Реферат: Теорема Дирихле

Содержание

Введение

1. Характеры

1.1 Определение характера. Основные свойства характеров

1.2 Суммы характеров. Соотношение ортогональности

1.3 Характеры Дирихле

2. L-функция Дирихле

3. Доказательство теоремы Дирихле

Введение

Простые числа расположены в натуральном ряде весьма неравномерно.

Целью данной работы является доказательство следующей теоремы о простых числах в арифметической прогрессии.

Теорема Дирихле. Если разность и первый член арифметической прогрессии есть взаимно простые натуральные числа, то она содержит бесконечное множество простых чисел.

Пусть

mn+ l, n=1,2, …,

прогрессия, удовлетворяющая условию теоремы.

Условие (m, l)=1, наложенные на числа m и e в формулировке теоремы, естественно, поскольку в случае, когда d=(m, l)>1, все члены прогрессии делятся на d и поэтому не являются простыми числами.

Сформулированная теория была впервые высказана Л. Эйлером в 1783 г. В 1798 г. А. Лежандр опубликовал доказательство для четных m, использовавшее, как выяснилось позднее, одну ошибочную лемму.

Полностью доказал теорему в 1837–1839 гг. Петер Густав Лежен-Дирихле (1805–1859), немецкий математик, автор трудов по аналитической теории чисел, теории функций, математической физике.

В 1837 г. вышли две работы Дирихле, посвященные теореме о простых числах в арифметической прогрессии. Они содержали формулировку теоремы в общем виде, однако доказательство приводилось только для случая, когда разность прогрессии есть простое число. В конце второй работы содержится построение характеров для произвольного модуля и некоторые утверждения о том, как можно доказать утверждение L(1,χ)¹0 для неглавных характеров x в одном случае. В 1839 г. Дилихле опубликовал полное доказательство теоремы о простых числах в арифметической прогрессии. С тех пор она носит его имя.

1. Характеры

1.1 Определение характера. Основные свойства характеров

/>/>Характером(от греческого хараæτήp-признак, особенность) χконечной абелевой группы Gназывается не равная тождественно нулю комплекснозначная функция, определенная на этой группе и обладающая тем свойством, что если, АÎGи BÎG

χ(АВ)= χ(А) χ(В).

Обозначим через Е единичные элементы в группе Gи через А-1обратный элемент для АÎG

Характеры группы Gобладают следующими свойствами:

1. Если Е-единица группы, то для каждого характера χ

χ(Е)=1 (1.1)

Доказательство. Пусть для каждого элемента АÎGсправедливо неравенство

c1(А)=c(АЕ)= c(А) χ(Е)

Из этого равенства получим, что c(Е)¹0. Теперь из равенства

c(Е)= c(ЕЕ)= c(Е) c(Е)=1

следует равенство (1.1)

2. c(А) ¹0 для каждого АÎG

Действительно, если бы χ(А) =0 для некоторого АÎG, то

c(А) χ(А-1)= c(АА-1)= χ(Е)=0,

а это противоречит свойству 1.

--PAGE_BREAK--

3. Если группа Gимеет порядок h, то Аh=Е для каждого элемента АÎGСледовательно,

1= χ(Е)= χ(Аh)= χ(А)h,

то есть χ(А) есть некоторый корень степени hиз единицы.

Характер χ1,обладающий свойством χ1(А)=1 для каждого элемента АÎG, называется главным характеромгруппы G. Остальные характеры называются неглавными.

Лемма 1.Пусть Нподгруппа конечной абелевой группы G, причем G/H– циклическая порядка n, тогда для каждого характера χH– подгруппы Нсуществует ровно nхарактеров.

Доказательство. Рассмотрим группу G=/>gkH, причем gnH=H, gnÎHи gn=h1=1.

Для каждого элемента XÎGсуществует и притом единственное к=кхи hх=hтакое, что если 0£кх <n, то X= gkх hх=gkh. Возьмем еще один элемент группы G, Y= gmhy, где 0£m<n. Перемножим эти два элемента

ХY= gк+mhhy.

Определим характер χ(X).

χ(X)= χ(gк h)= χ(gк) χ(n)= χк (g) χH(h).

В данном выражении неизвестным является χ(g).

χn(g)= χ(gn)= χ(h1)= χH(h1) – данное число.

/>χ(g)= – nкорней из 1,

то есть ξјn=χn(g)= χH(h1), получаем xk(g)= ξјn. Следовательно, x(g)= ξ1, …, ξn

    продолжение
--PAGE_BREAK--

Из полученных равенств получаем:

χ(X)= χk(g) χH(hx)= ξjkxχH(hx)

χ(Y)= χm(g) χH(hy)= ξjkyχH(hy)

Определим умножение характеров

χ(X) χ(Y)= ξjkyχH(hy) ξjk-xχH(hx)= ξjkx+kyχH(hx) χH(hy)= jk+mχH(hhy)

Для того чтобы определение выполнялось, необходимо рассмотреть степень gkx+kx. Возможны два случая:

1) Если 0£кх + ky<n, то

кх + ky= kxy,; hxhy= hxy.

В этом случае определение выполняется.

2) Если n£кх + ky<2n-1, то получим

кх + ky= n+ kxy..

Тогда

XY= gkx+kyhxhy=ghgkx+ky-nhxhy=gkx+ky-nh1hxhy

    продолжение
--PAGE_BREAK--

В свою очередь 0£кх + ky– n£n-1 Þkx+ky– n=kxy, h1hxhy= hxy.

χ(XY) = ξjkх+kу χн(hxу)= ξjkх + kу – nχн (h1) χн(hx) χн(hy) = ξjкхξjкуξj– nχн (h1) χн(hx) χн(hy) = ξjкх χн (h1х) · ξjку χн(hy) = χ(X) χ(Y).

Лемма доказана.

5. Характеры конечной мультипликативной абелевой группы Gобразуют конечную мультипликативную абелевую группу Ĝ.

Под произведением двух характеров χ' и х χ'' группы Gбудем понимать характер х, определяемый следующим свойством:

χ(AB) = χ' (A) χ'' (В)

Для любого элемента АÎG, имеем:

χ(АВ) = χ' (АВ) χ'' (АВ) = χ' (А) χ' (В) · χ'' (А) χ'' (В) = χ(А) χ(В)

Таким образом, получаем χ' χ'' действительно является характером.

Роль единичного элемента группы Gиграет главный характер χ1

Обратным элементом Gявляется:

/>χ2(g1g2) = />=/>/>= />= χ2(g1) χ2(g1)

    продолжение
--PAGE_BREAK--

1.2 Суммы характеров. Соотношение ортогональности

Пусть G – конечная мультипликативная абелева группа порядка h. Рассмотрим сумму:

S = />,

где А пробегает все элементы G, и сумму

Т = />

где c пробегает все элементы группы характеров Ĝ.

Рассмотрим чему равна каждая из сумм.

а) Если В-фиксированный элемент группы G и А пробегает все элементы G, то АВ также пробегает все элементы группы G. Следовательно,

S·c (В) = />c (В) = /> = /> = S.

Получили Sc (В) = S, откуда следует, что (c (В) – 1)·S = 0. Следовательно, возможны два варианта:

1) S = 0, то c (В) – негативный характер

2) S≠0, то c (В) = 1 для каждого элемента В€G и в этом случае c (В)= c1(В) есть главный характер и сумма S равна порядку h группы G. Таким образом,

S = /> = {/>(1.2)

б) Если мы умножим сумму Т на некоторый характер c’ группы Ĝ, то аналогичным образом получим

c’ (А) Т = />c’ (А) = /> = Т,

Следовательно,

1) или Т = 0, то А ≠Е

2) или Т ≠ 0, то c’ (А) = 1 для каждого характера c’€ G. В этом случае согласно свойству 3§ 1, имеем А=Е. И тогда Т=h. Таким образом,

Т = />= {/>

1.3 Характеры Дирихле

Пусть m – положительное целое число. Определим числовые характеры по модулю m. Мы знаем, что j(m) приведенных классов вычетов по модулю m образуют мультипликативную абелеву группу порядка h=j(m). Мы можем, следовательно, рассмотреть характер этой группы. Но определение характера для приведенных классов вычета по модулю m можно перенести на множество целых чисел следующим образом. Положим

c(а)= c(А), если аÎА,

где А – приведенный класс вычетов по модулю m. Тогда очевидно, c(а)= c(b) (mod m), и c(ab)= c(а) c(b), если (а, m)=(b, m)=1. Поскольку c(А)¹0 для каждого приведенного класса вычетов А, то c(а)¹0, если (a, m)=1.

Это определение применимо только к целым числам а, которые взаимно просты с m.

Мы можем рассмотреть его на все целые числа, положив

c(а)=0, если (a, m)>1.

Следовательно, характер по модулю m есть арифметическая функция c, обладающая следующими свойствами:

c(а)= c(b), если с=b (mod m)

c(ab)= c(a) c(b) для всех целых a и b

c(а)=0, если (a, m)>1

c(а)¹0, если (a, m)=1

Имеется точно j(m) – количество характеров по модулю m, где j(m) – количество положительных целых чисел, не превосходящих m и взаимно простых с m. Они образуют мультипликативную абелеву группу приведенных классов вычета по mod m. Единичным элементом этой группы будет главный характер c1, то есть такой характер, что c1(а)=1, если (а, m)=1. Далее имеем следующее соотношение ортогональности:

/>= {/>

/>= {/>

Пусть m – положительное целое число. Определим числовые характеры по модулю m. Комплекснозначная функция, определенная для всех целых чисел n, называется числовым характером или характером Дирихле по модулю m, она удовлетворяет следующим условиям:

а) c (n) = 0 тогда и только тогда, когда (n, m) ≠ 1

б) c (n) периодична с периодом m

в) для любых чисел а и b

c (аb) = c (а) c (b)

Функция

c1(n) = {/>

является числовым характером и называется главным характером. Остальные числовые характеры по модулю m называются неглавными.

Имеет место следующее утверждение о числовых характерах.

Теорема 1 Существует равно φ(m) числовых характеров по модулю m. Если c = c (n) – числовой характер по модулю m, то:

1) для n, взаимно простых с модулем m, значения c (n) есть корень из 1 степени φ(m).

2) для всех n выполняется неравенство /c (n)/ ≤1

    продолжение
--PAGE_BREAK--

3) Имеет место равенство

/>{/>

4) Для каждого целого числа n

/>= {/>

Доказательство. Пусть c (n) – некоторый числовой характер по модулю m. Из пункта б) определения следует, что c (n) задает некоторую функцию c’(/>) = c (n) на мультипликативной группе />классов вычетов по модулю m, взаимно простых с m, а именно

c’(/>) = c (n)

Здесь />обозначает класс вычетов по модулю m, содержащий n. Так как c(1) ≠ 0, то c’(/>) не равняется тождественно нулю, а из пункта в) определения числового характера следует, что c’(/>/>) = c’(/>) = c’ (ab) = c (a) c (b) = c’(/>)c’(/>).

Таким образом, c’(/>) есть характер модультипликативной группы Gm.

Обратно, по каждому характеру c’(/>) группы Gm можно построить числовой характер c (n) по модулю m, положив

/>{/>

Установленное соответствие является взаимнооднозначным. И все утверждения теоремы 1 следуют из доказанного выше для групповых характеров применительно к группе Gm, если учесть, что порядок группы Gm равен φ(m), где φ(m) – функция Эйлера.

В дальнейшем требуется еще одно утверждение с числовых характерах. Обозначим для каждого c, c ≥ 1

/>

Где суммирование ведется по всем натуральным числам n, не превосходящим c.

Лемма 2. Пусть c (n) – неглавный характер. Тогда для каждого c, c ≥ 1 справедливо неравенство

/S(x)/<m

Доказательство. Функция c (n) периодична с периодом m и по теореме з

/>0, так как c≠ c1

Поэтому, представив [c] – целую часть числа c – в виде [c]=m1+z, 0£z£m, будет иметь

S(c) =S([c])=q/>/>

В виду равенства /c(n)/£1 отсюда получили S(c)£z£m

2. L-функция Дирихле

Пусть х(п) – произвольный характер по модулю m. Рассмотрим ряд

/>, (2.1)

члены которого являются функциями комплексного переменного S. В области сходимости он определяет функцию, которая называется L-функцией Дирихле, соответствующей характеру c(n), и обозначается L (s, c).

Лемма 3

1. Если c¹c1, то ряд (1) сходится в области ReS > 0 и определяемая им функция L (s, c) является аналитической в этой области.

2. Ряд, определяющий L (S, c1), сходится в области ReS >1. Функция L (S, c1) является аналитической в области ReS > 1.

Доказательство.

Пусть c(n) – произвольный характер по модулю m, а б – некоторое положительное число. Так как /c(n)/ £ 1, то в области ReS > 1 + б справедливо неравенство

/>

Следовательно, ряд (1) равномерно сходится в области ReS > 1 + б. Определяемая им функция L (S, c) по теореме Вейерштрасса о сумме равномерно сходящегося ряда аналитических функций является аналитической в этой области. Ввиду произвольности 6 это доказывает второе утверждение Леммы.

Для неглавных характеров c(n) потребуется более сложное исследование ряда (1).

Лемма 4 (преобразование Абеля).

Пусть an, n=1,2,…, – последовательность комплексных чисел, c>1,

А(c)=/>

а q(t) – комплекснозначная функция, непрерывно дифференцируемая на множестве 1£t£¥

Тогда

/>(2.2)

Если же

/>

то

/>(2.3)

при условии, что ряд в левой части равенства сходится.

Доказательство. Положим А(0)=0 и В(х) равным левой части равенства (2.2). Тогда при любом натуральном N

    продолжение
--PAGE_BREAK--

/>

так как А(0)=0. Далее

/>

поскольку функция А(х) постоянна на каждом полуинтервале n£t<n+1. Следовательно, равенство (2.2) доказано при целых значениях х.

пусть х³1 – произвольное число. Положим N=[x]; значит, N£x£N+1. Тогда А(х)=А(N), B(x)=B(N), а

/>

Следовательно,

/>

Тем самым доказано, что равенство (2.2) верно и для нецелых чисел значений х.

Равенство (2.3) получаем из равенства (2.2) переходом к пределу при х®¥. Лемма доказана.

Воспользовавшись леммой 4, получим следующее равенство

/>(2.4)

где

/>

функция, введенная Лемме 4.

Для s = p+itиз области ReS= s, где s– некоторое положительное число, пользуясь леммой 4, находим

/>

Поэтому интеграл

/>

сходится в области ReS> s. Поскольку в этой области выполняется неравенство

/>

то из равенства (2) следует, что ряд (1), определяющий функцию L (S, x), сходится в области ReS> s. Эти рассуждения справедливы для любого положительного числа s. Значит, ряд (1) сходится в полуплоскости ReS> 0.

Из равенства (2) следует, что в этой полуплоскости для L-функции, соответствующей неглавному характеру c(n), справедливо представление

/>

/>(2.5)

так как

/>

Интеграл, стоящий в правой части равенства (2.5), можно также представить в виде

/>(2.6)

Члены ряда (2.6) являются аналитическими функциями в области ReS>s, что следует из равенств

/>

При этом использовано, что на полуинтервале n£х< n+1 функция S(х) принимает значение S(n). Поскольку

/>

то ряд (2.6) равномерно сходится в области ReS>s. Отсюда, как и выше, получаем, что сумма его, т.е.

/>

является аналитической функцией (по теореме Вейерштраса) в области ReS>s.

Из представления (2.5) следует теперь, что L (S, x) есть аналитическая функция в полуплоскости ReS>s, а ввиду произвольности S – sи bполуплоскости ReS> 0.

Следствие. Пусть c(n) – произвольный характер. Тогда в области ReS> 1 справедливо равенство

/>(2.7)

Это следует из того, что ряд (2.1) по доказанному равномерию сходится в области ReS>1+s, где s>0. Следовательно, по теореме Вейштрасса о равномерно сходящихся рядах аналитических функций в этой области ряд (2.1) можно почленно дифференцировать

/>

Поэтому в полуплоскости ReS>1+sвыполняется равенство (2.7). Так как в этом рассуждении s-любое положительное число, то равенство (2.7) будет справедливо в полуплоскости ReS>1.

Для L-функций имеет место представление в виде бесконечного произведения по простым числам, аналогичное тождеству Эйлера. Рассмотрим вспомогательную Лемму.

Лемма 5. Пусть функция f(n) вполне мультипликативна и ряд

/>(2.8)

абсолютно сходится. Тогда выполняется равенство

/>(2.9)

Доказательство. Отметим прежде всего, что /f(n)/<1 при любом натуральном n>1. В противном случае при каждом mÎN

    продолжение
--PAGE_BREAK--

/f(n)m/=/f(n)/m³1,

что противоречит сходимости ряда (2.6). Поэтому при каждом простом р ряд

/>

абсолютно сходится, и его сумма как сумма бесконечно убивающей геометрической прогрессии равна (1-f(р))-1.Кроме этого, в силу абсолютной сходимости, ряды можно перемножить. Перемножая конечное число таких рядов и используя то, что f(n) есть вполне мультипликативная функция, получим

/>

где ne= pa… pasи в сумме в правой части равенства содержатся такие и только такие слагаемые f(ne), что все просты делители neне превосходят х. Следовательно, в разности

/>

остаются те и только те слагаемые f(me), для которых у числа meимеется хотя бы один простой делитель р>x. Тогда оценим разность

/S-S(x)/£/>

и из абсолютной сходимости ряда (2.8) следует, что

/>

Это доказывает, что бесконечное произведение (2.7) сходится и выполняется утверждение Леммы.

Лемма 6. Для каждого характера c(n) в области ReS> 1 справедливо представление

/>

Доказательство. Эта лемма является следствием Леммы 5, поскольку функция c(n) вполне мультипликативна, то есть c(АВ)= c(А) c(В), и выполняется неравенство /c(n)/£1 по теореме 1.

Следствие 1. В области ReS> 1 для главного характера c1(n) по модулю mсправедливо равенство

/>(2.10)

и поэтому функция L (S, c1) может быть аналитически продолжена в область ReS> 0, где она имеет единственный полюс (первого порядка) в точке S=1.

Действительно, по определению главного характера c1(n) имеет место равенство

/>

Поэтому

/>

Пользуясь теперь тождеством Эйлера для дзета-функции Римана получаем равенство (2.10). Остальные утверждения легко следуют из этого равенства, поскольку дзета-функция является аналитической в области ReS> 0 с единственным полюсом первого порядка в точке S= 1.

Следствие 2. Для каждого характера cфункция L (S, x) не обращается в нуль в области ReS> 1.

Доказательство.

Если s= ReS> 1. то

/>

Пользуясь неравенством для дзета-функции Римана, находим

/>

Получаем:

L(S,c) ≥/>/>> 0

Теперь докажем утверждения, что L– функция, соответствующая неглавному характеру c, точке S=1 отлична от нуля.

Теорема 2. Если c– неглавный характер, то L(1, c)≠0

Для доказательства рассмотрим 2 случая

1. Пусть характер c– комплексное число, не является действительным. Тогда характер c2(n) не является главным. В этом случае доказательство теоремы будет основываться на тех же идеях, что и доказательство отсутствия нулей дзета – функции на прямой ReS=1.

    продолжение
--PAGE_BREAK--

Лемма7. Пусть 0<ч<1, а х – действительное число, тогда выполняется неравенство /(1 –ч)3(1 –чеix)4(1 –че2ix)/-1≥ 1

Доказательство.

Для всех zиз круга /z/<1 имеет место расположение

ln(1 – z) =/>(2.11)

Так как ln(t) = Relnt, то обозначая М (чφ), левую часть неравенства (2.11), получим

lnM(чφ) = 3ln(1 –ч) – 4 ln(1 –чеi4) – ln(1 –че2i4) = – 3ln(1-ч) – 4Reln/1 –чеi4/ – Reln/1 –че2i4/=/>rc(3+4e)inl/1-rei4/=/>(3+4cosnl+2cos2nl)= />(2+4cosa+1+cos2a)=/>1 (1+cosa)2³

ln=M(r, l)=³

Следовательно, M(r, l)=³1 доказана.

Из леммы 7 следует, сто при любом действительном S>1 выполняется равенство:

|L3(8,c1) L4(S,c) 4 (S,c4) 1 = П(1- />)3(1- />)4(1- />)|-1(2.12)

Получая в лемме ч= р-s, т.е.

0<ч= c1(р)<1

0<р-s<1

c(р) р-s= чеi4, в силу того что c(р)– комплексное

c(р) р-s= че2i4

Получаем, что каждый сомножитель в правой части равенства (f) не меньше 1 и, следовательно, при любом S>1 выполняется равенство:

|L3(Sc1) · L4(Sc) L(Sc2)| ≥ 1 (2.13)

    продолжение
--PAGE_BREAK--

Допустим, что для некоторого характера c(c2≠c1) выполняется равенство

L(1, c) = 0 (2.14)

Оценим сверху левую часть неравенства. Из оценки дзета-функции Римана

ξ(S) ≤ />, следует, что при S€ R, S>1 выполняется неравенство

а) 0 < 4 (S, c1) = />

получили 0<L(S, c1)≤/>

б) Функция L(S, c) разложим в ряд Тейлора

L (S, c) = Cp+ C1(S – 1) + C2(S – 1)2+… + Cn(S – 1)n+…

Предположим, что у нее есть нуль L(1, c) = 1; тогда С0 = 0

Перепишем разложение L– функции в ряд

L(Sc) = Cк(S – 1)к+ Ск+1(S – 1)к+1= (S – 1)1(Cк+ Ск+1(S -1)+….), гдек≥1, Ск≤ 0, т. к. S>1

| L (S, c)| = |S – 1|k| Ck + Ck+1(S – 1) +….| ≤ 2 Ck|S – 1)k, при|S – | < r

Функция L(S, c2) в точке S= 1 не имеет полюса, следовательно не имеет особенности. Это в силу того, что cкомплексное и c2≠c1

Получаем неравенство:

L(S, c2) ≤ C,

При условии | S– 1|< δ

Учитывая все неравенства и оценки

| L3(S, c) L4(S, c) L (S, c2)| = (/>)3· 24|Ck|4(S – 1)4k· C≥1

Следовательно, это неравенство становится противоречивым, если перейти к пределу при S→1+0. Полученное противоречие показывает, что равенство (2.14) не выполняется.

2. Рассмотрим c– вещественный характер, т.е. принимающий только вещественные значения, несовпадающий с главным характером

Лемма 8. Пусть c– вещественный характер.

Рассмотрим функцию

F(S) = ξ(S) L(S, x) (2.15)

Докажем, что если ReS>1, то

    продолжение
--PAGE_BREAK--

/>(2.16)

представляется рядом Дирихле, которого справедливы следующие утверждения:

1) Все коэффициенты аn≥ 0

2) при n=k2, k€ / N(N)/ аn≥1

3) В области ReS<1 можно почленно дифференцировать, то есть

F(k)(S)= />(-1)k(lnn)k/>k=1,2…; (2.17)

4) Ряд (1) в точке S=1/2 расходится.

Доказательство. В области ReS> 1 ряды, определяющие функции S(S) и L(S,c), абсолютно сходятся, поэтому их можно перемножить:

где

/>(2.19)

Пусть />— расположение числа nв произведение простых сомножителей. Тогда все натуральные делители lчисла nимеют вид

/>/>

поэтому из равенства (14) находим, что

/>

гдеani = 1+ c(pi)+ … +cLi (pi), i=1,…, m (2.21)

так как c– вещественный характер, то он может принимать только три значения: 0, 1, -1. Из равенства (2.21) следует, что

/>(2.22)

Во всех случаях числа ani³0, а значит, и an=an1 … anm³

Если же число п является полным квадратом, то

N=k2=p/2g… pm2g,

и из равенств (2.20) и (2.22) следует, что аn³1

При любом s> 0 в области ReS> 1 +sвыполняется неравенство

/>

Ряд (2.18) сходится в области ReS> 1. Поэтому по признаку Вейерштрасса ряд (2.16) сходится равномерно в области ReS> 1 + s, а по теореме Вейерштрасса его можно в этой области почленно дифференцировать любое число раз. Следовательно, в области ReS> 1 +sвыполняется равенство (2. 17), а в силу произвольности sоно выполняется и в области ReS> 1.

Однако ряд (39) расходится, так как по второму утверждению леммы

Ряд (2.16) при S= />имеет неотрицательные члены. Поэтому, если бы он сходился, то также сходился бы ряд

/>(2.23)

Следовательно, ряд (2.23) расходится. Лемма доказана.

Переходим непоредственно к доказательству второго случая теоремы. Допустим, что L (1,c) = 0. Тогда полюс дзета-функции будет компенсироваться в произведении S(S) L (S, c) нулем функции L (S, c).

Поэтому функция (2.15) F(S) будет аналитической в области ReS> 0 так как в точке S=1 у F(z) – устраненная особая точка. Следовательно, ее можно разложить в ряд Тейлора в точке S= 2:

    продолжение
--PAGE_BREAK--

/>(2. 24)

радиус сходимости которого не меньше 2 R³2/

Из равенств (2.17), в частности S=2, находим

/>(2.25)

В радиусе сходимости будет брать не все S, а только вещественные ReS=sS=sÎ(0,2). Пользуясь разложениями (18) и (19), находим

/>

Члены двойного ряда неотрицательны, поэтому он сходится абсолютно, и в нем можно поменять порядок суммирования. Тогда

/>

Следовательно, ряд (2.16) сходится во всех точках, s< (, 0, 2), и в точке />, а это противоречит четвертому утверждению леммы. Поэтому L(S,c)¹0/

Этим завершается доказательство теоремы

По следствию 2 леммы 2 функция />является аналитической в области ReS> 1. Для дальнейшего доказательства теоремы Дирихле нам будет необходимо представление этой функции в виде ряда, аналогичного ряда (2.16).

Лемма. Для каждого характера c(n) в области ReS> 1 справедливо равенство

/>(2.26)

/>

Доказательство.

Так как S=s+itимеет место неравенство

/>

получаем, что ряд стоящий в правой части равенства (2.26), абсолютно сходится в области s>1. Умножим этот ряд на ряд определяющий L (S, c). Получили

/>

Предпоследнее равенство имеет место ввиду равенства />), а последнее – по следствию из леммы 3, равенство 2.7.

3. Доказательство теоремы Дирихле

Теорема. Если разность и первый член арифметической прогрессии есть взаимно простые натуральные числа, то она содержит бесконечное множество простых чисел.

Доказательство.

Рассмотрим равенство (2.26), которое справедливое по Лемме в области ReS> 1. Поскольку />(n) = 0 для всех n, не являющихся степенями простых чисел, то все отличные от нуля члены ряда в правой части (2.26) имеют вид

/>

где р – простое и k– натуральное числа. Ряд (2.26) абсолютно сходится, следовательно, его можно представить в виде двойного ряда) и, значит, в области ReS> 1

/>(3.1)

Второе слагаемое в правой части этого равенства равномерно ограничено по sв области ReS³3/4. Действительно, если S=p+it, p³3/4, то

/>

Следовательно, при S®1+0 для каждого характера cимеет место равенство

/>(3.2)

Здесь и в дальнейшем s ®1 + oобозначает, что Sстремится к 1 по действительной оси справа.

Пусть u– некоторое натуральное число, удовлетворяющее сравнению

/>(3.3)

Умножим обе части равенства (3.2) на c(u) и просуммируем получившиеся равенства по всем числовым характерам c. Тогда получим

/>(3.3)

Если простое число р удовлетворяет сравнению р ºl(mod m), то pu≠ 1 (mod m), и по теореме 1

/>

Если же p≠l(modm), то pu≠ 1 и по той же теореме

/>

Таким образом, равенство (3.3) можно переписать в виде

/>(3.4)

По лемме 3 и теореме 2 для неглавного характера cфункция />является аналитической в точке S= 1. Поэтому для таких характеров при S®1 + 0 имеем

/>(3.5)

По следствию 1 леммы 4 функция L(S, c1) имеет в точке S=1 полюс первого порядка. Значит, при S®1+0

/>(3/6)

Учитывая равенства (3.5) и (3.6.) из равенства (26) получаем, что

/>

Так как число uудовлетворяет сравнению (3.3), то (u, m) = 1 и c(u)=1. Итак, при S®1+0

/>(3.7)

Правая часть равенства а (3.7) при S®1+0 имеет бесконечный предел. Значит, сумма, стоящая в левой части этого равенства, имеет бесконечное множество слагаемых. Поэтому существует бесконечное множество простых чисел, удовлетворяющих сравнению

pºe(modm)

Теорема Дирихле доказана.


еще рефераты
Еще работы по математике