться к ресурсам компьютера напрямую, а взаимодействуют с оборудованием и прочим посредством операционной системы. Также на простом языке — вспомогательные программы.

К прикладному программному обеспечению (application software) относятся компьютерные программы, написанные для пользователей или самими пользователями, для задания компьютеру конкретной работы. Программы обработки заказов или создания списков рассылки — пример прикладного программного обеспечения. Программистов, которые пишут прикладное программное обеспечение, называют прикладными программистами.

еще рефераты
Еще работы по информатике