Реферат: Роль умственного приема классификации в формировании математических понятий у младших школьников

--PAGE_BREAK--
    продолжение
--PAGE_BREAK--Методика «Формирование понятий»
Методика представляет набор плоскостных фигур – квадратов, треугольников, кругов – трех разных цветов (красный, синий, желтый) и трех различных размеров (рис.3). Признаки этих фигур: форма, цвет и величина — вместе образуют трехбуквенные искусственные понятия, не имеющие смысла на родном языке. В данном эксперименте использованы следующие искусственные понятия:
Понятия с одним признаком:
Биг – круглый, каб – большой, сур – красный, цен – треугольный, бос – квадратный, див – средний, лаг – зеленый, гур – маленький.
Понятия с двумя признаками: Дис – красный и большой, буд – зеленый и большой, вар – желтый и маленький, роз желтый и большой, веч – зеленый и маленький, кир – красный и средний по размеру, зум – желтый и средний по размеру, куд – зеленый и средний по размеру, сим – красный и маленький.
Понятия с тремя признаками:
Мук – красный, треугольный маленький, чар – красный, круглый, средний, бек – красный, квадратный, большой, вич – зеленый треугольный, маленький, сев – зеленый, круглый, средний, бал – зеленый, квадратный, большой, нур – желтый, треугольный, маленький, гон – желтый, круглый, средний, сов – желтый, средний, круглый.
Как видно из приведенных выше списков, в предложенные искусственные понятия входят от одного до трех различных при­знаков. Фигуры соответствующего размера, формы и цвета (все­го 27 фигур с разными признаками) вырезаются из цветной бу­маги и наклеиваются на квадратные картонные карточки размером 8 х 8 см.
Перед ребенком в произвольном порядке рядом друг с дру­гом раскладываются карточки с цветными фигурами на них та­ким образом, чтобы все эти карточки ребенок мог одновременно видеть и изучать. Карточки можно разложить в три ряда по семь карточек в каждом, поместив шесть из них в неполный ряд.

<img width=«531» height=«518» src=«dopb211603.zip» v:shapes="_x0000_s1203 _x0000_s1204 _x0000_s1205 _x0000_s1206 _x0000_s1207 _x0000_s1208 _x0000_s1209 _x0000_s1210 _x0000_s1211 _x0000_s1212 _x0000_s1213 _x0000_s1214 _x0000_s1215">  

Рис 3.
По команде экспериментатора испытуемый в соответствии с полученным от экспериментатора заданием начинает искать задуманное им понятие. Делая первый шаг на этом пути, ан отбирает одну из карточек и кладет ее отдельно от других. Экспериментатор подтверждает или отрицает наличие искомого Признака (признаков) понятия на отобранный испытуемым карточке, и тот продолжает поиск дальше, до тех пор и пока не будут отобраны карточки, содержащие в себе все признаки искомого понятия. После того как экспериментатор подтвердит испытуемому данный факт, испытуемый должен дать определения соответствующему понятию, т.е. сказать, какие конкретные признаки в него входят.
Экспериментатор в начале исследования задумывает понятие, содержащее только один признак, затем — понятие, включающее два признака, и, наконец, понятие, содержащее в себе сразу три признака. Задумав понятие, экспериментатор сообщается испытуемому трехбуквенное название данного понятия и количества признаков, которое оно содержит. Испытуемому предлагается самостоятельно, найти эти признаки, отобрав из предложенного набора карточек с фигурами те, которые содержат эти признаки, и назвать само понятие, определив его через найденные признаки.
Понятие, содержащее в себе только один из признаков — цвет, форму или величину, отбирается экспериментаторам произвольно из верхнего списка; понятие, включающее два признака, — из среднего списка; понятие, включающее три признака, — из нижнего списка.
На решение испытуемым каждой из трех задач (поиск трех понятий, включающих в себя от одного до трех признаков) отводится по 3 минуты. Если за это время испытуемый не справится самостоятельно с задачей, то экспериментатор дает ему подсказку: сам отбирает одну из карточек, которая содержит искомый признак, и говорит: «На этой карточке есть нужный признак» (ребенок должен обнаружить этот признак и назвать его без дальнейшей подсказки). Еще через минуту, если ребенок по-прежнему не справляется с заданием, экспериментатор предлагает ему вторую подсказку: показывает еще одну карточку, содержащую искомый признак (или признаки). Наконец, если спустя 5 минут после начала выполнения очередного задания ребенок так и не нашел все признаки и не дал словесное определение искомому понятию, то ему предлагается следующая задача того же самого типа. Если и с ней не справится, то эксперимент прекращается.
В том случае, если ребенок справится с первым заданием (поиск и определение понятия с единственным признаком) самостоятельно или после подсказок экспериментатора, ему предлагается следующее, более сложное задание, связанное с поиском и определением понятия, содержащего два признака, и так далее. Более сложное задание, касающееся формирования понятий с большим числом признаков, дается ребенку только в том случае, если до этого он справился с выполнением менее сложного задания.
Оценка результатов.
10 баллов ребенок получает в том случае, если он полностью самостоятельно, без подсказок со стороны экспериментатора, сумел за отведенное время с первой попытки решить все три задачи, то есть нашел все признаки и дал определение трем понятиям, содержащем в себе от одного до трех разных признаков.
8 –9 баллов ребенок получает тогда, когда за отведенное время он решил все три задачи, но ему для этого понадобилось более трех попыток, больше 9 минут и одна – две подсказки.
6 – 7 баллов за выполнение данного задания ребенок получает в том случае, если ему понадобилось больше трех попыток и получить как минимум две – три подсказки при решении первой и второй задач, а с третьей он не справился даже после двух попыток и получения всех подсказок.
4 — 5 баллов соответствует тому случаю, когда ребенок с трудом, больше чем за две попытки решил первые две6 задачи (поиск и определение понятий с одним и двумя признаками), а третью задачу не решил.
2 – 3 балла ребенок получает тогда, когда после двух попыток и подсказок он справится только с первой задачей, а вторую и третью не решил.
0 – 1 балл – тот случай, когда после всех попыток и подсказок ребенок не смог решить ни одной задачи.
Выводы об уровне развития
10 баллов – очень высокий
8 – 9 баллов – высокий
4 – 7 баллов – средний
2 – 3 балла – низкий
0 – 1 балл – очень низкий.

Тест
Испытуемым предлагался бланк с 20-ю рядами слов. В каждом из них набор из 5-ти слов, два из которых более всего с ними связаны. Задача испытуемого – найти в каждом ряду по два слова, наиболее соответствующих понятию, и подчеркнуть их.
1.                 Сад (растения, садовник, собака, забор, земля).
2.                 <line id="_x0000_s1216" from=«126pt,16.2pt» to=«126pt,16.2pt» o:allowincell=«f»><img width=«2» height=«2» src=«dopb211555.zip» v:shapes="_x0000_s1216">Река (берег, рыба, рыболов, тина, вода).
3.                 Город (автомобиль, здание, толпа, улица, велосипед).
4.                 Сарай (сеновал, лошадь, крыша, скот, стены).
5.                 Куб (углы, чертеж, сторона, камень, дерево).
6.                 <line id="_x0000_s1217" from=«171pt,9.65pt» to=«171pt,9.65pt» o:allowincell=«f»><img width=«2» height=«2» src=«dopb211555.zip» v:shapes="_x0000_s1217">Деление (класс, делимое, карандаш, делитель, бумага).
7.                 Кольцо (диаметр, алмаз, проба, округлость, печать).
8.                 Чтение (глава, книга, печать, картина, слово).
9.                 Газета (правда, приложение, телеграммы, бумага, редактор).
10.             Игра (карты, игроки, штрафы, наказания, правила).
11.             Война (самолеты, пушки, сражения, ружья, солдаты).
12.             Книга (рисунки, война, бумаги, любовь, текст).
13.             Пение (звон, искусство, голос, аплодисменты, мелодия).
14.             Землетрясение (смерть, пожар, колебания почвы, шум, наводнение).
15.             Библиотека (голод, книги, лекция, музыка, читатели).
16.             Лес (лист, яблоня, дерево, охотник, волк).
17.             Спорт (медаль, оркестр, состязание, победа, стадион).
18.             Больница (помещение, сад, враг, радио, больные).
19.             Любовь (розы, чувства, человек, город, природа).
20.             Патриотизм (город, друзья, родина, семья, человек).
Правильные ответы подчеркнуты.
Тест   (Гуревич К. М., Акимова М. К., Борисова Е. М.) Инструкция Этот тест предназначен для диагностики умения детьми осуществлять классификацию. Инструкция испытуемым дается в устной форме: «Сейчас, вам будут предложены задания, которые предназначены для выявления вашего умения рассуждать, находить общее и различное. Эти задания отличаются от того, что вам приходится выполнять на уроках. Для выполнения заданий вам понадобятся ручки и бланки, которые я вам раздам». На выполнение этого задания отводится 7 минут. Начинать и заканчивать работу по команде.
В бланке должны содержаться сведения о фамилии учащегося, дате проведения эксперимента, классе и школе, где учится испытуемый. Экспериментатор должен проконтролировать заполнение этих граф.
На бланке даны 5 слов, 4 из них объедены общим признаком. Пятое слово к ним не подходит. Его надо найти и подчеркнуть. Лишним может быть только одно слово.
Например:
<line id="_x0000_s1218" from=«151pt,3.65pt» to=«151pt,3.65pt» o:allowincell=«f»><img width=«2» height=«2» src=«dopb211555.zip» v:shapes="_x0000_s1218">а) тарелка, б) чашка, в) стол, г) кастрюля, д) чайник. а, б, г,. д – обозначают посуду, а в – мебель, поэтому оно подчеркнуто.
Форма А.
1. а) приставка, б) предлог, в) суффикс, г) окончание, д) корень.
2. а) прямая, б) ромб, в) прямоугольник, г) квадрат, д) треугольник.
3. а) барометр, б) флюгер, в) термометр, г) компас, д) азимут.
4. а) рабовладелец, б) раб, в) крестьянин, г) рабочий, д) ремесленник.
5. а) пословица, б) стихотворение, в) поэма, г) рабочий, д) повесть.
6. а) цитоплазма, б) питание, в) рост, г) раздражимость, д) размножение.
7. а) дождь, б) снег, в) иней, г) град, д) туман.
8. а) треугольник, б) отрезок, в) длина, г) круг, д) квадрат.
9. а) пейзаж, б) мозаика, в) икона, г) фреска, д) кисть.
10. а) очерк, б) роман, в) рассказ, г) сюжет, д) повесть.
11. а) параллель, б) карта, в) меридиан, г) экватор, д) полюс.
12. а) литература, б) наука, в) живопись, г) зодчество, д) художественное искусство.
13. а) длина, б) метр, в) масса, г) объем, д) скорость.
14 а) углекислый газ, б) свет, в) вода, г) крахмал, д) хлорофилл.
15. а) пролог, б) кульминация, в) информация, г) развязка, д) эпилог.
16. а) скорость, б) колебание, в) сила, г ) вес, д) плотность.
17. а) Куба, б) Япония, в) Вьетнам, г) Великобритания, д) Исландия.
18. а) товар, б) деньги, в) город, г) ярмарка, д) натуральное хозяйство.
19. а) описание, б) сравнение, в) характеристика, г) сказки, д) иносказание.
20. а) аорта, б) вена, в) сердце, г) артерия, д) капилляр.
Форма Б.
1. а) запятая, б) точка, в) двоеточие, г) тире, д) союз.
2. а) глобус, б) меридиан, в) полюс, г) параллель, д) экватор.
3. а) морфология, б) синтаксис, в) пунктуация, г) орфография, д) терминология.
4. а) движение, б) инерция, в) вес, г) колебание, д) деформация.
5. а) круг, б) треугольник, в) трапеция, г) квадрат, д) прямоугольник.
6. а) картина, б) мозаика, в) икона, г) скульптура, д) фреска.
7. а) рабочий, б) крестьянин, в) раб, г) феодал, д) ремесленник.
8. а) легенда, б) драма, в) комедия, г) трагедия, д) пьеса.
9. а)аорта, б) пищевод, в) вена, г) сердце, д) артерия.
10. а) Канада, б) Бразилия, в) Вьетнам, г) Испания, д) Норвегия.
11. а) тело, б) площадь, в) объем, г) вес, д) скорость.
12. а) направление, б) курс, в) маршрут, г) азимут, д) компас.
13. а) корень, б) стебель, в) лист, г) тычинка, д) цветок.
14. а) землетрясение, б) цунами, в) стихия, г) ураган, д) смерч.
15. а) метафора, б) монолог, в) эпитет, г) аллегория, д) преувеличение.
16. а) товар, б) город, в) ярмарка, г) натуральное хозяйство, д) деньги.
17. а) цилиндр, б) куб, в) многоугольник, г) шар, д) деньги.
18. а) пословица, б) басня, в) поговорка, г) сказка, д) былина.
19. а) история, б) астрология, в) раздражимость, г) рост, д) сознание.
20. а) питание, б) дыхание, в) раздражимость, г) рост, д) сознание.
Оценка выставляется по 9-балльной шкале.
Оценка в баллах
9
8
7
6
5
4
3
2
1
Количество правильных ответов
18
17
16
14 — 15
12 — 13
10 — 11
8 – 9
6 – 7
5
Каждая из методик дает надежные результаты при использовании ее в комплексе с другими методиками, направленными на выявление доступного испытуемому уровня обобщений, целенаправленности мыслительной деятельности, ригидности, характера понятийных связей.

Приложение В
Игры на формирование у учащихся начальных классов математических понятий, умственного приема классификация
 «Ромбы»
Эта игра на закрепление представлений о пересекающихся понятиях. Для игры необходим комплект из 18 букв – это латинские буквы А, В, С, различной величины (большие и маленькие) и разной окраски (белые, черные и серые). Каждая такая буква имеет свое название, например, «А большая черная», «а маленькая белая», «С большая полосатая» и т. д. Игра имеет три варианта.
Вариант 1.
Перед началом этого варианта игры ребенку показывают, что есть две части игрового поля – внутри ромба и вне его. Затем делят случайным образом комплект букв поровну – половину себе, половину ребенку. Правила игры следующие: нужно расположить буквы так, чтобы все белые буквы (и только они) были внутри ромба. Ходы делаются по очереди, каждый использует буквы своего комплекта. За каждый ошибочный ход – штрафное очко. После того как все буквы разложены, у ребенка спрашивают: «Какие буквы оказались вне ромба?» Важно, чтобы он ответил, что вне ромба находятся все небелые буквы.
Правильным также является ответ – все черные и серые буквы. Если ребенок начинает перечислять, какие именно буквы там находятся, например, буквы А большие и малые, буквы В и т.п., то необходимо обратить его внимание на то, что и внутри круга есть такие буквы, что размер и наименование этих букв в этой игре не имеет значения. Главное, что внутри ромба находятся все белые буквы, а снаружи – небелые.
Цель этого варианта игры – научится выражать свойства букв, оказавшихся вне ромба, через свойство тех, которые лежат внутри него. Эту игру можно повторять несколько раз, меняя свойство букв, которые должны оказаться внутри ромба (например, внутри должны быть только все буквы В, или только маленькие буквы и т.д.). Ребенок должен научиться называть все буквы, находящиеся вне ромба, одним словом или словосочетанием.
Вариант 2.
Здесь для игры понадобятся уже два ромба. Они должны быть разного цвета или иметь какие-нибудь другие отличия. Перед началом игры необходимо показать ученику, что есть четыре области, определяемые двумя ромбами: 1) внутри белого, но не внутри черного ромба, 2) внутри черного, но не внутри белого, 3) внутри обоих ромбов, 4) вне обоих ромбов. Суть игры та же, что и в первом варианте только задание несколько сложнее. Нужно расположить буквы, так, чтобы внутри белого оказались все полосатые буквы, а внутри черного – все буквы С. Если ребенок не догадается, что внутри обоих ромбов должны оказаться полосатые буквы, подскажите ему и объясните, почему эти буквы должны одновременно относиться к обеим областям.
В данной игре задание может варьироваться следующим образом:
Буквы
Внутри белого ромба
Внутри черного ромба
Все А
Все В
Все большие
Все маленькие
Все черные
Все С
Все полосатые
 Все полосатые
 Все черные
Все С
Все белые
Все полосатые
Все А
Все большие
    продолжение
--PAGE_BREAK--    продолжение
--PAGE_BREAK--В.Н. Осинская считает, что для овладения понятиями необходимы следующие существенные компоненты:
1)                усвоение определенной системы знаний о понятии;
2)                овладение специальной операционной системой действий (подведение под понятие, выбор необходимых и достаточных признаков для распознавания объекта, выведение следствий);
3)                установление системы понятий и их родовидовых отношений внутри системы, взаимосвязи их признаков;
4)                раскрытие генезиса понятий.
Понятия должны формироваться не изолированно друг от друга, а выступать как элементы системы, находящиеся друг с другом в определенных отношениях.
Исследования К. А. Степановой показывают, что среднеуспевающие учащиеся шестого класса при решении задач на подведение под началь­ные геометрические понятия дали 72,5% правильных ответов. Однако обоснование правильности ответа имело место только в 27,5% случаев. В исследовании В. И. Зыковой отмечается, что такой уровень усвоения понятий наблюдается вплоть до восьмого-девятого классов. К. А. Степанова и В. И. Зыкова отмечают, что знание существенных признаков не обеспечивает сознательного использования их при ориентировке в соответствующей действительности.
Ж. Пиаже считал, что дети до подросткового возраста не способны к понятийному мышлению. До этого возраста ребенок использует различные интеллектуальные образования, функционально заменяющие понятия.
В.В. Давыдов и Д.Б. Эльконин указывали на возможность более раннего формирования понятийных структур у ребенка в условиях специального обучения по сравнению с их стихийным формированием.
В.В. Давыдов считает, что «овладеть понятием – это значит не только знать признаки предметов и явлений, охватываемых данным понятием, но и уметь применять понятие на практике, уметь оперировать им» [50, с. 81].
П.Я. Гальперин выдвинул теорию о поэтапном формировании математических понятий. В соответствии с этой теорией формирования математических понятий осуществляется через шесть этапов:
1.                 Первый этап – создание мотивации;
2.                Второй этап — формирование схемы ориентировочной основы деятельности. Выделяют три типа построения структуры обучения, которые зависят от полноты ориентирования учеников:
-        Ученикам дается образец действия и его результат. В полном объеме им не дают сведений о способе выполнения задача, поэтому ученики действуют путем попыток и ошибок. При таком типе обучения учителю приходится больше заниматься устранением ошибок, переучиванием, чем правильным обучением.
— При втором типе ориентирования ученикам дается алгоритм выполнения задача. При строгом выполнении указаний алгоритма обучение идет без ошибок и более скорое, чем при первом типе. Новая задача ученик сначала сравнивает с задачей, которую он уже решил, и если они одного типа, данный учителем алгоритм переносится на новую задачу. Недостатками такого обучения есть то, что ученику дается полный перечень операций для выполнения задачи, при этом слабо развивается эвристическая деятельность. Если ученику всегда давать готовые алгоритмы, схемы, он мало продвинется в умственном развитии, не смотрясь на то, что предметными привычками и умениями он будет владеть успешно.
— Третий тип: ученики не столько учатся способа выполнения действия при решении конкретной задачи, сколько учатся анализировать задачи и самостоятельно составлять схему действия. Ориентировочная основа действия может даваться учителем только в обобщенном виде, а ученики самостоятельно дополняют ее при выполнении конкретной задачи. Такой способ обучения оказывает содействие созданию у учеников фундамента знаний, умений и привычек, благодаря чему ученик быстро ориентируется в новых обстоятельствах и может овладевать новыми знаниями, привычками самостоятельно. Работа по третьему типу ориентирования отвечает закономерностям формирования содержательных обобщений, оказывает содействие развитию творческого теоретического мышления.
3.       Третий этап обучения сводится к выполнению действия в материальной или материализованной форме.
4.       На четвертом этапе происходит формирование действия с помощью устной речи без опоры на материальные или материализованные средства (все операции алгоритма, предписания проговариваются вслух по мере их выполнения). Такая система обучения разрешает ученику следить за ходом выполнения действия, обеспечивает единство предметной (внешней) и умственной (внутренней) деятельности. Со временем громкое произношение начинает снижать производительность обучения, поэтому она должна постепенно переходить в произношение «про себя».
5.       Пятый этап – формирование действия с помощью внутренней речи (операции проговариваются про себя, действие начинает сокращаться и автоматизироваться).
6.       Шестой этап — этап интериоризации действия, то есть формирование действия во внутренней речи. Действие становится внутренним процессом, максимально автоматизируется, становится актом мышления.
Обучение, проведенное на основе этой теории, показало, что дети способны усваивать абстрактные понятия, обобщенные знания уже в первом классе начальной школы, причем в условиях массового обучения (Д. Б. Эльконин, В. В. Давыдов, Л. И. Айдарова, Н. Г. Салмина, В. П. Сохина).
Образования понятий, переход к ним от чувственных форм отражения – сложный процесс, в котором применяются такие приемы умственной деятельности, как анализ, синтез, сравнение, классификация, обобщение, абстрагирование. Понятие – «это мысль, в которой отражаются общие, и притом существенные свойства предметов. Вместе с тем понятие не только отражают общее, но и расчленяют вещи, группируют их, классифицируют в соответствии с их различиями» [41, с.27].
Классификация является частным случаем деления – логической операции над понятиями. Деление – это распределение на группы тех предметов, которые мыслятся в исходном понятии. Классификация представляет собой многоступенчатое, разветвленное деление [51, с.137].
С. Л. Рубинштейн дал такое определение классификации: «Выявляя тождество одних и различие других вещей, сравнение приводит к классификации. Тождество и различие, основные категории рассудочного познания выступает сначала как внешнее отношение. Более глубокое познание требует раскрытия внутренних связей, закономерностей и существенных свойств. Это осуществляется всеми видами мыслительных операций – анализа, синтеза, обобщения, абстракции»[54, с 87].
С. Д. Максименко обосновал свое видение классификации не через сравнение, а через обобщение. Он пишет: «Обобщение выделенных черт предметов и явлений дает возможность группировать объекты по видовым, родовым и другим признакам» [44, с. 98].
Чтобы осуществить классификацию, необходимо четко определить ее цель, признаки объектов, которые подлежат классификации, сравнивать их по существенным признакам, определить общие основания классификации, сгруппировать объекты по определенному признаку.
Р. С. Немов говорит о том, что «Сравнение вскрывает тождество и различие вещей. Результатом сравнения может являться классификация. Она выступает как первичная форма теоретического и практического познания».[42, с. 125]
Ю. Л. Трофимова определяла классификацию как: «Мысленное объединение предметов и явлений по их общим и существенным признакам».
К определению приема умственной деятельности классификации через сравнение подходила Д. М. Дубравская. «Сравнивая предметы и явления, мы выделяем наиболее общие их признаки и на этой основе осуществляем классификацию».
Как видно из определений классификация связана в учебном познании со всеми основными приемами умственной деятельности (анализ, синтез, сравнение, обобщение).Учитель должен обратить особое внимание на формирование специальных умений и навыков, овладение приемами мышления, понятий, познавательного интереса, которые формируются и развиваются в начальных классах. Недостаточное внимание учителя начальных классов к этим вопросам приводит к большим трудностям при последующем изучении не только математики, но и других учебных предметов.
1.2. Виды и определения математических понятий в начальной математике
При усвоении научных знаний учащиеся начальной школы сталкиваются с разными видами понятий. Неумение ученика дифференцировать понятия приводит к неадекватному их усвоению.
Логика в понятиях различает объем и содержание. Под объемом понимается тот класс объектов, которые относятся к этому понятию, объединяются им. Так, в объем понятия треугольник входит все множество треугольников независимо от их конкретных характеристик (видов углов, размера сторон и др.).
Под содержанием понятий понимается та система существенных свойств, по которой происходит объединение данных объектов в единый класс.
Чтобы раскрыть содержание понятие, следует путем сравнения установить, какие признаки необходимы и достаточны для выделения его отношения к другим предметам. До тех пор, пока не установлены содержание и признаки, не ясна сущность предмета, отражаемого этим понятием, невозможно точно и четко отграничить этот предмет от смежных с ним, происходит путаница мышления.
Например, понятии треугольник к таким свойствам относятся следующие: замкнутая фигура, состоит из трех отрезков прямой. Совокупность свойств, по которым объединяются объекты в единый класс, называются необходимыми и достаточными признаками. В одних понятиях эти признаки дополняют друг друга, образуя вместе то содержание, по которому и объединяются объекты в единый класс. Примером таких понятий могут служить треугольник, угол, биссектриса и многие другие.
Совокупность данных объектов, на которые распространяется данное понятие, составляет логический класс объектов.
Логический класс объектов – это совокупность объектов, имеющие общие признаки, вследствие чего они выражаются общим понятием. Логический класс объектов и объем соответствующего понятия совпадают.
Понятия делятся на виды по содержанию и объему в зависимости от характера и количества объектов, на которые они распространяются.
По объему математические понятия делятся на единичные и общие. Если в объем понятия входит только один предмет, оно называется единичным.
Примеры единичных понятий: «наименьшее двузначное число», «цифра 5», «квадрат, длина стороны которого 10 см», «круг радиусом 5 см».
Общие понятие отображает признаки определенного множества предметов. Объем таких понятий всегда будет больше объема одного элемента.
Примеры общих понятий: «множество двузначных чисел», «треугольники», «уравнения», «неравенства», «числа кратные 5», «учебники математики для начальной школы».
По содержанию различают понятия конъюнктивные и дизъюнктивные, абсолютные и конкретные, безотносительные и относительные.
Понятия называются конъюнктивными, если их признаки взаимосвязаны и по отдельности ни один из них не позволяет опознать объекты этого класса, признаки связаны союзом «и». Например, объекты, относящиеся к понятию треугольник, обязательно должны состоять из трех отрезков прямой и быть замкнутыми.
В других понятиях отношение между необходимыми и достаточными признаками другие: они не дополняют друг друга, а заменяют. Это означает, что один признак является эквивалентом другого. Примером такого вида отношений между признаками могут служить признаки равенства отрезков, углов. Известно, что к классу равных отрезков относятся такие отрезки, которые: а) или совпадают при наложении; б) или порознь равны третьему; в) или состоят из равновеликих частей и т.д.
В данном случае перечисленные признаки не требуются все одновременно, как это имеет место при конъюнктивном типе понятий; здесь достаточно какого-то одного признака из всех перечисленных: каждый из них эквивалентен любому из остальных. В силу этого признаки связаны союзом «или». Такая связь признаков называется дизъюнкцией, а понятия соответственно называются дизъюнктивными.
Важно также учитывать деление понятий на абсолютные и относительные.
Абсолютные понятия объединяют предметы в классы по определенным признакам, характеризующим суть этих предметов как таковых. Так, в понятии угол отражены свойства, характеризующие сущность любого угла как такового. Аналогично положение со многими другими геометрическими понятиями: окружность, луч, ромб и т.д.
Относительные понятия объединяют объекты в классы по свойствам, характеризующим их отношение к другим объектам. Так, в понятии перпендикулярные прямые фиксируется то, что характеризует отношение двух прямых друг к другу: пересечение, образование при этом прямого угла. Аналогично в понятии число отражено отношение измеряемой величины и принятого эталона.
Относительные понятия вызывают у учащихся более серьезные трудности, чем понятия абсолютные. Суть трудностей состоит именно в том, что школь­ники не учитывают относительность понятий и оперируют с ними как с понятиями абсолютными. Так, когда учитель просит учеников изобразить перпендикуляр, то некоторые из них изображают вертикаль. Особое внимание следует уделить понятию число.
Число — это отношение того, что подвергается количественной оценке (длина, вес, объем и др.) к эталону, который используется для этой оценки. Очевидно, что число зависит как от измеряемой величины, так и от эталона. Чем больше измеряемая величина, тем больше будет число при одном и том же эталоне. Наоборот, чем больше будет эталон (мера), тем меньше будет число при оценке одной и той же величины. Следовательно, учащиеся с самого начала должны понять, что сравнение чисел по величине можно производить только тогда, когда за ними стоит один и тот же эталон. В самом деле, если, например, пять получено при измерении длины сантиметрами, а три — при измерении метрами, то три обозначают большую величину, чем пять. Если учащиеся не усвоят относительной природы числа, то они будут испытывать серьезные трудности и при изучении системы счисления.
Трудности в усвоении относительных понятий сохраняются у учащихся и в средних, и даже в старших классах школы.
Между содержанием и объемом понятия существует зависимость: чем меньший объем понятия, тем больше его содержание.
Например, понятие «квадрат» имеет меньший объем, чем объем понятия «прямоугольник» так как любой квадрат — это прямоугольник, но не всякий прямоугольник есть квадрат. Поэтому понятие «квадрат» имеет большее содержание, чем понятие «прямоугольник»: квадрат имеет все свойства прямоугольника и некоторые другие (у квадрата все стороны равны, диагонали взаимно перпендикулярны).
В процессе мышления каждое понятие не существует в отдельности, а вступает в определенные связи и отношения с другими понятиями. В математике важной формой связи есть родовидовая зависимость.
Например, рассмотрим понятия «квадрат» и «прямоугольник». Объем понятия «квадрат» есть частью объема понятия «прямоугольник». Поэтому первое называют видовым, а второе — родовым. В родо-видовых отношениях следует различать понятие ближайшего рода и следующие родовые ступени.
Например, для вида «квадрат» ближайшим родом будет род «прямоугольник», для прямоугольника ближайшим родом будет род «параллелограмм», для «параллелограмма» — «четырехугольник», для «четырехугольника» — «многоугольник», а для «многоугольника»- «плоская фигура».
В начальных классах впервые каждое понятие вводится наглядно, путем наблюдения конкретных предметов или практического оперирования (например, при счете их). Учитель опирается на знание и опыт детей, которые они приобрели еще в дошкольном возрасте. Ознакомления с математическими понятиями фиксируется с помощью термина или термина и символа.
Такая методика работы над математическими понятиями в начальной школе не означает, что в этом курсе не используются различные виды определений.
Определить понятие — это перечислить все существенные признаки объектов, которые входят в данное понятие. Словесное определение понятия называется термином.
Например, «число», «треугольник», «круг», «уравнение» — термины.
Определение решает две задачи: выделяет и отмежевывает какое-то определенное понятие от всех других и указывает те главные признаки, без которых не может существовать понятие и от которых зависят все остальные признаки.
    продолжение
--PAGE_BREAK--Определение может быть более или менее глубоким. Это зависит от уровня знаний о понятии, которое означается. Чем лучшее мы его знаем, тем большая вероятность, что мы сможем дать для него лучшее определение.
В практике обучения младших школьников применяются явные и неявные определения.
Явные определения имеют форму равенства или совпадения двух понятий.
Например: «Пропедевтика есть вступление в любую науку». Здесь приравнивают один к одному два понятия – «пропедевтика» и «вступление в любую науку».
В определении «Квадрат — это прямоугольник, у которого все стороны равны» имеем совпадение понятий.
 В обучении младших школьников особый интерес среди неявных определений составляют контекстуальные и остенсивные определения.
Любой отрывок из текста, будь какой контекст, в котором случается понятие, которое нас интересует есть, в некотором понимании, неявным его определением. Контекст ставит понятие в связь с другими понятиями и тем самим раскрывает ее содержание.
Например, употребляя в работе с детьми такие выражения, как «найти значения выражения», «сравнить значение выражений 5 + а и (а — 3) × 2, если а = 7», «прочитать выражения, которые являются суммами», «прочитать выражения, и потом прочитать уравнения», мы раскрываем понятие «математическое выражение» как запись, которая складывается из чисел или переменных и знаков действий.
Почти все определения, с которыми мы встречаемся в повседневной жизни — это контекстуальные определения. Услышав, неизвестное слово, мы стараемся сами установить его значение на основании всего сказанного.
Подобное имеет место и в обучении младших школьников. Много математических понятий в начальной школе определяются через контекст. Это, например, такие понятия, как «большой — маленький», «какой-нибудь», «любой», «один», «много», «число», «арифметическое действие», «уравнение», «задача» и т.д.
Контекстуальные определения остаются большей частью неполными и незавершенными. Они применяются в связи с неподготовленностью младшего школьника к усвоению полного и тем более научного определения.
Остенсивные определния — это определения путем демонстрации. Они напоминают обычные контекстуальные определения, но контекстом здесь есть не отрывок какого-либо текста, а ситуация, в которой оказывается объект, обозначенный понятием.
Например, учитель показывает квадрат (рисунок или бумажную модель) и говорит «Смотрите — это квадрат». Это типичное остенсивное определение.
В начальных классах остенсивные определения применяются при рассмотрении таких понятий как «красный (белый, черный и т.д.) цвет», «левый — правый», «слева направо», «цифра», «предшествующее и следующее число», «знаки арифметических действий», «знаки сравнения», «треугольник», «четырехугольник», «куб» и т.д.
На основе усвоения остенсивным путем значений слов есть возможность вводить в словарь ребенка уже вербальное значение новых слов и словосочетаний. Остенсивные определения — и только они — связывают слово с вещами. Без них язык — лишь словесное кружево, которое не имеет объективного, предметного содержания.
Заметим, что в начальных классах допустимые определения наподобие «Словом «пятиугольник» мы будем называть многоугольник с пятью сторонами». Это так называемое «номинальное определение».
В математике используются разные явные определения. Наиболее распространенное из них — определение через ближайший род и видовой признак. Родовидовое определение еще называют классическим.
Примеры определений через род и видовой признак: «Параллелограмм — это четырехугольник, у которого противоположные стороны параллельные», «Ромбом называется параллелограмм, стороны которого равны», «Прямоугольником называется параллелограмм, у которого углы прямые», «Квадратом называется прямоугольник, в которым стороны равны», « Квадратом называется ромб, у которого прямые углы».
Рассмотрим определения квадрата. В первом определении ближайшим родом будет «прямоугольник», а видовым признаком – «все стороны равны». В втором определении ближайший род «ромб», а видовой признак – «прямые углы».
Если же взять не ближайший род («параллелограмм»), то видовых признаков квадрата будет два «Квадратом называется параллелограмм, у которого все стороны равны и все углы прямые».
В родовидовом отношении находятся понятия «сложение (вычитание, умножение, деление)» и «арифметическое действие», понятие «острый (прямой, тупой) угол» и «угол».
Примеров явных родовидовых отношений среди множества математических понятий, которые рассматриваются в начальных классах, не так уже и много. Но с учетом важности определения через род и видовой признак в дальнейшем обучении желательно добиваться понимания учениками сущности определения этого вида уже в начальных классах.
Отдельные определения могут рассматривать понятие и по способу его образования или возникновения. Определение такого типа называют генетическими.
Примеры генетических определений: «Угол — это лучи, которые выходят с одной точки», «Диагональ прямоугольника — отрезок, который соединяет противоположные вершины прямоугольника». В начальных классах генетические определения применяют для таких понятий, как «отрезок», «ломаная», «прямой угол», «круг».
К генетическим понятиям можно отнести и определение через перечень.
Например, «Натуральный ряд чисел — это числа 1, 2, 3, 4 и т.д.».
Некоторые понятия в начальных классах вводят только через термин.
Например, единицы времени год, месяц, час, минута.
Есть в начальных классах понятия, которые подаются символическим языком в виде равенства, например, а ×1= а, а× 0=0
В начальных классах много математических понятий сначала усваиваются поверхностно, расплывчато. При первом ознакомлении школьники узнают только о некоторых свойствах понятий, очень узко представляют их объем. И это закономерно. Не все понятия легко усвоить. Но бесспорно, что понимание и своевременное использование учителем тех или других видов определений математических понятий — одна из условий формирования у учеников твердых знаний об этих понятиях.
1.3. Роль, функции классификации при формировании понятий
В организации учебной деятельности младших школьников в процессе формирования математических понятий особую роль играет прием классификации. Для того чтобы решать вопрос о принадлежности предмета к данному понятию учащиеся должны уметь дифференцировать признаки на существенные и несущественные, необходимые и достаточные, выделять различные свойства – то есть владеть целой системой логических приемов (анализ, синтез, сравнение, классификация, обобщение).
Классификация — это прием умственной деятельности, представляющий собой систематическое распределение элементов данного множества по классам, согласно наиболее существенным признакам.
В теории множеств классификация — это действие распределения объектов по классам на основании сходств объектов внутри класса и их отличия от объектов других классов.
Этот прием умственной деятельности является средством упорядочения изучаемых объектов, установления закономерных связей между ними. Именно в этом случае классификация выявляет существенные сходства и различия между предметами и имеет большое познавательное значение. Классификация основывается на способности видеть общее в каждом конкретном единичном случае и преследует цель уточнить, обобщить знание о связях и отношениях между изучаемыми объектами.
Признак, который является классификационным основанием, должен быть наиболее пригодным и удобным для определения предметов в классификационной системе.
Структуру классификации, как приема умственной деятельности образуют следующие действия:
1)    определение цели классификации объектов (понятий, отношений);
2)    выбор основания (существенное свойство, признак) для классификации;
3)    деление по этому основанию всего множества объектов (понятий, отношений) на непересекающиеся подмножества, входящих в объем данного понятия;
4)    построение иерархической классификационной системы.
Разновидность объектов для классификации достаточно обширна даже в рамках одного учебного предмета, не говоря уже о всей совокупности предметов, которые изучают в школе. В теории множеств это могут быть свойства функций, понятия, виды отношений и соответствий, законы, теоремы и т.д.
В процессе овладения умением классифицировать необходимо сформировать у учеников на практических примерах представления о таких понятиях, как вид, род, класс, объем понятия, деление объема понятия.
Класс — это совокупность (разряд или группа) предметов, выделенных по некоторому общему признаку, мыслимая как единое целое.
Вид — подразделение в систематике, входящее в состав высшего разряда — род. Вид представляет собой специфическое, особенное в пределах общего.
Род — группа, которая объединяет несколько видов, обладающих общими признаками. Род представляет собой нечто общее в предметах, составляющих его виды. Видовое понятие обязательно обладает всеми свойствами родового, которое выступает по отношению к видовому как следующая ступень обобщения.
Из определений видно, что деление на виды, роды, классы весьма относительно. Одно и то же понятие в разных классификационных системах может выступать и как видовое и как родовое. Установление родовидовых отношений, выделение в понятиях рода и видового различия — один из основных этапов классификации.
При выполнении классификации должно выполнятся следующие требования:
1)                Классификация должна проводится по одному и тому же основанию.
2)                Образованные подмножества (классы) непересекающиеся, т.е. никакая пара их не имеет общих элементов. Символическая запись этого условия: Кi  Kj =  для i, j, где i j.
3)                Классификация должна быть соразмерной, т.е. объединение всех подмножеств (классов) образует все множество. Классификация должна быть непрерывной, т.е. классами должны быть ближайшие видовые понятия по отношению к понятию, подлежащему классификации.
В качестве оснований для классификации выделяют свойства данных объектов. В связи с этим можно выделить следующие уровни классификации:
1)                Классификация (типология) — деление всего объема понятия на непересекающиеся подмножества, группы (классы) согласно наиболее общего существенного свойства.
2)                Ошибочная классификация — деление объектов (понятий, отношений) на группы (классы) согласно наиболее общего свойства, выделенного непосредственным восприятием объектов (понятий, отношений). Обычно такие ошибочные классификации осуществляются на эмпирическом уровне усвоения знаний.
Существуют различные способы проведения классификации:
1)                   Классификация по видоизмененному признаку. Элементы понятия, подлежащего классификации, обладают несколькими признаками. В качестве основания классификации могут использоваться различные признаки классифицируемого понятия.
Пример: ученики третьего класса легко могут разбить множество Х треугольников на три класса: остроугольные, прямоугольные и тупоугольные. Действительно, выделенные подмножества попарно не пересекаются (среди остроугольных нет прямоугольных и тупоугольных, среди прямоугольных – тупоугольных) и их объединение совпадает с множеством Х. Однако то, что не всякая система подмножеств данного множества представляет собой разбиение этого множества им понять сложно. Например, если из множества Х треугольников выделить подмножества равнобедренных, равносторонних и разносторонний, то разбиения множества Х на классы мы не получим, поскольку множества равнобедренных и равносторонних треугольников пересекаются (все равносторонние треугольники являются равнобедренными).
Из таблицы видно, что образовалось девять классов, из которых некоторые пусты (см. табл.1.1 ).
В случае алгебраических уравнений при одновременном использовании двух оснований классификаций получаем, например, класс уравнений первой степени с двумя переменными или класс уравнений второй степени с одной переменной и т. д. При одновременной классификации натуральных чисел по признаку делимости их на 2 и на 3 получаем класс натуральных чисел, делящихся на 6, и др.
Выбор признака классификации зависит от целей классификации, от практических задач. Важнейшим требованием к признаку (основанию) классификации является его объективность. Нельзя делить книги на интересные и неинтересные, задачи на легкие и трудные, так как такие признаки носят субъективный характер. В самом деле, одни и те же теоремы могут быть легкими для одних учеников и трудными для других.
2)      Дихотомическая (от греческих слов dicha и tome «сечение на две части») классификация представляет собой деление объема классифицируемого понятия на два видовых понятия, один из которых обладает данным признаком, а другой не обладает им.
Сравнивая дихотомическую классификацию с классификацией по видоизмененному основанию, можно выделить ряд преимуществ. Эта классификация всегда удовлетворяет требованию соразмерности, так как объединение образованных классов полностью исчерпывает объем понятия, подлежащего классификации. Кроме того, образованные классы всегда исключают друг друга.
Однако дихотомическая классификация не лишена недостатков. Так, разделив объем понятий на два противоречащих друг другу видовых понятия, мы оставляем весьма неопределенным то видовое понятие, которое содержит частицу «не». Например, разделив класс тригонометрических уравнений на простейшие уравнения и не простейшие, оставляем достаточно неясным объем класса не простейших тригонометрических уравнений.
Пример. Применяя дихотомию можно провести классификацию треугольников и четырехугольников так:

<group id="_x0000_s1027" coordorigin=«1440,1497» coordsize=«8206,10609» o:allowincell=«f»><img width=«553» height=«713» src=«dopb211556.zip» v:shapes="_x0000_s1027 _x0000_s1028 _x0000_s1029 _x0000_s1030 _x0000_s1031 _x0000_s1032 _x0000_s1033 _x0000_s1034 _x0000_s1035 _x0000_s1036 _x0000_s1037 _x0000_s1038 _x0000_s1039 _x0000_s1040 _x0000_s1041 _x0000_s1042 _x0000_s1043 _x0000_s1044 _x0000_s1045 _x0000_s1046 _x0000_s1047 _x0000_s1048 _x0000_s1049 _x0000_s1050">  

Дихотомия часто используется при разбиении данного множества одновременно по нескольким основаниям.
3)      Дихотомия по разным основаниям – разбиение объема классифицируемого понятия по независимым основаниям на 2п класса.
Имеет место следующая теорема: при разбиении множества М по n независимым основаниям образуется 2 n класса (n ).
Эта теорема о разбиении множества по n независимым основаниям может быть использована для решения задач определенного типа.
Для решения таких задач целесообразно использовать наглядную интерпретацию разбиения множества на классы с помощью диаграмм Эйлера — Венна. В диаграмме заполняется числом элементов каждая ее часть (класс) в соответствии с условиями задачи, что и ведет к решению задачи.
Пример. Рассмотрим два свойства натуральных чисел: «быть кратным 3» и «быть кратным 5».При помощи этих свойств из множества натуральных чисел можно выделить два подмножества: А — подмножество чисел, кратных 3, и В – подмножество чисел, кратных 5. Эти подмножества пересекаются, но ни одно из них не является подмножеством другого.
<group id="_x0000_s1051" coordorigin=«4857,14094» coordsize=«2220,2130» o:allowincell=«f»>    продолжение
--PAGE_BREAK----PAGE_BREAK--6.                 Числовые выражения. Числовые равенства и неравенства, их свойства.
7.                 Выражения с переменными, их область определения. Тождество.
8.                 Уравнения и неравенство; их область определения и множество решений. Свойства уравнений и неравенств.
9.                 Функции: понятие, область определения, область значений, способы задания.
Множество, частные случаи операций над множествами.
Множество – это основное неопределяемое понятие.
При формировании понятия «множество» нужно научить детей задавать множество указанием характеристических свойств, перечислением элементов, с помощью кругов Эйлера-Венна; уметь определять принадлежит ли данный элемент множеству или нет; находить мощность конечного множества (количество элементов множества).
Так, показав картину, учитель спрашивает: «Что на ней изображено?» Дети отвечают, например, «Яблоки» (то есть задается множество указанием характеристического свойства). Затем учитель показывает изображение груши и спрашивает: «Входит ли она в заданное множество?» Дети отвечают: «Нет».
Формирование смысла арифметических действий над натуральными числами и их свойств базируется на основе соответствующих операций над множествами и их законов. Здесь важно использовать множества, а не их мощности, то есть при формировании смысла арифметических действий нужно избегать возможности нахождения результата операции с помощью пересчета элементов получившегося множества.
Над множествами можно выполнять 5операций.
Рассмотрим их.
1.                 Объединение множеств.
Объединением двух множеств называется такое множество, элементы которого принадлежат хотя бы одному из этих множеств.
Это определение легко можно проиллюстрировать на кругах Эйлера-Венна, где заштрихованная часть является результатом объединения двух множеств (рис. 2.1):
 а) б) в)                            г)
<group id="_x0000_s1055" coordorigin=«1521,10314» coordsize=«9540,1080» o:allowincell=«f»><img width=«638» height=«74» src=«dopb211558.zip» v:shapes="_x0000_s1055 _x0000_s1056 _x0000_s1057 _x0000_s1058 _x0000_s1059 _x0000_s1060 _x0000_s1061 _x0000_s1062"> 

Рис. 2.1
Основные свойства этой операции:
а) коммуникативный закон: А В = В А
б) ассоциативный закон: {А В} C = A {B C}.
Случай а) является теоретической основой формирования смысла операции сложения натуральных чисел, а коммуникативный и ассоциативный законы выступают в начальных классах как переместительное и сочетательное свойства суммы натуральных чисел.
Операцию сложения натуральных чисел можно сформировать с помощью такой практической работы. Слева на парте лежат треугольники, а справа квадраты. Учитель просит собрать вместе и назвать получившееся множество. Дети отвечают: «Мы получили геометрические фигуры». Учитель обобщает: «Мы выполнили сложение, которое обозначается знаком «+» и называется суммой (рис.2.2).
<group id="_x0000_s1063" coordorigin=«1881,4914» coordsize=«9360,2340» o:allowincell=«f»><shapetype id="_x0000_t5" coordsize=«21600,21600» o:spt=«5» adj=«10800» path=«m@0,l,21600r21600,xe»><path gradientshapeok=«t» o:connecttype=«custom» o:connectlocs="@0,0;@1,10800;0,21600;10800,21600;21600,21600;@2,10800" textboxrect=«0,10800,10800,18000;5400,10800,16200,18000;10800,10800,21600,18000;0,7200,7200,21600;7200,7200,14400,21600;14400,7200,21600,21600»><shapetype id="_x0000_t87" coordsize=«21600,21600» o:spt=«87» adj=«1800,10800» path=«m21600,qx10800@0l10800@2qy0@11,10800@3l10800@1qy21600,21600e» filled=«f»><path arrowok=«t» o:connecttype=«custom» o:connectlocs=«21600,0;0,10800;21600,21600» textboxrect=«13963,@4,21600,@5»><img width=«627» height=«159» src=«dopb211559.zip» v:shapes="_x0000_s1063 _x0000_s1064 _x0000_s1065 _x0000_s1066 _x0000_s1067 _x0000_s1068 _x0000_s1069">  

                                                                   +
                                     
                                                сумма
Рис. 2.2
Таким образом, сложение натуральных чисел рассматривается как частный случай объединения двух чисел.
Так как объединение множеств коммунитативно и ассоциативно, то переместительное и сочетательное свойства сложения можно сформировать сразу же после введения слова «сумма». Так учитель может задать вопрос: «Изменится ли сумма, если сначала в центр парты положить квадраты, а потом треугольники?
Показать прикладную сторону использования коммунитативности сложения можно на такой практической работе.
На партах учеников выложены треугольники и квадраты. Количество квадратов в 3 – 4 раза превышает количество треугольников. Кто быстрее по одной геометрической фигуре соберет их в одну группу. После практической работы ученики должны сделать вывод, как быстрее можно выполнить работу и почему.
2.                Пересечение множеств.
Пересечением двух множеств называется такое множество, элементы которого принадлежат первому и второму множеству (рис. 2.3).
 а) б) в)                            г)
<group id="_x0000_s1070" coordorigin=«1521,10314» coordsize=«9540,1080» o:allowincell=«f»><img width=«638» height=«74» src=«dopb211560.zip» v:shapes="_x0000_s1070 _x0000_s1071 _x0000_s1072 _x0000_s1073 _x0000_s1074 _x0000_s1075 _x0000_s1076 _x0000_s1077"> 

Рис. 2.3
Основные свойства этой операции:
а) коммуникативный закон: А В = В А
б) ассоциативный закон: {А В} C = A {B C}.
Пересечение двух множеств можно формировать в начальных классах при рассмотрении, например, общей части геометрических фигур: прямоугольника АВСД и квадрата КСМЕ (рис. 2.4).

<group id="_x0000_s1078" coordorigin=«3501,9234» coordsize=«3353,2520» o:allowincell=«f»><shapetype id="_x0000_t4" coordsize=«21600,21600» o:spt=«4» path=«m10800,l,10800,10800,21600,21600,10800xe»><path gradientshapeok=«t» o:connecttype=«rect» textboxrect=«5400,5400,16200,16200»><img width=«226» height=«171» src=«dopb211561.zip» v:shapes="_x0000_s1078 _x0000_s1079 _x0000_s1080">          В                                  С
                                                              М
          А                   К   
Е
Рис. 2.4
3.                 Разность множеств.
Разностью множеств А и В называется такое множество, элементы которого принадлежат множеству А и не принадлежит множеству В (рис.2.5).
Случаи г) и д) являются теоретической основой формирования смысла операции вычитания натуральных чисел.
а) б) в)        г) д)
<group id="_x0000_s1081" coordorigin=«1341,1854» coordsize=«9360,900» o:allowincell=«f»><img width=«626» height=«62» src=«dopb211562.zip» v:shapes="_x0000_s1081 _x0000_s1082 _x0000_s1083 _x0000_s1084 _x0000_s1085 _x0000_s1086 _x0000_s1087 _x0000_s1088 _x0000_s1089 _x0000_s1090 _x0000_s1091 _x0000_s1092">  

Рис. 2.5
Операцию вычитания натуральных чисел можно сформировать с помощью такой практической работы.
В пенале лежат письменные принадлежности (ручки и карандаши), выложили на парту все ручки, а карандаши с пеналом положили в портфель. Надо узнать, сколько было карандашей. Чтобы ответить на вопрос задачи, надо знать, сколько было письменных принадлежностей всего, сколько было ручек. Разность между ними и есть карандаши. Таким образом операция вычитания натуральных чисел рассматривается как случай разности двух множеств.
4.                 Декартово произведение двух и более множеств.
До сих пор порядок записи элементов множества роли не играли. Однако в практике, зачастую, порядок записи элементов имеет большое значение. Например, порядок букв в слове, или порядок записи однозначных чисел в многозначном числе (23 = 32).
Кортежем длины n называется упорядоченная n – ка (а, а, …а ), где а А, а А ,…, а А .
Декартовым произведением множеств А х А х…х А называется множество всевозможных кортежей ( а, а ,…а ), где а А, а А,… а А .
Декартово произведение обладает следующими основными свойствами:
1)                А х В = В х А;
2)                M (A x B) = m (B x A) – количество элементов декартова произведения В х А.
В начальных классах операция умножения натуральных чисел рассматривается как мощность декартова произведения.
Операцию умножения натуральных чисел можно сформировать с помощью такой практической работы.
На парте лежат короткие, средние, длинные палочки красного, синего, желтого и белого цветов. Надо разложить их по цвету и по размеру.
По цвету По размеру
Красные- Короткие – красная, синяя, желтая, белая
Синие — Средние – красная, синяя, желтая, белая
Желтые —                             Длинные — красная, синяя, желтая, белая
Белые –
В первом случае палочек 3 + 3 + 3 + 3 = 3 х 4, во втором – 4 + 4 + 4 = 4х3.
Так как в обоих случаях были разложены все палочки, то 3 х 4 = 4 х 3. Таким образом, эта практическая работа позволяет сформировать не только смысл операции умножения как мощности декартового произведения, но и переместительное свойство умножения.
5.                 Разбиение.
Операция разбиения на попарно непересекающееся подмножества характеризуются следующими свойствами:
1)                      ни одно из подмножеств не пусто;
2)                      любые два подмножества не имеют общих элементов;
3)                      объединение всех подмножеств дает данное множество.
Операция деление натуральных чисел опирается на разбиение конечного множества на попарно непересекающиеся равномощные подмножества. Она раскрывается путем рассмотрения задач на деление по содержанию и равные части. Это можно осуществить на примере таких работ.
Пример № 1. Несколько карандашей надо раздать трем ученикам. Сколько карандашей получит каждый ученик и сколько их было?
Сначала раздадим по одному карандашу, потом еще по одному и так далее. Пусть каждый ученик получил по 4 карандаша, тогда всего карандашей было: 4 кар. х 3 =12 кар.
Пример № 2. Несколько карандашей надо раздать детям по 4 карандаша. Сколько учеников получит карандаши и сколько их было всего?
Сначала 4 карандаша дали одному ученику, потом 4 карандаша дали второму и так далее. Пусть 3 ученика получили по 4 карандаша, тогда всего карандашей было: 4 кар. х 3 = 12 кар.
Затем учитель должен обобщить полученные результаты: «В первой задаче мы искали первый сомножитель, а во второй задаче мы искали второй сомножитель. Так как умножение обладает переместительным свойством, то мы выполнили в обеих задачах одну и ту же операцию, которая называется делением». После этого учитель записывает:
4 х 3 = 12; 12 3 = 4;
4 х 3 = 12, 12 4 = 3.
2. Величина
Понятие величины является фундаментальным в школьном курсе математики и, в особенности, в начальном обучении. Ведь исторически работа с величинами и привела к появлению математики как таковой. Рассматривая величину как свойство однородных предметов или явлений «быть сравнимым», учитель может с помощью конкретных предметных действий сформировать у учащихся такие важнейшие понятия, как положительное действительное число, операции над числами и их законы, измерение величин и именованные числа, тесно связать геометрический и арифметический материал.
Величины бывают трех видов: скалярные, аддитивно-скалярные, векторные.
Примером скалярных величин является свойство химических элементов быть сравнимыми по активности. Так, натрий более активен, чем железо. Однако, сказать, на сколько он более активен нельзя, то есть нельзя выполнить операцию сложения: к активности железа нельзя, например, добавить активность свинца и получить активность натрия поэтому скалярные величины не являются той основой, на которой возникла математика.
Аддиктивно-скалярные величины (аддитивность – это наличие операции сложения; аддитивная операция – операция сложения) можно не только сравнивать, но и определять, на сколько один элемент множества, обладающего величиной, больше (меньше) другого элемента этого же множества.
Таким образом, аддитивно-скалярные величины можно складывать и поэтому именно на их основе возникла в результате абстрагирования математика. Примером аддитивно-скалярных величин является множество отрезкой, площадей.
Векторные величины можно сравнивать не только с позиции «столько», «больше». «меньше», но и по направлению. Примерами векторных величин является скорость, ускорение.
В начальных классах специальным предметом изучения являются следующие аддитивно-скалярные величины: количество, длина, площадь, масса, емкость, время.
В дальнейшем, для упрощения, вместо того, чтобы говорить «аддитивно-скалярная величина», или «множество, обладающее величиной», будем говорить просто «величина».
Рассмотрим основные свойства величин.
1. Свойство быть сравнимым.
Это свойство должно формироваться в начальных классах в три этапа на основе предметных действий детей.
а) Визуальное сравнение.
Приведем примеры практических работ.
Пример 1. (рис. 2.6). Приложив полоски, выяснить, какие из них длиннее (рис. 2.6).
Пример 2. Наложив друг на друга два листа бумаги, выяснить, какой из них больше (рис. 2.7).
<group id="_x0000_s1093" coordorigin=«3681,2884» coordsize=«5220,1080» o:allowincell=«f»><img width=«350» height=«74» src=«dopb211563.zip» v:shapes="_x0000_s1093 _x0000_s1094 _x0000_s1095">  

Рис. 2.7
Пример 3. Взяв в одну руку деревянный шар, а другую металлический шар, определить, какой из них тяжелее (шары одинаковые по размеру).

Пример 4. Сравнить два ведра одинаковой формы и ответить, в какое из них больше поместиться воды (рис. 2.8).
<group id="_x0000_s1096" coordorigin=«2601,6954» coordsize=«5198,2050» o:allowincell=«f»><shapetype id="_x0000_t8" coordsize=«21600,21600» o:spt=«8» adj=«5400» path=«m,l@0,21600@1,21600,21600,xe»><path gradientshapeok=«t» o:connecttype=«custom» o:connectlocs="@3,10800;10800,21600;@2,10800;10800,0" textboxrect=«1800,1800,19800,19800;4500,4500,17100,17100;7200,7200,14400,14400»><shapetype id="_x0000_t95" coordsize=«21600,21600» o:spt=«95» adj=«11796480,5400» path=«al10800,10800@0@0@2@14,10800,10800,10800,10800@3@15xe»><path o:connecttype=«custom» o:connectlocs=«10800,@27;@22,@23;10800,@26;@24,@23» textboxrect="@36,@40,@37,@42"><img width=«350» height=«138» src=«dopb211564.zip» v:shapes="_x0000_s1096 _x0000_s1097 _x0000_s1098 _x0000_s1099 _x0000_s1100">  

Рис. 2.8
б)      Опосредованное сравнение.
Пример 1. Ученикам предлагается сравнить длины двух отрезков, изображенных на доске; определить по рисунку в книге, кто из детей живет ближе к школе.
Чтобы ответить на поставленный вопрос, используются две веревочки. Ими измеряют длины, а затем наложением сравнивают.
Пример 2. Ученикам предлагается сравнить массы двух тел, с этой целью используются рычажные весы.
2).     Сравнение с помощью посредников.
Пример 1. Учащимся предлагается сравнить расстояние Евпатория – Симферополь,           Евпатория – Киев.
Пример 2. Ученикам предлагается сравнить две площади разной конфигурации (рис. 2.9).
<group id="_x0000_s1101" coordorigin=«2421,4734» coordsize=«3060,1980» o:allowincell=«f»><img width=«206» height=«134» src=«dopb211565.zip» v:shapes="_x0000_s1101 _x0000_s1102 _x0000_s1103">  

Рис. 2.9

Пример 3. Ученикам предлагается сравнить возраст своих родителей.
В каждом случае ученики придут к выводу, что ни визуально, ни опосредовано провести сравнение невозможно. Они сделают вывод о том, что величины необходимо сначала измерить, а потом сравнить числа, полученные в результате измерения. Тем самым ученики подводятся к пониманию причины возникновения числа.
2.                 Наличие операции сложения.
Величины можно складывать, то есть имеет место операция сложения. Эта операция имеет такие важные свойства:
1)                единственность суммы;
2)                коммутативность сложения (переместительное свойство);
3)                ассоциативность сложения (сочетательное свойство).
Операцию сложения и ее свойство нужно формировать у учащихся не только на примере такой величины, как количество, но и на примерах других величин.
Пример 1. Ученикам предлагается перевязать большой пакет имеющимися маленькими веревочками.
Ученики связывают обрывки веревок и перевязывают пакет. При этом подчеркивают, что порядок, в котором связываются обрывки веревок, роли не играет (переместительное и сочетательное свойство сложения).
Пример 2. Ученику предлагается угостить соком своих друзей, если у него имеется разное количество сливового сока и грушевого.
Ученик сливает сок в одну посуду и получает грушево – сливовый сок, которым угощает друзей. Подчеркивается, что количество сока не измениться от того, в каком порядке он сливается.
Так как сложение величин является теоретической основой формирования смысла операции сложения, а не нахождения результата сложения, поэтому при рассмотрении данных примеров учитель должен избегать возможности измерения величин, в том числе и пересчета.
3.                 Умножение величины на натуральное число.
Пол умножением величины а на натуральное число n понимается сумма в одинаковых величин: а + а +…+ а = а n.
Это свойство является теоретической основой операции умножения в начальных классах. Поэтому, при ее формировании необходимо подчеркивать, что одна и та же величина повторяется несколько раз, то есть именованное число нужно ставить при умножении на первое место.
Пример 1. Учащимся предлагается составить полоску из четырех одинаковых полосок и измерить ее. Дети получают в результате измерения 40 см.
Учитель предлагает найти длину полоски не измеряя ее, если известно, что она состоит из четырех одинаковых полосок по 10 см каждая.
Дети записывают: 10 см + 10 см + 10 см + 10см = 40 см.
Учитель обращает внимание на громоздкость записи и знакомит их с другой записью и новой операцией – умножением: 10 см 4 = 40 см.
    продолжение
--PAGE_BREAK--Учащиеся под руководством учителя делают вывод о том, что в данном случае умножение представляют сумму одинаковых величин, то есть, что умножение есть частный случай сложения.
Пример 2. Задача. Сколько минут отводится ученику на выполнение контрольной работы, если надо решить 5 примеров и на каждый пример отводится 4 минуты?
4 мин x 5 = 15 мин (4 минуты повторятся 5 раз).
Примечание. Подход к операции умножения как к сумме одинаковых величин позволяет объяснить смысл умножения натуральных чисел, начиная с двух. Умножение на 1, на 0, умножение дробных чисел нельзя рассматривать с позиции суммы одинаковых слагаемых.
4.                 Свойство неограниченной делимости.
Любую величину а при произвольном натуральном числе m можно представить в виде суммы одинаковых величин b: а = b + b + …+ b или а = b m. Это означает, что b является той m –той частью а, то есть величина b есть 1/m доля величины а.
Доля является одним из случаев обыкновенной дроби, что и надо подчеркнуть при изучении доли в начальных классах. Это можно сделать, например, в ходе решения следующих задач.
Задача 1. 12 яблок разделить поровну между четырьмя детьми. Сколько яблок получит каждый ребенок?
Каждый ребенок получит четвертую часть от 12 яблок, то есть по 3 яблока.
Задача 2. Одно яблоко надо разделить поровну между четырьмя детьми. Сколько яблок получит каждый?
Каждый получит четвертую часть, то есть 1/4 яблока.
Задача 3. Пять яблок надо разделить поровну между четырьмя детьми. Сколько яблок получит каждый?
Каждый получит четвертую часть, то есть 1 яблоко и еще 1/4 яблока, что составляет 1и 1/4 яблока или 5/4 яблока.
5.                 Аксиома Архимеда.
Если а и b две однородные величины и а > b, то найдется такое натуральное число n, что а < b n.
Эта аксиома позволяет выполнять измерения величин, что широко применяется в начальных классах.
В ходе измерения ученики получают конкретное натуральное число (в данном случае это число 4).
Пример 2. Измерить емкость банки с помощью стакана. Сколько стаканов помещается в банке?
Пример 3. Измерить площадь многоугольника данной меркой (рис. 2.11).
<group id="_x0000_s1104" coordorigin=«2421,10134» coordsize=«4500,1440» o:allowincell=«f»><img width=«302» height=«98» src=«dopb211566.zip» v:shapes="_x0000_s1104 _x0000_s1105 _x0000_s1106">  

Рис. 2.11

Наличие общей мерки.
Общей меркой однородных величин a и b называется такая величина c, которая помещается в a и b целое число раз: a = c x n и b = c x m.
Свойство двух однородных величин иметь общую мерку лежит в основе формирования понятия обыкновенной дроби.
В начальных классах представление об обыкновенной дроби можно сформировать с помощью следующей практической работы.
Детям предлагается измерить отрезок AB с помощью отрезка CD (рис. 2.12).
Дети убеждаются, что отрезок CD не помещается в AB целое число раз. Тогда им предлагается в качестве мерки отрезок МК, с помощью которого они измеряют отрезки AB и CD. Пусть в отрезке AB отрезок МК помещается 4 раза, а в отрезке CD – 3 раза. Значит, отрезок МК является 1/3 частью отрезка CD и поэтому в отрезке AB отрезок CD помещается 5/3 раза. Таким образом, в результате измерения отрезка AB отрезком CD получилась дробь 5/3.
Примечание. Еще в глубокой древности ученые пришли к выводу, что существуют и величины, которые не имеют общей мерки. Таким образом, в результате измерения могут получиться натуральные числа, дробные числа (положительные рациональные числа) и иррациональные числа, то есть любое положительное действительное число есть результат измерения величин. Поэтому измерению различных величин в начальных классах должно быть уделено серьезное внимание.
Требования к измерению величин.
1.  Равным однородным величинам должно быть поставлено в соответствие единственное число.
Формирование в начальных классах этого требования к измерению величин осуществляется в следующей последовательности:
а)  визуальное сравнение;
б)  опосредованное сравнение;
в)  создание проблемной ситуации: как быть, если ни визуально, ни опосредованно сравнить нельзя. Ученики подводится к выводу, что нужно сравнить числа, которые получаются в результате измерения.
Примеры практических работ на визуальное сравнение, опосредованное сравнение, необходимость измерения величин были приведены выше.
2.                 Из множества однородных величин выбирается одна, которой ставится в соответствие число один.
Здесь важно показать, что за единицу измерения может быть взят любой элемент. Однако, если одинаковые по величине элементы будут измеряться разными единицами измерения, то полученные числа не помогут сделать верный вывод по сравнению этих элементов. Этот момент можно сформировать у учащихся с помощью следующей практической работы.
Пример 1. Учитель показывает три одинаковые полоски красного, белого и черного цветов и просит, не накладывая их назвать, какая из них короче, а какая – длиннее. Дети называют черную полоску самой короткой, а белой – самой длинной. Тогда, раздав одному ряду красные полоски, другому – белые, третьему черные, учитель просит измерить их мерками (полосками), которые заранее розданы на парты. В результате измерения красных полосок дети получают число 3, черных – 4, белых – 2. После этого учитель наложением полосок убеждает детей, что они одинаковой длины, и задает вопрос: «Почему в результате измерения получились разные числа?» Учащиеся приходят к выводу, что нужно договориться и измерять одинаковыми мерками (единицами измерения). После этого можно провести беседу о разных единицах измерения длин.
Пример 2. Аналогичную работу можно провести по измерению площадей, взяв одинаковые листы бумаги белого, черного и красного цветов, а за единицу измерения белого листа бумаги взять 1/2 листа, красного листа бумаги –1/4 листа, черного листа бумаги – 1/8.
3.                 Если величина «а» есть сумма величин «b» и «c», то ее мера равна сумме их мер.
Сформировать это требование можно при помощи следующих практических работ.
Пример 1. Надо перевязать пакет с помощью нескольких коротких веревочек. Ученики связывают нужное количество обрывков и перевязывают пакет. Дается задание: какой длины веревку нужно взять оператору почты, чтобы перевязать пакет такого же размера, если веревку связали из трех кусков длиной 10 см, 15 см и 30 см. Дети находят: 10см +25см +30 см =55 см.
Пример 2. Нужно сравнить две геометрических фигуры разной формы (рис. 2.12). В ходе измерения дети приходят к выводу, что фигуры равновелики, так как они равносоставлены.
<group id="_x0000_s1107" coordorigin=«2781,8694» coordsize=«4680,2340» o:allowincell=«f»><img width=«314» height=«158» src=«dopb211567.zip» v:shapes="_x0000_s1107 _x0000_s1108 _x0000_s1109 _x0000_s1110">  

Рис. 2.12 Пример 3. Учитель дает задание составить из одинакового набора геометрических фигур дом и собаку (рис. 2.13).
<group id="_x0000_s1111" coordorigin=«2781,12256» coordsize=«7020,2558» o:allowincell=«f»><shapetype id="_x0000_t6" coordsize=«21600,21600» o:spt=«6» path=«m,l,21600r21600,xe»><path gradientshapeok=«t» o:connecttype=«custom» o:connectlocs=«0,0;0,10800;0,21600;10800,21600;21600,21600;10800,10800» textboxrect=«1800,12600,12600,19800»><img width=«471» height=«174» src=«dopb211568.zip» v:shapes="_x0000_s1111 _x0000_s1112 _x0000_s1113 _x0000_s1114 _x0000_s1115 _x0000_s1116 _x0000_s1117 _x0000_s1118 _x0000_s1119 _x0000_s1120 _x0000_s1121 _x0000_s1122 _x0000_s1123 _x0000_s1124 _x0000_s1125 _x0000_s1126 _x0000_s1127 _x0000_s1128 _x0000_s1129 _x0000_s1130">  

                   
Рис.2.13
III. Геометрический материал.
Обычно геометрический материал рассматривается в начальных классах как некоторое вкрапление, не связанное с основным программным материалом. Однако, если обучение математике в начальных классах строить на понятии величины, то геометрический материал выступает не как изолированный, а как базовый, позволяющий формировать многие математические понятия (см. раздел «Величины»).
Изучение геометрического материала должно начинаться с формирования представления о точке, линии, прямой линии, отрезке, луче, угле. Это можно осуществить с помощью, например, таких практических работ.
Пример 1. Учитель просит детей два раза ткнуть карандашом в лист бумаги и сообщает, что они получили две точки. Затем он просит, как угодно соединить их и говорит, что они получили линии, каждый свою (рис.2.14). Затем учитель просит отметить на линии красным карандашом несколько точек, синим карандашом — несколько точек над линией, зеленым карандашом — несколько точек под линией.
<shapetype id="_x0000_t75" coordsize=«21600,21600» o:spt=«75» o:divferrelative=«t» path=«m@4@5l@4@11@9@11@9@5xe» filled=«f» stroked=«f»><path o:extrusionok=«f» gradientshapeok=«t» o:connecttype=«rect»><lock v:ext=«edit» aspectratio=«t»><imagedata src=«43210.files/image015.png» o:><img width=«160» height=«126» src=«dopb211569.zip» v:shapes="_x0000_i1025">
Рис. 2.14
Тем самым у учеников формируется представление о линии как множестве точек, о положении точек относительно линии (на, над, под).
Пример 2. Учитель предлагает детям бросить на парту веревочки, которые были им розданы. Ученики получают разные линии. Учитель предлагает взять веревочку за концы я натянуть, У детей получается отрезок прямой линии. Затем дети в тетрадях отмечают две точки и с помощью линейки проводят через них прямую линию.
Пример 3. Ученики отмечают в тетрадях три точки одна под одной и проводят через одну точку прямую линию, луч до второй точки и луч от третьей точки (рис. 2.15). Учитель вводит понятие луча и дети подводятся к выводу, что прямая, в данном случае, состоит из двух лучей.
<imagedata src=«43210.files/image017.png» o:><img width=«165» height=«109» src=«dopb211570.zip» v:shapes="_x0000_i1026"> 
Рис. 2.15
Пример 4. Детям предлагается соединить два луча так, чтобы получилась прямая линия, и не получилась прямая линия. Вводится понятие угла, вершины утла, сторон угла (рис. 2.16).
<imagedata src=«43210.files/image019.png» o:><img width=«179» height=«124» src=«dopb211571.zip» v:shapes="_x0000_i1027">
<imagedata src=«43210.files/image021.png» o:><img width=«184» height=«48» src=«dopb211572.zip» v:shapes="_x0000_i1028">
Рис. 2.16
Пример 5. Детям дается задание соединить три отрезка, которые заранее розданы на парты, концами так, чтобы получилась замкнутая ломанная линия. Учитель просит сосчитать углы у получившейся геометрической фигуры и говорит, что, так как у нее три угла, эту фигуру называют треугольником. Затем учитель просит составить треугольник из трех отрезков, сумма двух из которых меньше третьего отрезка (рис. 2.17).
Делается вывод, что в треугольнике обязательно две любые стороны вместе больше третьей стороны.
Аналогично учащиеся знакомятся и с другими геометрическими фигурами и их свойствами.
Вопрос об измерении геометрических фигур, о единицах измерения и взаимосвязях между ними достаточно подробно рассмотрен в разделе «Величины».

IV. Натуральные числа
Натуральное число имеет двоякую природу, так как отвечает на вопросы «сколько» и «какой по счету». Например, если стоит очередь, то
прежде, чем стать в нее, человек интересуется сколько в ней всего людей. А, когда он уже стоит в очереди, то его интересует, какой он по счету, т.е. сколько людей стоит пред ним.
Таким образом, существует два подхода к понятию натурального числа:
-                  теоретико-множественный (количественная теория) и аксиоматический (порядковая теория), которые тесно переплетаются в методике преподавания. Поэтому, чтобы избежать ошибок, учитель должен знать, какой из подходов лежит в основе изучения конкретного вопроса.
Теоретико-множественный подход к понятию натурального числа базируется на понятиях конечного множества и взаимно-однозначного соответствия. Приведем схему введения натуральных чисел.
1. Определение. Два конечных множества называются равночисленными, если между ними можно установить взаимно-однозначное соответствие.
2. Отношение «быть равночисленным» разбивает все конечные множества на классы эквивалентности.
3. Каждый класс эквивалентности характеризуется мощностью, поэтому каждому множеству данного класса приписывают как характеристику одно и то же натуральное число.
4. Мощность пустого множества принимается за натуральное число ноль.
Понятие «быть равночисленным» и умение разбивать конечные множества на классы эквивалентности формируется у детей в дочисловой период при изучении темы «Столько, больше, меньше». Покажем, как на основе практической деятельности учащихся можно сформировать понятия о натуральных числах от 0 до 10.
Пример 1. Тема урока «Число и цифра 3».
На одной полке наборного полотна два кружочка, на второй — три, третья полочка пустая (рис. 2.17). Учитель, показывая разные конечные множества, просит разложить их по полкам, т.е. предлагает выполнить классификацию.
<imagedata src=«43210.files/image023.png» o:><img width=«396» height=«204» src=«dopb211573.zip» v:shapes="_x0000_i1029">
Рис. 2.17
После этого задаются вопросы:
1. Одинаковые ли группы предметов на второй полке? — Нет.
2. Почему же вы их поставили на одну полку? — Количество предметов у них одинаковое.
Учитель делает вывод о том, что это свойство (количество элементов каждого множества данного класса) и есть число 3.
Затем учитель показывает написание цифры 3, т.е. значка, с помощью которого изображается число три.
Следующий этап урока — закрепление. Учитель предлагает найти в классной комнате множество, содержащее по три элемента; выполнить с помощью заданной мерки измерение длины отрезка или площади геометрической фигуры, В этом случае число выступает в новом качестве: оно выражает отношение одной величины к другой. Так, выполняя задание по измерению емкости банки с помощью кружки, ученики получают натуральное число как результат отношения одной емкости к другой. Такой подход приводит к расширению понятия о положительном числе, так как результатом измерения может быть натуральное число, дробное число (положительное рациональное), иррациональное число. Таким образом, рассматривая с первого класса натуральное число как результат измерения величин, ученики постигают причины возникновения любого положительного действительного числа, что очень важно для последующего обучения в школе.
Пример 2. Тема урока «Число нуль».
Учитель задает вопросы типа: «Сколько холодильников в классе?», «Сколько грузовых автомобилей в классе?», Дети отвечают, что этого ничего нет. Тогда учитель говорит, что это соответствует числу нуль и можно записать с помощью цифры 0.
Аксиоматический подход к понятию «натуральное число» базируется на следующих основных (неопределяемых) понятиях: «натуральное число» с выделенным числом «О» (или «I») и «непосредственно следовать за..,».
В целом ряде книг за выделенное число принимается число 1. На наш взгляд целесообразнее выделять число 0, так как методика его введения аналогична методике выделения любого однозначного натурального числа (см. примеры 1 и 2). Кроме того, легче вводить тогда использование линейки.
Свойства этих основных понятий, соотношение между ними раскрываются в аксиомах Пеано (итальянский математик). Приведем некоторые из них.
Аксиома 1. Нуль непосредственно не следует ни за каким натуральным числом.
Эта аксиома формируется у учащихся при пользовании линейкой для измерения длины отрезка: учитель подчеркивает, что линейку надо прикладывать так, чтобы начало отрезка совпадало с делением 0.
Аксиома 2. Для любого натурального числа существует только одно натуральное число, которое непосредственно следует за ним.
Эта аксиома формируется у учащихся с помощью вопросов: «Какое число идет за числом V? „Может ли за числом 2 идти число 5 ?“
Аксиома 3. Любое натуральное число непосредственно следует не более чем за одним натуральным числом.
Эта аксиома формируется у детей с помощью вопросов: „За каким числом идет число 5 ?“, „Может ли число 5 идти за числом 3 ?“, „За каким числом идет число О?“
Таким образом, аксиоматический подход к понятию натурального числа позволяет охарактеризовать следующие свойства натурального ряда чисел (порядковую структуру множества натуральных чисел).
1. Множество натуральных чисел бесконечно, с начальным элементом О и без конечного элемента.
2. Множество натуральных чисел упорядочено (любые два натуральных числа можно сравнить). »
3. Множество натуральных чисел дискретно (между двумя любыми натуральными числами можно поместить конечное множество натуральных чисел).
V. Операции над натуральными числами
Ранее уже неоднократно подчеркивалось, что в методике обучения операциям над натуральными числами следует отличать саму операцию от результата операции.
Смысл операций над натуральными числами и их законы формируются на теоретико-множественной основе. Нахождение результата операций раскрывается в аксиоматической теории. Так, операции сложения и умножения натуральных чисел базируется на следующих аксиомах
Операция сложения Операция умножения.
1. а + 0 = а; 3. а • 0 = 0;
2. а + b' я (а + b)' 4. а • b' = а ' b + а. Следствие: а + 1 = а'. Следствие: а • 1 =5 а.
Аксиомы 1 и 3 и следствия из этих аксиом ученики должны твердо знать Нахождение результата сложения (до таблиц сложения) определяется путем присчитывания по одному (т.е. используется первое следствие).
Нахождение результата умножения в начальных классах нельзя рассматривать с позиции аксиом 3 и 4. Поэтому в традиционной методике умножение рассматривается как частный случай сложения, что позволяет умножать натуральные числа только начиная с двух. Естественно, такой подход к операции умножения нельзя считать удачным, так как не позволяет найти результат умножения в таких случаях, как а • 1; а — 0;
    продолжение
--PAGE_BREAK--(а/b) • (с/а).
В разделах I и III достаточно подробно рассмотрена операция умножения как мощность декартова произведения и как сумма одинаковых величин. Существует и другой подход к операции умножения, с позиции которого можно обосновать не только умножение натуральных чисел, начиная с двух, но и умножение на 1 и на 0, умножение обыкновенных дробей. Этот подход заключается в том, что умножение рассматривается как переход от одной единицы измерения к другой Сформировать у учащихся смысл операции умножения с этой позиции можно на таких практических работах.
Пример 1. Нужно измерить емкость банки сначала кружками, а потом стаканами (рис. 2.18). В ходе измерения получили 5 кружек или 15 стаканов. Учитель обращает внимание на то, что стаканами измерять долго, и задает
<imagedata src=«43210.files/image025.png» o:><img width=«246» height=«104» src=«dopb211574.zip» v:shapes="_x0000_i1030">
Рис. 2.18
вопрос: «Нельзя ли узнать, не измеряя, сколько стаканов в банке?» Дети предлагают для этого измерять стаканами кружку. Так как в банке 5 кружек (старая мерка) и в одной кружке 3 стакана (новая мерка), то в банке 5 • 3 = 15 (стаканов).
Пример 2. Учитель предлагает быстро пересчитать тетради. Ученики считают по две тетради (старая мерка) и получают 15 пар, поэтому в пачке 15 — 2 = 30 (тетрадей).
Пример 3. Ученикам предлагается быстро измерить полоску и даются две мерки: в 1 дм и в 1 см Дети меряют сначала большой меркой и получают число 4. Так как 1 дм содержит 10 см (новая мерка 1 см), то вся полоска содержит 4 • 10 = 40 (см).
Пример 4. Задача. Сколько нужно плиток кафеля, чтобы обложить такую же стенку, которая изображена на рис. 31? Дети считают сначала рядами (1 ряд -старая мерка), а потом -сколько в ряду плиток (1 плитка — новая мерка). Всего плиток 4 • 9 = 36. •
Умножение на 1 можно объяснить так: пусть в примере 1 в кружке помещается ровно один стакан, тогда в банке будет 5 • 1 = 5 (стаканов).
Умножение на 0 можно объяснить на примерах, в которых новая мерка значительно больше старой мерки и измеряемой величины.
Нахождение результата вычитания основывается на следующем определении.
Определение. Разностью из натурального числа " а " натурального числа " b " называется такое натуральное число " с ", что а = b + с.
Таким образом, вычитание рассматривается как действие обратное сложению. Это позволяет находить результат вычитания не только путем отсчитывания по одному, но и используя зависимость между компонентами операции сложения: 5 — 2 = (5 — 1) -1 и 2 + П =5.
Нахождение результата деления основывается на следующем определении.
Определение. Частным от деления натурального числа " а" на натуральное неравное нулю число " b " называется такое натуральное число " с ", что а • b == с.
Так как деление есть операция обратная умножению, то для нахождения результата деления используется зависимость между компонентами операции умножения: 3 •П=6. На этом же основывается и составление таблиц вычитания и деления:
а) 2+3=5; 5 — 2=3;. б) 2 • 3 = 6; 6:2=3.
Деление с остатком в начальных классах основывается на следующем определении.
Определение. Делением натурального числа " а " на натуральное число «b» с остатком называется отыскание такого частного q и остатка г, что а = b • q + г, где г < b.
Согласно этому определению, наряду с записью, например, 23: 5 = 4 (остаток 3), ученикам должна даваться и такая запись: 23 = 5 • 4 + 3. Это
позволяет разнообразить примеры на деление с остатком: П =5*4+3 (проверка деления с остатком); 23 = П • 4 + П; 23 == 5 • О + О. Ученик + О. Учеников должны знать не только порядковую структуру множества натуральных чисел, которая была приведена выше, но и алгебраическую структуру натуральных чисел. Приведем ее.
1. В множестве натуральных чисел всегда выполнима операция сложения.
2. В множестве натуральных чисел всегда выполнима операция умножения.
3. а + b = b + а (переместительное свойство сложения).
4. а • b = b • а (переместительное свойство умножения).
5. (а + b) +с = а + (b +с) (сочетательное свойство сложения).
6. (а • b) • с =а • (b • с) (сочетательное свойство умножения).
7. (а+b) • с =а *с+b *с (распределительное свойство умножения относительно сложения).
8. а + 0 = а.
9. а • 0 = 0.
10.а + 1 = а'.
11. а • 1= а.
Операции над многозначными числами основываются на позиционной системе счисления.
Определение. Счислением (нумерацией) называется совокупность способов устного наименования и письменного обозначения чисел.
Существуют непозиционные и позиционные системы счисления.
В непозипионной системе счисления каждый знак (цифра) служит для обозначения одного и того же числа. Примером непозиционной системы счисления является римская нумерация, которой широко пользуются в настоящее время. Например, XII — это 10 + 1 + 1 =12.
Позиционная система счисления базируется на поместном значении цифр, заключающееся в том, что один и тот же знак (цифра) означает одно и то же число единиц разных разрядов независимо от того, на каком месте в записи числа стоит этот знак. Например, в числе 737 цифра 7 означает числа семь и семьсот.
Изучение темы «Нумерация чисел» учитель должен начинать с формирования представления о позиционной системе счисления, в которой дети не только знакомятся с существованием систем счисления с разными основаниями, но и понимают необходимость существования позиционной системы счисления. Это можно осуществить в ходе такой практической работы.
Пример 1. Дается задание измерить достаточно большой отрезок маленькой меркой (рис. 2.19). Дети уже знают, что лучше взять для измерения большую мерку, им предлагается тогда мерка, которая содержит 41маленьких мерки (большая мерка может содержать какое угодно число маленьких мерок, но обязательно целое их число). Ученики получили, например, что большая мерка поместилось 3 раза, а в остатке поместилось 2 маленькие мерки. В результате у них получилось число 32 с основанием системы счисления 4.
<imagedata src=«43210.files/image027.png» o:><img width=«205» height=«45» src=«dopb211575.zip» v:shapes="_x0000_i1031">
Рис. 2.19
В зависимости от длины измеряемого отрезка можно брать для измерения большие мерки, которые содержат по 2, 3, 4, 5,… маленьких мерок. Тем самым, ученики приходят к выводу, что существуют позиционные системы счисления с различными основаниями. Далее можно провести беседу о существовании в практической деятельности человека систем счисления с основанием 7 (число дней в неделе), 12 (число месяцев в году), 100 (число лет в веке), 60 (число минут в часе) и т. д.
В традиционном обучении при изучении нумерации чисел у учащихся отрабатываются понятия «десятки», «сотни», что приводит к смешению устной нумерации и письменной. Этого нельзя делать, потому, что это может привести к ошибкам. Например, дети часто говорят, что в числе 325 два десятка (вместо — 32 десятка), В дальнейшем это приводит к затруднениям в выполнении операций над многозначными числами, которые базируются на операциях над однозначными числами. Поэтому при изучении многозначных чисел нужно обращать внимание детей на разряды и на число единиц в разрядах. Например, в числе 6325 шесть единиц четвертого разряда, три единицы третьего разряда, две единицы второго разряда и пять единиц первого разряда. Такая работа позволит ученикам легче и быстрее усвоить операции над многозначными числами, которые производятся над разрядами. Законы операций над многозначными числами должны использоваться учителем для формирования вычислительных навыков.

VI. Числовые выражения. Числовые равенства и неравенства, их свойства
Любое число уже является числовым выражением. Если А и В -числовые выражения, то А + В, А — В, А • В, А: В также являются числовыми выражениями. Выполнив операции; которые имеют место в числовом выражении, получают значение числового выражения. Существуют выражения, которые не имеют значения. Например, выражение 28; 8 — 44 не имеет числового значения.
С первых дней пребывания в школе дети сталкиваются с различными числовыми выражениями и учатся находить их числовое значение. Значительно меньше в школе уделяется внимание числовым равенствам и неравенствам, их свойствам, что сказывается при их обучении в старших классах. Поэтому учитель должен предлагать учащимся достаточное количество упражнений следующих видов.
1. Являются ли данные равенства верными:
10-3*2=2*2; 5+2*3=6+4?
2. Являются ли данные неравенства верными:
8-3 • 2<3 +4; 14: (5 + 2) >2 + 3?
3. Зная, что 2 + 3 = 10: 2 и 4 +7 > & + 2, поставьте вместо звездочки знак " — ", " > ", " < ", не вычисляя значения числовых выражений, стоящих в правой и левой частях числовых равенств и неравенств:
(2 + 3) + 4 * 10: 2 + 4; (2 + 3) — 4 *10: 2 — 4;
(2 + 3) • 3 * (10: 2) • 3; 4+7-3*8+2-3;
(4 + 7) • 2 • (8 + 2) • 2.
VII. Выражение с переменными, его область определения
Если числовое выражение содержит и буквы, то мы имеем выражение с переменными. Например, 2а — 3; За + 2b с + 8.
Выражение с переменными обычно обозначают так: f(х); А(b; с); В(х; у) Если в выражение с переменными подставить вместо букв их значения, то получится числовое выражение.Те значения переменной, при которых выражение с переменной имеет числовое значение, называется областью определения выражения с переменной. Например, областью определения выражения с переменной 2а — 3 на множестве действительных чисел является все множество действительных чисел, а на множестве натуральных чисел — натуральные числа, начиная с двух (если а = 1, то 2 • 1 — 3 не является натуральным числом).
В начальных классах учитель обязан сформировать понятие о выражении с переменной и его области определения. Покажем на примерах, как это можно сделать.
Пример 1. Цель; сформировать у детей понимание необходимости введения в числовое выражение букв и представление об области определения выражения с переменной.
Учитель записывает на доске несколько числовых выражений: 1 + 2; 2+2; 3+2; 4+2. Затем он обращает внимание на то, что первое слагаемое меняется, а второе — нет. Поэтому, чтобы не продолжать ряд,
можно все эти выражения заменить одним П+ 2, где в окошечко можно подставить любое натуральное число. Учитель предлагает в окошечко подставить числа 1; 2; 3; 4; 5 и найти значение получившихся числовых выражений. Здесь область определения задана учителем.
Пример 2. Цель: научить учащихся самим находить область определения выражения с переменной.
Учитель спрашивает, какие числа можно подставить в следующие выражения: 8 — П; 3-2; П: 2; 5 – П: 3; П: 5 — 7. Дети подбором находят область определения каждого выражения с переменной.
Пример 3. Цель: научить учащихся находить область определения выражения с переменной в задачах.
Учитель предлагает следующую задачу. Сколько килограммов сахара, расфасованного в пакеты, принесли Коля и Оля, если в каждом пакете по два килограмма сахара?
Ученики записывают задачу в виде выражения 2а + 2b (или 2 • (а + b)), где а — количество пакетов, которые принес Коля, и b — количество пакетов, которые принесла Оля. Затем в ходе анализа задачи дети делают вывод, что Коля может нести не более 8 кг (от одного до четырех пакетов), а Оля — не более 6 кг (от одного до трех пакетов). Таким образом, ае{1;2;3;4} и
b е { 1; 2; 3}.
Задача имеет 12 решений, если перебрать все варианты наборов а и b.
VIII. Уравнения и неравенства, область определения, множество решений. Свойства уравнений и неравенств
Равенство (неравенство), содержащее неизвестное, называется уравнением (неравенством). Множество, элементы которого можно подставить в уравнение (неравенство) вместо неизвестного, называется областью определения уравнения (неравенства).
Те значения неизвестного из области определения, при которых уравнение (неравенство) обращается в верное числовое равенство (неравенство), называется корнями уравнения (множеством решения неравенств).
Если область определения уравнения (неравенства) не задана, то она совпадает с областью определения выражений, входящих в данное уравнение (неравенство). Например, областью определения уравнения (3 х2): х • 2 = 4 является множество (- °о; 0) U(0; оо).
Два уравнения (неравенства) называются равносильными, если у них совпадают области определения и множества решений.
Например, уравнения (3 х2 ): х — 2 = 4 (1) и 3 х — 2=4 (2) не равносильны, так как их области определения не совпадают. Уравнения Корень (2х — 1) 2 = х (3) и 2 х — 1 = х2 (4) не равносильны, хотя их области определения и совпадают, так как уравнение (3) имеет один корень (х = 1), а уравнение (4) — два корня (х = 1; х = 1).
При решении любого уравнения (неравенства) его заменяют более простым равносильным уравнением (неравенством). В начальных классах формируется следующие два основных свойства равносильных преобразований.
1. Если к обеим частям уравнения (неравенства) прибавить (вычесть) выражение, имеющее ту же область определения, что и данное уравнение (неравенство), то получим уравнение (неравенство) равносильное данному.
Например, уравнения Зх=2х+4 и 3х- 2х=4 равносильны.
2 а. Если обе части уравнения умножить на выражение, имеющее ту же область определения, и которое не обращается в нуль на этой области определения, то получим уравнение, равносильное данному.
Например уравнения (3 х — 1) • (х2 + 1) = 5 (х2 + 1) и 3х — 1=5 равносильны, а (3 х 1)* (х + 1) = 5 (х + 1) и 3 х — 1=5 не равносильны.
2 б. Если обе части неравенства умножить на выражение, имеющее ту же область определения и большее нуля на этой области определения, то получим неравенство, равносильное данному.
Например, неравенства (3 х — 1) • (х2 I) > (5 х2 1) и (3 х — 1) > 5 равносильны.
В начальных классах формируется понятие об уравнении и неравенстве, их области определения, множестве решений, равносильных преобразованиях. Покажем на примерах, как можно построить обучение по их формированию.
Пример 1. Ученикам предлагается записать с помощью уравнения решение такой задачи. Сколько детей взяло яблоки, если в вазе лежало 10 яблок и каждый из детей взял по 2 яблока и осталось в вазе два яблока?
Ученики записывают 10 — 2 х == 2 и определяют, что вместо «х» можно подставить числа 1, 2, 3, 4, 5 (находят область определения). Подбором они убеждаются, что х == 4 является корнем уравнения.
Пример 1. Для отработки умений находить область определения и множество решений неравенства учащимся можно предложить ответить на вопрос: «Какие числа можно подставить в неравенство 8 — х < 3 вместо „х“ и при каких из них неравенство превращается в верное числовое неравенство?» (Вместо «х» можно взять любое число, которое меньше 9; при х = б; 7; 8 получается верное числовое неравенство).
Пример 3. Для формирования понятий о равносильных уравнениях (неравенствах) и их свойствах ученикам можно предложить следующее задание.
Найдите область определения и множество решений неравенства 8 — х < 3 (1), Пользуясь неравенством (1), не решая неравенства 8-х+ 4 < 3 + 4 (2) и (8 — х) • 2 < 3 • 2 (3), найдите их области определения и множество решений.
IX. Функция: область определения, область значений, способы заданий.
Определение. Функцией называется такая зависимость переменной у от переменной X, при которой каждому значению х соответствует единственное значение у. Значения, которые может принимать х называются областью определения функции. Значения, которые принимает у называются областью значений функции.
Если функциональное соответствие задается на числовом множестве, то мы имеем числовую функцию.
Числовую функцию, как и любую другую, можно задать аналитически, парами, таблицей, графом, графиком на координатной плоскости. Например, функция у =2х-1 задана аналитически.
В начальных классах функция чаще всего задается словесно (в виде текста задачи) таблицей, выражением, парами.
В начальных классах учитель должен формировать у учащихся понятие об области определения функции, области значений функции, однозначности соответствия, способах задания функции.
Пример. Детям предлагается записать в виде выражения решение следующей задачи.
Сколько килограммов крупы, расфасованной в пакеты по 2 кг осталось перенести детям, если было 20 пакетов, и каждый ребенок берет один пакет?
Дети, записывая 20 — 2 X, учатся задавать функцию аналитически.
Для отработки умений находить область определения учитель предлагает найти наибольшее количество детей, которое необходимо для переноса крупы.
Для отработки умений находить область значений функции учитель предлагает ответить на вопрос задачи, если х = 1; 2; 3;…; 10. При этом ученики учатся задавать функцию парами и таблицей:
х
    продолжение
--PAGE_BREAK----PAGE_BREAK---                     мотивационный (постановка проблемы);
-                     составления схемы (показ процесса решения);
-                     наглядная фиксация (составление схем, опор);
-        работа по схемам (работа с моделями, предметами);
-                     работа с описаниями.
Ученики далеко не всегда смогут сразу запом­нить все звенья введенных знаний и все условия для подведение объекта под понятие. Вот почему их работа должна сопровождаться внешней, наглядной фиксацией зна­ний и формируемой деятельности.
1.       Признаки прямоугольника:
1) четырех угольник;
2) параллельные стороны равны;
3) прямой угол.
2.       Логическое правило работы с признаками:
1)   <img width=«2» height=«86» src=«dopb211577.zip» v:shapes="_x0000_s1132">Если все признаки «+», ответ «+».
1.        +
2.        + +
3.        +
<img width=«2» height=«86» src=«dopb211577.zip» v:shapes="_x0000_s1133"><img width=«2» height=«86» src=«dopb211577.zip» v:shapes="_x0000_s1134">2) Если хотя бы один признак «-», ответ «-».
а) 1.   +                           б)      1.      ?
 2.      +       ?                           2.       -        —
 3.      -                                     3.       +      
<img width=«2» height=«86» src=«dopb211578.zip» v:shapes="_x0000_s1135">3)      Если хотя бы один признак «?» и нет признаков «-», ответ будет «?».
+
??
+
3.       Предписание по выполнению задания:
1)  Прочтите задание.
2)  Выделите условие и вопрос задания.
3)  Прочтите первый признак понятия.
4)  Проверьте, есть ли он у данного объекта.
5)  Отметьте результат с помощью знаков «+», «-», «?».
6)  Проделайте то же самое с последующими призна­ками.
7)  Сравните полученные результаты с логическим правилом.
8) Запишите ответ с помощью «+», «-», «?».
При этом важно, чтобы все используемые характеристики были зафиксированы, четко выделены и в дальнейшем находи­лись в распоряжении учащихся. Для этого используется доска, различные таблицы, памятки. Например:
Таблица 2.3
Существенные признаки фигур
Понятия
Бат
Дек
Роц
Муп
Площадь основания
<img width=«26» height=«26» src=«dopb211579.zip» v:shapes="_x0000_s1136">
<img width=«26» height=«26» src=«dopb211580.zip» v:shapes="_x0000_s1137">
<img width=«62» height=«62» src=«dopb211581.zip» v:shapes="_x0000_s1138">
<img width=«62» height=«62» src=«dopb211581.zip» v:shapes="_x0000_s1139">
Высота
<img width=«2» height=«26» src=«dopb211582.zip» v:shapes="_x0000_s1140">
<img width=«2» height=«50» src=«dopb211583.zip» v:shapes="_x0000_s1141">
<img width=«2» height=«26» src=«dopb211584.zip» v:shapes="_x0000_s1142">
<img width=«2» height=«50» src=«dopb211585.zip» v:shapes="_x0000_s1143">
Логическая схема распознавания
Таблица 2.4
Площадь основания
+
+


+
?

?
?
Высота
+

+

?
+
?

?
Ответ
+



?
*


?
В результате работы над этими заданиями учащиеся не только запомнят без специального заучивания признаки понятия и логическое правило подведения под понятие, но и научатся правильно применять то и другое, т.е. освоят один из логических приемов работы с понятиями. Дети сразу усваивают целую систему понятий, в данном случае — искусственных (бат, дек, роц, муп), которые были рассмотрены нами при анализе обобщенности действия. Каждое понятие характеризуется двумя существенными признаками: величина площади основания и высоты. Дети имеют мерки, по которым определяют, большая или маленькая площадь (высота). Меркой для площади служит монетка. Если фигурка умещается на монетку, значит, «донышко» (основание) маленькое, если не умещается — «донышко» большое. Эталоном высоты служит спичка: если «рост» меньше или равен спичке -фигурка низкая, у нее «маленький рост»; если высота превосходит спичку — высокая, у нее «большой рост».
Во второй таблице представлено логическое правило распознавания в развернутом виде, где предусмотрены все сочетания признаков, с которыми встретится ребенок в процессе работы.
Слишком долго задерживать учащихся на этапе внешних практических действий не следует. Как только они научились их выполнять правильно, надо действия переводить в теоретическую форму: учить обучаемых оперировать признаками понятия и логическим правилом без опоры на внешние предметы. Теперь ученики называют признаки по памяти. Для анализа им теперь уже даются не предметы и модели, а их описания. Так, если мы продолжим работу с понятием прямоугольник, то на этапе внешнеречевых действий учащимся можно предложить задания такого типа: «Дан четырехугольник с равными параллельными сторонами. Будет ли эта фигура прямоугольником?» К задаче не дается ни чертежа, ни модели. Учащиеся учатся теперь анализировать словесные условия. Они читают (или слушают) и выделяют то, что касается первого признака. Если задание дано в письменном виде, то учащиеся должны подчеркнуть слово «четырехугольник» и поставить знак того, что первый признак имеется: «1. +». Таким же образом идет работа со вторым признаком. После этого учащиеся определяют, что же у них получилось: первый признак есть, второй признак так же известен, «2. +». Третий признак не известен. «3. ?»
Результаты работы с признаками фиксируются обычно на бумаге, но могут и просто называться. Для оценки полученных результатов учащиеся теперь уже вспоминают логическое правило подведения, доказывают верность своего ответа. При этом они все время опираются именно на те свойства предметов, которые существенны для понятия. При таком обучении у всех учащихся формируется умение выделять в предметах существенные свойства и на их основе решать, подходят предметы под данное понятие или не подходят.
Для эффективного формирования математических понятий необходима специально организованная работа над умственным приемом классификации, которая составляет внутреннюю структуру понятия, его механизм, это позволит обеспечить успешность овладения ими.
Цель итогового эксперимента: исследовать влияние предложенной системы работы на уровень сформированности математических понятий с использованием умственного приема классификации в экспериментальном (1-В) и контрольном (1–Г) классе.
С целью выявления уровня сформированности математических понятий учащимся 1-В (экспериментального) и 1-Г (контрольного) классов была предложена методика Л. С. Выготского с измененными заданиями.
Тест № 1
Задание состоит в следующем: школьнику показывали одну фигуру (№6) зеленого цвета, определенной формы (экспериментальное понятие нат), и просили ее запомнить. После этого фигура – образец убиралась, и перед ребенком выкладывался набор из 16 фигур (см. Приложение А рис.1) отличающихся по форме (2 вида), по цвету (красный и зеленый), по величине (2 варианта), и ребенку предлагалось выбрать ту фигуру, которую ему показывали. Время проведения – 5 минут.
В правильности ответа ученик мог убедиться, перевернув фигуру (отмечена +), при неправильном ответе он должен объяснить, почему это не та фигура.
Тест № 2
«Найди прямоугольник»
Задание состоит в следующем: на столе выкладываются четырехугольники (см. Приложение А рис. 2), ученик должен выбрать из них все квадраты(подвести под понятие квадрат), которые для сложности были разных вариантов: разного цвета, размера. Время — проведения 5 минут.
Результаты эксперимента приведены в таблицах 2.5 и 2.6.
Таблица 2.5
Результаты итогового эксперимента (1 – Г).

Фамилия, имя учащихся Уровень сформированности понятий
1
Андронова Анастасия
II
2
Андросюк Дмитрий
II
3
Атемов Разим
I
4
Бабешко Татьяна
II
5
Боймистрюк Роман
I
6
Болик Георг
III
7
Васильева Людмила
II
8
Вашкевич Наталья
II
9
Воропаев Владимир
II
10
Данилов Никита
II
11
Дашкова Валентина
I
12
Дорогин Иван
II
13
Дубровина Оксана
I
14
Злобин Сергей
III
15
Калинина Дарья
II
16
Красик Алла
II
17
Колмыкова Алена
III
18
Лысак Юрий
I
19
Ляшок Дарья
II
20
Менаджиева Венера
I
21
Сосько Рита
II
22
Сейдаметова Ленара
II
23
Филлипова Софья
II
24
Эмиросанов Эльдар
I
25
Эмирометова Фарида
I
26
Яблоненко Александр
I
Таблица 2.6
Результаты итогового эксперимента (1 – В).

Фамилия, имя учащихся Уровень сформированности понятий
1
Абляметова Эльнара II
2
Аджи-Аметов Эскандер
II
3
Алексеева Валерия
II
4
Боков Ахмед
III
5
Боков Тимур
I
6
Бутенко Сергей
III
7
Васильев Михаил
II
8
Галкина татьяна
II
9
Голуб Дарья
I
10
Загоруй Алексей
II
11
Иванщик Ирина
II
12
Кириченко Александр
II
13
Кенджаев Элемдар
III
14
Корягин Всеволод
III
15
Котеленец Вячеслав
I
16
Никитин Никита
II
17
Незамаев Иван
II
18
Мартыненко Тамила
II
19
Маслюк Дарья
II
20
Салмина Ксения
II
21
Соловьев Юрий
III
22
Сейдаметова Кериме
III
23
Таранщук Илья
I
24
Толосиенко Тимофей
I
25
Яблонева Виктория
II
26
Яценко Станислав
II
В результате было установлено, что уровень сформированности математических понятий в 1-В (экспериментальный) классе следующий: низкий уровень показало 6 учеников (23 %), средний – 14 (54%), высокий – 6 (23 %); в 1 — Г (контрольный) классе: низкий уровень сформированности понятий показало 9 учеников (35 %), средний – 13 (50 %), высокий – 4 (15 %).Таким образом, проанализировав полученные результаты в контрольном и экспериментальном классах, мы можем убедиться в эффективности предложенной системы. Полученные данные наглядно представлены и в графиках 2.1. – 2.3., они позволяют судить о динамике формирования математических понятий с использованием умственного приема классификации.

ЗАКЛЮЧЕНИЯ И ВЫВОДЫ
1.       Во время работы над дипломным проектом было изучено состояние данной проблемы и выявлено следующее: в психолого-педагогической теории большое внимание уделяется математическим понятиям и приемам умственной деятельности, однако конкретной программы работы над умственными приемами, которые должны быть сформированы при изучении данного предмета нет, поэтому работа над развитием логического мышления школьников идет без знания системы необходимых приемов. Образование и становление понятий – сложный процесс, в котором применяются такие приемы умственной деятельности, как анализ, синтез, сравнение, классификация, обобщение, абстрагирование. Таким образом, эти приемы составляют внутреннюю структуру понятия, его механизм и не овладев ими учащиеся испытывают трудности в усвоении системы математических понятий.
2. В начальных классах впервые каждое понятие вводится наглядно, путем наблюдения конкретных предметов или практического оперирования. Учитель опирается на знание и опыт детей, которые они приобрели еще в дошкольном возрасте. Ознакомления с математическими понятиями фиксируется с помощью термина или термина и символа. Математические понятия служат опорным моментом в познании действительности и являются своеобразным итогом познания. Поэтому понятия являются одной из главных составляющих в со­держании любого учебного предмета начальной школы, в том числе — и математики. Понятийное мышление формируется в начальных классах и раскрывается, совершенствуется в течение всей жизни.
3.       При формировании математических понятий у младших школьников необходимо соблюдать следующие методические требования:
-         работа должна вестись целенаправленно и осознанно, в основе которой должны лежать принципы системности и последовательности;
-          необходим учет характера изучаемого материала и сравниваемых объектов;
-         учет возрастных, индивидуальных особенностей учеников, уровня их развития.
4. Понимание и своевременное использование учителем тех или других видов определений математических понятий — одна из условий формирования у учеников твердых знаний об этих понятиях. В организации учебной деятельности младших школьников в процессе формирования математических понятий особую роль играет прием классификации. Этот прием умственной деятельности является средством упорядочения изучаемых объектов, установления закономерных связей между ними. Именно в этом случае классификация выявляет существенные сходства и различия между предметами. Классификация основывается на способности видеть общее в каждом конкретном единичном случае и преследует цель уточнить, обобщить знание о связях и отношениях между изучаемыми объектами. Применение приема классификация на уроках позволяет существенно расширить имеющиеся в практике приемы работы.
5.       Было выявлено три уровня владения младшими школьниками математическими понятиями: низкий, средний и высокий. В процессе опытно-экспериментальной части было установлено, что систематическое и целенаправленное формирование и использование приема умственной деятельности классификации способствует глубокому и сознательному усвоению математических понятий младшими школьниками.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
1.                Державна національна доктрина. Затв. Указом Президента України від 17 квітня 2002 р. № 347 // Освіта, — 2002. — № 26.
2.                Державна національна програма «Освіта. Україна XXI століття”. Затв. постановою Кабінету Міністрів України від 3 грудня 1993, № 896 // Освіта, — 1993. — № 44-46.
3.                Державний стандарт початкової загальної освіти. Затв. постановою Кабінету Міністрів України від 16.11.2000р. №1717// Поч. школа. — 2001. — № 1. – С. 28.
4.                Слєпкань З.І., Шкіль М.І., Дороговцев А.Я. та ін. Концепція базової математичної освіти в Україні.- К.: Мін. осв. України, Інститут системних досліджень, 1993. – 31 с.
5.                Аверьянов А.Н. Системное познание мира: Методологические проблемы. — М.: Политиздат, 1985. – 263 с.
6.                Актуальные проблемы начального обучения математики в начальных классах / Моро М.И., Пышкало А.М. и др. — М.: Педагогика, 1977.- 247 с.
7.                Бабанский Ю.К. Оптимизация учебно-воспитательного процесса. – М.: Просвещение, 1982. – 192 с.
8.                Бертон В.А. Принципы обучения и его организация. – М.: Учпедгиз, 1934с.
9.                Белоколонна Н. В. Iнтелактуальний розвиток школярiв на уроках мови. // Початкова школа – 1998. — № 1.

еще рефераты
Еще работы по педагогике