Лекция: http://www.relcom.ru/Internet/Literature/index.html 2 страница

Физическое размещение данных в базах сетевого типа может быть организовано практически теми же методами, что и в иерархических базах данных.

K числу важнейших операций манипулирования данными баз сетевого типа можно отнести следующие:

поиск записи в БД;

переход от предка к первому потомку;

переход от потомка к предку;

создание новой записи;

удаление текущей записи;

обновление текущей записи;

включение записи в связь;

исключение записи из связи;

изменение связей и т. д.

Достоинством сетевой модели данных является возможность эффективной реализации по показателям затрат памяти и оперативности. B сравнении с иерархической моделью сетевая модель предоставляет большие возможности в смысле допустимости образования произвольных связей.

Недостатком сетевой модели данных является высокая сложность и жесткость схемы БД, построенной на ее основе, а также сложность для понимания и выполнения обработки информации в БД обычным пользователем. Кроме того, в сетевой модели данных ослаблен контроль целостности связей вследствие допустимости установления произвольных связен между записями.

Системы на основе сетевой модели не получили широкого распространения на практике. Наиболее известными сетевыми СУБД являются следующие: IDMS, db_VistaIII, СЕТЬ, СЕТОР и КОМПАС.

Пример сетевой модели данных

 

121 Достоинства и недостатки объектно-ориентированной модели представления данных. Примеры

 

В объектно-ориентированной модели при представлении данных имеется возможность идентифицировать отдельные записи базы данных. Между записями и функциями их обработки устанавливаются взаимосвязи с помощью механизмов, подобных соответствующим средствам в объектно-ориентированных языках программирования.

Стандартизированная объектно-ориентированная модель описана в рекомендациях стандарта ODMG -93 ( Object Database Management Group – группа управления объектно-ориентированными базами данных).

Рассмотрим упрощенную модель объектно-ориентированной БД. Структура объектно-ориентированной БД графически представима в виде дерева, узлами которого являются объекты. Свойства объектов описываются некоторым стандартным типом или типом, конструируемым пользователем (определяется как class ). Значение свойства типа class есть объект, являющийся экземпляром соответствующего класса. Каждый объект-экземпляр класса считается потомком объекта, в котором он определен как свойство. Объект-экземпляр класса принадлежит своему классу и имеет одного родителя. Родовые отношения в БД образуют связн ую ие рархию объектов. Пример логической структуры объектно-ориентированной БД библиотечного дела приведен на рис. 2.9. Здесь объект типа Библиотека является родительским для объектов-экземпляров классов Абонент, Каталог и Выдача. Различные объекты типа Книг а могут иметь одного или разных родителей. Объекты типа Книга, имеющие одного и того же родителя, должны различаться, по крайней мере, инвентарным номером (уникален для каждого экземпляра книги), но имеют одинаковые значения свойств isb n, удк, названи е и автор .

Логическая структура объектно-ориентированной БД внешне похожа на структуру иерархической БД. Основное различие между ними состоит в методах манипулирования данными.

Для выполнения действий над данными в рассматриваемой модели БД применяются логические операции, усиленные объектно-ориентированными механизмами инкапсуляции, наследования и полиморфизма.

Инкапсуляция ограничивает область видимости имени свойства пределами того объекта, в котором оно определено. Так, если в объект типа Каталог добавить свойство, задающее телефон автора книги и имеющее название телефон, то мы получим одноименные свойства у объектов Абонент и Каталог. Смысл такого свойства будет определяться тем объектом, в который оно инкапсулировано.

Наследование, наоборот, распространяет область видимости свойства на всех потомков объекта. Так, всем объектам типа Книга, являющимся потомками объекта типа Каталог, можно приписать свойства объекта-родителя: isbn, удк, название и автор. Если необходимо расширить действие механизма наследования на объекты, не являющиеся непосредственными родственниками (например, между двумя потомками одного родителя), то в их общем предке определяется абстрактное свойство типа abs. Так, определение абстрактных свойств билет и номер в объекте Библиотека приводит к наследованию этих свой ств вс еми дочерними объектами Абонент, Книга и Выдач а. Не случайно, поэтому значения свойства билет классов Абонент и Выдача, показанных на рис. 2.9, являются одинаковыми – 00015.

Полиморфизм в объектно-ориентированных языках программирования означает способность одного и того же программного кода работать с разнотипными данными. Другими словами, он означает допустимость в объектах разных типов иметь методы (процедуры или функции) с одинаковыми именами. Во время выполнения объектной программы одни и те же методы оперируют с разными объектами в зависимости от типа аргумента. Применительно к рассматриваемому примеру полиморфизм означает, что объекты класса Книга, имеющие разных родителей из класса Каталог, могут иметь разный набор свойств. Следовательно, программы работы с объектами класса Книга могут содержать полиморфный код.

Поиск в объектно-ориентированной БД состоит в выяснении сходства между объектом, задаваемым пользователем, и объектами, хранящимися в БД.

 

 

97 Ресурсы вычислительной системы. Управление ресурсами

 

К ресурсам вычислительной системы относят такие средства вычислительной системы, которые могут быть выделены процессу обработки данных на определенный квант времени. Основными ресурсами ВС являются процессоры, области оперативной памяти, наборы данных, периферийные устройства, программы.

ВИДЫ ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМ

В зависимости от ряда признаков различают следующие вычислительные системы (ВС):

однопрограммные и многопрограммные (в зависимости от количества программ, одновременно находящихся в оперативной памяти);

индивидуального и коллективного пользования (в зависимости от числа пользователей, которые одновременно могут использовать ресурсы ВС);

с пакетной обработкой и разделением времени (в зависимости от организации и обработки заданий);

однопроцессорные, многопроцессорные и многомашинные (в зависимости от числа процессоров);

сосредоточенные, распределенные (вычислительные сети) и ВС с теледоступом (в зависимости от территориального расположения и взаимодействия технических средств);

работающие или не работающие в режиме реального времени (в зависимости от соотношения скоростей поступления задач в ВС и их решения);

универсальные, специализированные и проблемно-ориентированные (в зависимости от назначения).

 

РЕЖИМЫ РАБОТЫ ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМ

Мультипрограммирование
Мультипрограммирование — это режим обработки данных, при котором ресурсы вычислительной системы предоставляются каждому процессу из группы процессов обработки данных, находящихся в ВС, на интервалы времени, длительность и очередность предоставления которых определяется управляющей программой этой системы с целью обеспечения одновременной работы в интерактивном режиме.

 

Режим реального времени
Режим реального времени — режим обработки данных, при котором обеспечивается взаимодействие вычислительной системы с внешними по отношению к ней процессами в темпе, соизмеримом со скоростью протекания этих процессов.

Этот режим обработки данных широко используется в системах управления и информационно-поисковых системах.

 

Однопрограммный режим работы вычислительной системы (ВС)
Аппаратные средства ЭВМ совместно с программным обеспечением образуют ВС. В зависимости от класса ЭВМ и вида операционной системы ВС могут работать в режимах однопрограммном и мультипрограммном.

В однопрограммном режиме работы в памяти ЭВМ находится и выполняется только одна программа. Такой режим обычно характерен для микро-ЭВМ и персональных ЭВМ, то есть для ЭВМ индивидуального пользования.

 

Мультипрограммный (многопрограммном) режим работы вычислительной системы (ВС)
В мультипрограммном (многопрограммном) режиме работы в памяти ЭВМ находится несколько программ, которые выполняются частично или полностью между переходами процессора от одной задачи к другой в зависимости от ситуации, складывающейся в системе.

В мультипрограммном режиме более эффективно используются машинное время и оперативная память, так как при возникновении каких-либо ситуаций в выполняемой задаче, требующих перехода процессора в режим ожидания, процессор переключается на другую задачу и выполняет ее до тех пор, пока в ней не возникает подобная ситуация, и т.д.

При реализации мультипрограммного режима требуется определять очередность переключения задач и выбирать моменты переключения, чтобы эффективность использования машинного времени и памяти была максимальной.

Мультипрограммный режим обеспечивается аппаратными средствами ЭВМ и средствами операционной системы. Он характерен для сложных ЭВМ, где стоимость машинного времени значительно выше, чем у микро-ЭВМ. Разработаны также мультипрограммные ОС, позволяющие одновременно следить за решением нескольких задач и повышать эффективность работы пользователя.

Режим пакетной обработки

В зависимости от того, в каком порядке при мультипрограммном режиме выполняются программы пользователей, различают режимы пакетной обработки задач и коллективного доступа.

В режиме пакетной обработки задачи выстраиваются в одну или несколько очередей и последовательно выбираются для их выполнения.

Режим коллективного доступа

еще рефераты
Еще работы по информатике