Реферат: Производственная структура нефтегазодобывающего объединения

--PAGE_BREAK--.
Назначение и классификация буровых долот

Буровые долота в процессе вращательного бурения могут оказывать различное воздействие на горную породу. В зависимости от способа отделения частиц горной породы от ее массива на забое различают долота:
· дробящего (ударного) действия;
· дробяще-скалывающего (ударно-сдвигающего) действия;
· истирающе-режущего действия;
· режуще-скалывающего действия.
Бурят нефтяные и газовые скважины в основном долотами, разрушающими всю поверхность забоя. Такие долота относят к породоразрушающим инструментам сплошного бурения. В разведочном и поисковом бурении в определенных интервалах отбирается образец породы в виде столбика (керна) с помощью бурильных головок, разрушающих породу по кольцу. Для разбуривания цементных пробок, зарезки новых стволов при многозабойном бурении, расширения пробуренных скважин и других работ применяют специальные буровые долота.
Конструктивное оформление бурового породоразрушающего инструмента основано на реализации способа воздействия на горную породу и зависит от его назначения. Наибольшее распространение в практике буровых работ получили породоразрушающие инструменты следующих типов: шарошечные долота дробяще-скалывающего и дробящего действия для бурения пород любой твердости. В зависимости от конструктивного исполнения при разрушении горной породы производится ударное, или сдвигающее и ударное воздействие на забой вооружением шарошки. На шарошечные долота приходится более 90 % общего объема бурения; алмазные и твердосплавные <img width=«682» height=«1076» src=«ref-2_486227915-5336.coolpic» v:shapes="_x0000_s1106 _x0000_s1107 _x0000_s1108 _x0000_s1109 _x0000_s1110 _x0000_s1111 _x0000_s1112 _x0000_s1113 _x0000_s1114 _x0000_s1115 _x0000_s1116 _x0000_s1117 _x0000_s1118 _x0000_s1119 _x0000_s1120 _x0000_s1121 _x0000_s1122 _x0000_s1123 _x0000_s1124 _x0000_s1125">буровые долота истирающе-режущего действия для бурения твердых, но хрупких пород. Особенно эффективны алмазные долота при бурении крепких пород на больших глубинах; лопастные долота режуще-скалывающего действия для бурения мягких и пластичных пород роторным способом.
Буровое долото испытывает при работе значительные статические и динамические осевые нагрузки и действие переменного крутящего момента. Поэтому их конструкция должна быть рассчитана на экономически обоснованный срок службы, так как долото является инструментом одноразового использования. Восстановление долот экономически не оправдывается при современной технике их производства. Попытки создания долот со сменными рабочими органами до настоящего времени не дали положительных результатов.
 Конструкция и особенности эксплуатации турбобуров
Турбобур представляет собой забойный гидравлический двигатель, снабженный осевой опорой, в котором гидравлическая энергия потока промывочной жидкости преобразуется в механическую работу вала, к которому прикрепляют породоразрушающий инструмент. Турбобур опускают в скважину на бурильной колонне, которая по мере углубления скважины наращивается с поверхности новыми бурильными трубами. В качестве гидравлического двигателя в турбобуре применяют многоступенчатую осевую турбину.
Гидравлические двигатели, в которых используется кинетическая или скоростная энергия потока жидкости, называют турбинами. В турбинах работа совершается главным образом в результате изменения количества движения жидкости.
<img width=«687» height=«1075» src=«ref-2_486233251-5310.coolpic» v:shapes="_x0000_s1126 _x0000_s1127 _x0000_s1128 _x0000_s1129 _x0000_s1130 _x0000_s1131 _x0000_s1132 _x0000_s1133 _x0000_s1134 _x0000_s1135 _x0000_s1136 _x0000_s1137 _x0000_s1138 _x0000_s1139 _x0000_s1140 _x0000_s1141 _x0000_s1142 _x0000_s1143 _x0000_s1144 _x0000_s1145">В турбобурах применяют многоступенчатые осевые турбины лопастного типа. На рис. 1 схематично изображена одна ступень турбины турбобура, состоящая из статора и ротора.
Турбина работает следующим образом. Поток промывочной жидкости через бурильную колонну подается в первую ступень турбобура. В статоре первой ступени происходит формирование направления потока жидкости, т.е. жидкость, пройдя каналы статора, приобретает направление, указанное стрелкой А. Таким образом, статор является направляющим аппаратом турбины.
Потоки жидкости из каналов статора поступают на лопатки ротора под заданным углом и осуществляют силовое воздействие на ротор, в результате которого энергия движущейся жидкости создает силы, стремящиеся повернуть ротор, жестко связанный с валом турбины. Поток жидкости из каналов ротора первой ступени поступает на лопатки направляющего аппарата второй ступени, где вновь происходят формирование направления движения потока жидкости и подача ее на лопатки ротора второй ступени. На роторе второй ступени также возникает крутящий момент. В результате жидкость под действием энергии давления, создаваемой поверхностным насосом, проходит все ступени турбины турбобура и через специальный канал подводится к долоту. В многоступенчатых турбобурах крутящие моменты всех ступеней суммируются на валу.
В процессе работы турбины на статорах, закрепленных неподвижно в корпусе турбобура, создается реактивный момент, равный по значению, но противоположный по направлению. Реактивный момент через корпус турбобура передается на бурильные трубы и осуществляет их закручивание на определенный угол, зависящий от жесткости и длины бурильной колонны. Источником энергии в пределах рабочего органа турбины является скоростной напор потока жидкости, создаваемый вследствие перепада давления на входе в турбину и выходе из нее.
    продолжение
--PAGE_BREAK--В процессе бурения осевая нагрузка на долото передается через турбобур, так как его обычно устанавливают непосредственно над породоразрушающим инструментом. Для восприятия и передачи осевой нагрузки турбобур снабжают специальной опорой, размещаемой в верхней или нижней части корпуса турбобура. Вал турбобура также снабжается радиальными опорами, предназначенными для центрирования вала, работающего при высоких осевых нагрузках и частотах вращения.
В качестве осевой опоры в серийных турбобурах применяют резино-металлические подшипники скольжения. Попытки использовать в качестве осевых опор стандартные упорные подшипники качения не дали положительных результатов. В 1960 г. во ВНИИБТ для турбобуров удалось разработать многорядную шаровую опору специальной <img width=«684» height=«1067» src=«ref-2_486238561-5265.coolpic» v:shapes="_x0000_s1146 _x0000_s1147 _x0000_s1148 _x0000_s1149 _x0000_s1150 _x0000_s1151 _x0000_s1152 _x0000_s1153 _x0000_s1154 _x0000_s1155 _x0000_s1156 _x0000_s1157 _x0000_s1158 _x0000_s1159 _x0000_s1160 _x0000_s1161 _x0000_s1162 _x0000_s1163 _x0000_s1164 _x0000_s1165">конструкции.
Резинометаллический подшипник состоит из нескольких ступеней. Каждая ступень включает подпятник, закрепляемый в корпусе, и диск, сидящий на валу турбобура. Кольцо служит для защиты вала турбобура от изнашивания и для обеспечения заданного расстояния между дисками пяты. Подпятник по дисковой части облицован резиной, т.е. по верхней, нижней и внутренней цилиндрической поверхностям. Корпус подпятника имеет каналы для пропуска промывочной жидкости.
Радиальная резинометаллическая опора турбобура представляет собой корпус, внутренняя поверхность которого облицована резиной. В качестве нижней радиальной опоры используют ниппель. Резиновая обкладка ниппеля выполняет также функции сальникового уплотнения.
Работоспособность резинометаллических подшипников турбобура в абразивной среде в различных нефтяных районах страны колеблется в пределах 50--150 ч. Этим временем определяется межремонтный срок работы турбобура. Сравнительно высокая работоспособность резинометаллических подшипников турбобура объясняется тем, что твердые частицы, находящиеся в промывочной жидкости, попадая в зазор между эластичной облицовкой подпятника и стальной пятой, вдавливаются в резиновую поверхность, вследствие этого сила прижатия твердых частиц к стальному диску определяется упругостью резины и не зависит от удельного давления между металлической и резиновой поверхностями. Износ таких трущихся поверхностей в 4 --6 раз ниже, чем при работе двух твердых поверхностей, находящихся в абразивной среде.
Эластичная обкладка подпятников осевой опоры турбобура позволяет равномерно распределять осевую нагрузку по ступеням в пределах 0,5 — 1,0 МПа. Коэффициент трения при промывке водой в резинометаллической опоре составляет 0,04 — 0,10, в глинистом растворе — 0,06 — 0,16.
Осевая опора качения представляет собой радиально — упорный многорядный бессепараторный шарикоподшипник. Одна ступень подшипника состоит из наружного и внутреннего 2 рабочих колец, между парами которых размещается шарик 3. Расстояние между рабочими кольцами определяется размерами распорных колец — наружного 4 и внутреннего 5. От попадания крупных абразивных частиц подшипник защищен сальником. Ввиду того, что бессепараторные подшипники работают в абразивной среде, большое влияние на их <img width=«689» height=«1059» src=«ref-2_486243826-5330.coolpic» v:shapes="_x0000_s1166 _x0000_s1167 _x0000_s1168 _x0000_s1169 _x0000_s1170 _x0000_s1171 _x0000_s1172 _x0000_s1173 _x0000_s1174 _x0000_s1175 _x0000_s1176 _x0000_s1177 _x0000_s1178 _x0000_s1179 _x0000_s1180 _x0000_s1181 _x0000_s1182 _x0000_s1183 _x0000_s1184 _x0000_s1185">работоспособность оказывает правильная приработка опоры.
 Конструкция и особенности эксплуатации электробуров
Наряду с гидравлическими в бурении используют и электрические машины — электробуры.
Электробур — это электрическая забойная машина, своеобразный электродвигатель, смонтированный в трубном корпусе малого диаметра и предназначенный для привода долота на забое скважины.
Современный электробур представляет собой, как правило, асинхронный маслонаполненный двигатель с короткозамкнутым ротором.
Конструкция промышленного электробура была разработана в СССР в 1937 — 1940 гг. группой инженеров (А.П. Островский, Н.В. Александров, Ф.Н. Фоменко, А.Л. Ильский, Н.Г. Григорян и др.). Последующие опытно-конструкторские работы позволили значительно модернизировать электробур по сравнению с первыми образцами: была создана безредукторная машина, мощность на валу электробура была увеличена в 2 — 3 раза (от 70 до 120 — 230 кВт) и наряду с этим уменьшен наружный диаметр. Серийное производство электробуров в СССР было налажено с 1956 г.
В настоящее время в ряде районов страны этим способом ежегодно бурят 200 — 250 тыс. м пород. Хотя указанный объем многократно уступает объему турбинного бурения в нашей стране, принципиальная схема подачи электрической энергии к забою скважины и использование погружного электрического двигателя для привода долота имеют неоспоримые преимущества. Однако конструктивные трудности, невысокие эксплуатационно-технические показатели и большая стоимость машины на данном этапе пока сдерживают применение этого вида техники в бурении.
Размерный ряд электробуров предусматривает их выпуск с наружными диаметрами корпуса 164, 170, 185, 215, 240, 250 и 290 мм. Более распространен электробур диаметром 170 мм. В обозначении электробура первое число — его наружный диаметр, второе — число <img width=«681» height=«1076» src=«ref-2_486249156-5250.coolpic» v:shapes="_x0000_s1186 _x0000_s1187 _x0000_s1188 _x0000_s1189 _x0000_s1190 _x0000_s1191 _x0000_s1192 _x0000_s1193 _x0000_s1194 _x0000_s1195 _x0000_s1196 _x0000_s1197 _x0000_s1198 _x0000_s1199 _x0000_s1200 _x0000_s1201 _x0000_s1202 _x0000_s1203 _x0000_s1204 _x0000_s1205">полюсов обмотки статора (например, Э215-10). Могут добавляться буквы «М», обозначающая модернизированную модель, и «Р» — для редукторных электробуров. Обозначение электродвигателя содержит сведения о наружном диаметре корпуса, общей длине магнитопровода с длиной немагнитопроводных пакетов и о числе полюсов. Например, маркировка МАП1-17-658/6 расшифровывается следующим образом: МАП — мотор асинхронный погружной; 1 — для электробура; 17 — наружный диаметр корпуса в см; 658 — общая длина магнитопровода и немагнитных пакетов статора в см; 6 — число полюсов.
    продолжение
--PAGE_BREAK--Выпускаемый промышленностью электробур включает трехфазный асинхронный маслонаполненный двигатель А и маслонаполненный шпиндель Б на подшипниках качения.
В трубном корпусе электробура размещены пакеты магнитопроводной стали статора б; они разделены пакетами немагнитопроводной стали в местах расположения радиальных шариковых опор ротора. Пакеты ротора 7 с алюминиевой обмоткой насажены на полом валу 5 двигателя. Ротор расположен в статоре с зазором 0,5 — 0,6 мм на сторону.

Буровые нефтяные насосы



Буровые насосыи установки представляют собой, как правило, поршневые и плунжерные насосы, используемые для нагнетания жидких сред (глинистых, цементных, солевых растворов). Эти насосы применяются при промывочно-продавочных работах и цементировании нефтяных и газовых скважин в процессе их бурения и капитального <img width=«698» height=«1074» src=«ref-2_486254406-5363.coolpic» v:shapes="_x0000_s1206 _x0000_s1207 _x0000_s1208 _x0000_s1209 _x0000_s1210 _x0000_s1211 _x0000_s1212 _x0000_s1213 _x0000_s1214 _x0000_s1215 _x0000_s1216 _x0000_s1217 _x0000_s1218 _x0000_s1219 _x0000_s1220 _x0000_s1221 _x0000_s1222 _x0000_s1223 _x0000_s1224 _x0000_s1225">ремонта, а также для нагнетания жидкости в пласт для интенсификации добычи нефти.
Приводом насоса является электродвигатель или двигатель внутреннего сгорания. Часто насосы монтируются на шасси автомобиля или на салазках (санях).
Среди поршневых и плунжерных насосов
буровые насосыявляются наиболее мощными и это определяет способ регулирования подачи посредством коробки передач, используемой в конструкции этих насосов. Регулирование подачиосуществляется ступенчато. Конструкция отдельных насосов предусматривает возможность изменения подачи за счёт применения сменных деталей гидроблока (гильз и поршней разных диаметров).
конструкция горизонтального двухпоршневого насоса НБ-125. У двухпоршневого насоса поршни работают в противофазе, что обеспечивает наибольшую равномерность подачи. Дальнейшее увеличение равномерности подачи обеспечивается мембранным компенсатором. Насос имеет встроенный зубчатый редуктор. Передача крутящего момента от электродвигателя или двигателя внутреннего сгорания к редуктору осуществляется через клиноремённую передачу
.


Насосы типа НТП спроектированы для передвижных установок, где к насосам предъявляются дополнительные требования по снижению массы и габаритов.
Плунжерный насос НТП-300 — высоконапорный. В насосе НТП-63, имеющем меньший напор, для уменьшения массы и габаритов использована «бескрейцкопфная» конструкция.
Существуют насосные установка АНЦ- 320К (цементировочный агрегат) на автомобильном ходу,
установка АНЦ-320С (цементировочный агрегат) на салазках,
насосная установка УНБ-300-40 с центробежным насосом-гомогенизатором.



Буровые насосы, являясь насосами объёмного типа, обладают свойством самовсасывания, но в описательной таблице традиционно указывается принятая характеристика всасывающей способности этой группы насосов — допускаемая вакуумметрическая высота всасывания.


Насосы для откачки пластовой жидкости из скважины, как указано выше, подразделяются на скважинные центробежные, скважинные <img width=«698» height=«1074» src=«ref-2_486259769-5352.coolpic» v:shapes="_x0000_s1226 _x0000_s1227 _x0000_s1228 _x0000_s1229 _x0000_s1230 _x0000_s1231 _x0000_s1232 _x0000_s1233 _x0000_s1234 _x0000_s1235 _x0000_s1236 _x0000_s1237 _x0000_s1238 _x0000_s1239 _x0000_s1240 _x0000_s1241 _x0000_s1242 _x0000_s1243 _x0000_s1244 _x0000_s1245">винтовые и штанговые.
Пластовая жидкость — это смесь нефти, попутной воды и нефтяного газа с температурой не более 90
°
С.



Центробежные и винтовые скважинные погружные насосные агрегатывходят в состав установок, которые помимо агрегатов содержат кабельные линии и наземное электрооборудование. Агрегат и кабельная линия опускаются в скважину на насосно-компрессорных трубах. В наземное оборудование входит трансформаторная подстанция и пуско-регулирующая аппаратура.


Условное обозначение насосов УЭЦН М(К)-5А-250-1000 (установка электрическая с центробежным насосом модульным коррозионностойким):
5А —
группа установки, характеризующая поперечные габариты;
250 —
подача, м
3
в сутки;
1000 —
напор, м.
Винтовой насос применен в установке электрической типа УЭВМ.

насос ЭЦНКимеет 38 вариантов исполнений в зависимости от конструкции пяты, конструкции рабочих колёс, наличия входного модуля и типа соединений секций. В представленном насосе входной модуль конструктивно совмещён с секциями насоса.


насос типа ЭЦНМК состоит из входного модуля, модуля-секции (модулей-секций) и модуля головки. Соединение модулей между собой и входного модуля с двигателями — фланцевое. Соединение валов модулей-секций между собой, модуля-секции с валом входного модуля, вала входного модуля с валом электродвигателя осуществляется с помощью шлицевых муфт.


Газосепараторпредназначен для уменьшения до 50% объёмного содержания свободного газа, содержащегося в жидкости на входе в насос. Газосепараторвыпускается для комплектации насосных агрегатов типа ЭЦНМ и ЭЦНМК в виде модуля в двух исполнениях: обычном и повышенной коррозионной стойкости. Газосепаратор монтируется между насосом и двигателем.
скважинные штанговые насосы, выпускаемые в соответствии с требованиями стандарта американского нефтяного института (спецификация I I АХ ).
<img width=«698» height=«1074» src=«ref-2_486265121-5385.coolpic» v:shapes="_x0000_s1246 _x0000_s1247 _x0000_s1248 _x0000_s1249 _x0000_s1250 _x0000_s1251 _x0000_s1252 _x0000_s1253 _x0000_s1254 _x0000_s1255 _x0000_s1256 _x0000_s1257 _x0000_s1258 _x0000_s1259 _x0000_s1260 _x0000_s1261 _x0000_s1262 _x0000_s1263 _x0000_s1264 _x0000_s1265">Данные насосы аналогичны насосам, выполненным по ОСТ 26-16-06 — 86 следующих типов:
НВ1Б — вставной с замком наверху;
НВ2Б — вставной с замком внизу;
НН2Б — невставной с ловителем.
Все упомянутые типы штанговых насосов имеют толстостенный цельный ( безвтулочный) цилиндр (обозначается «Б»).
Насосы для закачки пластовой жидкости в скважину представлены группой поверхностных и скважинных насосов.
Рассматриваемые поверхностные насосы — это горизонтальные центробежные секционные многоступенчатые насосы типа ЦНС. Описание этих насосов приведено разделе «Горизонтальные многоступенчатые насосы».
В эту группу насосов входят также и буровые насосы.
Скважинные погружные насосные агрегаты типа ЭЦП для закачки воды в пласт конструктивно представляют собой аналог насосных агрегатов для откачки воды из скважин. Для закачки воды применяются скважинные насосные агрегаты полупогружного типа ЭЦНА, у которых электродвигатель устанавливается на поверхности в устье скважины.



Насос буровой НБ-50

горизонтальный, двухцилиндровый, двустороннего действия, приводной со встроенным зубчатым редуктором
.

<img width=«310» height=«270» src=«ref-2_486270506-11684.coolpic» alt=«НАСОС БУРОВОЙ НБ-50» v:shapes=«Рисунок_x0020_1»>
Насос НБ-50предназначен для нагнетания промывочной жидкости (воды, глинистого раствора) в скважину при геологоразведочном и структурно-поисковом бурении на нефть и газ.
<img width=«705» height=«1084» src=«ref-2_486282190-5441.coolpic» v:shapes="_x0000_s1266 _x0000_s1267 _x0000_s1268 _x0000_s1269 _x0000_s1270 _x0000_s1271 _x0000_s1272 _x0000_s1273 _x0000_s1274 _x0000_s1275 _x0000_s1276 _x0000_s1277 _x0000_s1278 _x0000_s1279 _x0000_s1280 _x0000_s1281 _x0000_s1282 _x0000_s1283 _x0000_s1284 _x0000_s1285">
Насосы также нашли широкое применение на предприятиях пищевой, химической и строительной промышленности для перекачки различных неагрессивных жидкостей.
Наличие пневматического компенсатора в нагнетательной системе насоса практически полностью устраняет неравномерность подачи жидкости на выходе насоса.
Буровые насосы завоевали большую популярность у потребителей благодаря высокой надежности, простоте обслуживания и ремонтопригодности.



<img width=«1» height=«1» src=«ref-2_486287631-129.coolpic» alt=«www.modos.ru/img/spacer.gif» v:shapes=«Рисунок_x0020_2»>

<img width=«1» height=«1» src=«ref-2_486287631-129.coolpic» alt=«www.modos.ru/img/spacer.gif» v:shapes=«Рисунок_x0020_3»>

 Технические характеристики

<img width=«1» height=«1» src=«ref-2_486287631-129.coolpic» alt=«www.modos.ru/img/spacer.gif» v:shapes=«Рисунок_x0020_4»>



Мощность, кВт

50

Ход поршня, мм

160

Число двойных ходов в мин

105

Частота вращения трансмиссионного вала, об/мин

394

Высота всасывания, м

3

Диаметр всасывающего патрубка, мм

113

Диаметр нагнетательного патрубка, мм

50





<img width=«1» height=«1» src=«ref-2_486287631-129.coolpic» alt=«www.modos.ru/img/spacer.gif» v:shapes=«Рисунок_x0020_5»>

<img width=«1» height=«1» src=«ref-2_486287631-129.coolpic» alt=«www.modos.ru/img/spacer.gif» v:shapes=«Рисунок_x0020_6»>

 Режим работы

<img width=«1» height=«1» src=«ref-2_486287631-129.coolpic» alt=«www.modos.ru/img/spacer.gif» v:shapes=«Рисунок_x0020_7»>



Диаметр сменных втулок, мм

Объемная подача, дм3/сек (м3/час)

Наибольшее давление, МПа

90

5,8 (20,9)

6,3

100

7,3 (26,3)

5,0

110

8,9 (32,0)

4,1

120

11,0 (39,6)

3,4





<img width=«1» height=«1» src=«ref-2_486287631-129.coolpic» alt=«www.modos.ru/img/spacer.gif» v:shapes=«Рисунок_x0020_8»>

<img width=«1» height=«1» src=«ref-2_486287631-129.coolpic» alt=«www.modos.ru/img/spacer.gif» v:shapes=«Рисунок_x0020_9»>

 Конструктивные исполнения насосов

<img width=«1» height=«1» src=«ref-2_486287631-129.coolpic» alt=«www.modos.ru/img/spacer.gif» v:shapes=«Рисунок_x0020_10»>



Обозначение насоса

Исполнение

Габариты, мм

Масса, кг

НБ-50.01

Шкив с правой стороны

1860х740х1330

1040

НБ-50.02

Шкив с левой стороны

1860х740х1330

1040

НБ-50.03

С пневмомуфтой и шкивом с правой стороны

1860х1000х1330

1080

НБ-50.04

С пневмомуфтой и шкивом с левой стороны

1860х1000х1330

1080

НБ-50.05

С фрикционной муфтой и шкивом с правой стороны

1860х1000х1330

1080

НБ-50.06

С фрикционной муфтой и шкивом с левой стороны

1860х1000х1330

1080

НБ-50.07

Шкив с правой стороны, боковое расположение манометра

1860х740х1250

1040

НБ-50.08

Шкив с левой стороны, боковое расположение манометра

1860х740х1250

1040

НБ-50.09

С пневмомуфтой и шкивом с правой стороны, боковое расположение манометра

1860х1000х1250

1080

НБ-50.10

С пневмомуфтой и шкивом с левой стороны, боковое расположение манометра

1860х1000х1250

1080

НБ-50.11

С фрикционной муфтой и шкивом с правой стороны, боковое расположение манометра

1860х100х1250

1180

НБ-50.12

С фрикционной муфтой и шкивом с левой стороны, боковое расположение манометра

1860х100х1250

1180



<img width=«698» height=«1074» src=«ref-2_486288792-5372.coolpic» v:shapes="_x0000_s1286 _x0000_s1287 _x0000_s1288 _x0000_s1289 _x0000_s1290 _x0000_s1291 _x0000_s1292 _x0000_s1293 _x0000_s1294 _x0000_s1295 _x0000_s1296 _x0000_s1297 _x0000_s1298 _x0000_s1299 _x0000_s1300 _x0000_s1301 _x0000_s1302 _x0000_s1303 _x0000_s1304 _x0000_s1305">

Эксплуатация нефти и газа


Основные принципы проектирования рациональной системы разработки нефтяных месторождений в России. Комплексный метод проектирования. Порядок проектирования. Многовариантность систем разработки. Выбор рационального варианта системы разработки.


Исходная геолого-физическая информация, необходимая для проектирования разработки нефтяного месторождения. Методы определения исходных параметров залежи для гидродинамических расчетов. Неоднородность продуктивных пластов, методы ее изучения и количественной оценки.


Разработка нефтяных пластов в условиях водонапорного режима. Системы заводнения нефтяных пластов, применяемые в различных геолого-физических условиях. Методы расчета технологических показателей разработки.


Разработка нефтяной залежи без поддержания пластового давления. Естественные системы разработки нефтяных пластов. Механизм замещения (вытеснения) нефти при различных режимах. Определение показателей разработки в режимах растворенного газа, упруговодонапорном режиме, а также при их сочетаниях.


Особенности разработки многопластовых нефтяных месторождений. Выделение эксплуатационных объектов. Распределение добычи нефти по <img width=«698» height=«1074» src=«ref-2_486294164-5385.coolpic» v:shapes="_x0000_s1306 _x0000_s1307 _x0000_s1308 _x0000_s1309 _x0000_s1310 _x0000_s1311 _x0000_s1312 _x0000_s1313 _x0000_s1314 _x0000_s1315 _x0000_s1316 _x0000_s1317 _x0000_s1318 _x0000_s1319 _x0000_s1320 _x0000_s1321 _x0000_s1322 _x0000_s1323 _x0000_s1324 _x0000_s1325">объектам эксплуатации. Разработка пластов, представленных трещинными и трещинно-поровыми коллекторами. Механизм вытеснения нефти водой из трещинно-порового пласта. Особенности разработки месторождений вязкопластичных нефтей.


Особенности разработки нефтегазовых и нефтегазоконденсатных залежей. Основные типы нефтегазовых залежей. Применяемые системы разработки и методики расчета технологических показателей.


Методы и средства контроля и регулирования разработки нефтяных и нефтегазовых залежей. Определение профилей притока и приемистости рабочих агентов. Методы анализа процесса разработки. Управление процессом разработки на различных стадиях. Способы эффективной разработки нефтегазовых месторождений.


Мероприятия, обеспечивающие сохранность недр и окружающей среды.


Современные методы увеличения нефтеотдачи пластов. Гидродинамические методы. Циклическое заводнение. Третичные методы. Закачка в пласты водных растворов ПАВ, полимеров, щелочей, кислот, мицеллярных растворов. Применение углеводородных газов высокого давления, двуоксида углерода, азота, дымовых газов. Микробиологические методы воздействия. Тепловые методы разработки. Закачка в нефтяные пласты горячей воды, водяного пара, термохимическое заводнение, внутрипластовое горение.


Вибросейсмические и электрические методы воздействия на нефтяные пласты. Горизонтальные скважины, гидроразрыв пласта, область и опыт их применения.


Условия применимости различных методов повышения нефтеотдачи, результаты опытно-промышленных работ в России и за рубежом.


6. Разработка месторождений природных газов


Основные принципы разработки газовых месторождений. Этапы разработки месторождений природных газов. Порядок проектирования. Исходная геолого-промысловая информация. Установление отборов газа, выбор и обоснование возможных вариантов разработки.


<img width=«697» height=«1066» src=«ref-2_486299549-5372.coolpic» v:shapes="_x0000_s1326 _x0000_s1327 _x0000_s1328 _x0000_s1329 _x0000_s1330 _x0000_s1331 _x0000_s1332 _x0000_s1333 _x0000_s1334 _x0000_s1335 _x0000_s1336 _x0000_s1337 _x0000_s1338 _x0000_s1339 _x0000_s1340 _x0000_s1341 _x0000_s1342 _x0000_s1343 _x0000_s1344 _x0000_s1345">Определение показателей разработки газовых и газоконденсатных месторождений при газовом и упруговодонапорном режимах. Определение числа скважин. Система размещения скважин на газовом месторождении. Расчет продвижения воды в газовую залежь. Особенности разработки многопластовых месторождений. Особенности разработки месторождений на поздней стадии. Коэффициент газоотдачи и зависимость его от геолого-физических и технологических факторов. Разработка группы газовых месторождений.


Особенности разработки месторождений с высоким содержанием конденсата. Применение сайклинг-процесса. Разработка месторождений при заводнении газоконденсатной залежи, особенности разработки газовых залежей с нефтяными оторочками. Методы воздействия на пластовые флюиды для увеличения конденсатоотдачи.


Особенности разработки месторождений природных газов с высоким содержанием неуглеводородных компонентов (углекислый газ, азот, сероводород, гелий и др.). Контроль за разработкой месторождений природных газов. Гидродинамические, геофизические, геохимические, химико-аналитические методы контроля. Построение карт изобар.


Мероприятия, обеспечивающие сохранность недр и окружающей среды при разработке месторождений природных газов.


7. Технология добычи нефти


Вскрытие пласта. Призабойная зона скважины. Гидродинамическое совершенство скважин. Вторичное вскрытие, применяемое оборудование.


Освоение скважин, методы и способы вызова притока.


Теоретические основы подъема жидкости из скважины.


Движение газожидкостных смесей в вертикальных трубах. Уравнение движения газожидкостной смеси. Структуры течения. Основные характеристики двухфазных потоков. Расчет распределения давления по длине труб.


Фонтанная эксплуатация нефтяных скважин. Расчет процесса фонтанирования. Условия фонтанирования. Оборудование при фонтанной эксплуатации. Регулирование работы фонтанных скважин.


<img width=«696» height=«1044» src=«ref-2_486304921-5250.coolpic» v:shapes="_x0000_s1346 _x0000_s1347 _x0000_s1348 _x0000_s1349 _x0000_s1350 _x0000_s1351 _x0000_s1352 _x0000_s1353 _x0000_s1354 _x0000_s1355 _x0000_s1356 _x0000_s1357 _x0000_s1358 _x0000_s1359 _x0000_s1360 _x0000_s1361 _x0000_s1362 _x0000_s1363 _x0000_s1364 _x0000_s1365">Газлифтная эксплуатация нефтяных скважин. Принцип действия газлифтного подъемника. Технология пуска компрессорной скважины в работу и расчет пускового давления. Оптимизация параметров работы газлифтных скважин.


Эксплуатация нефтяных скважин стандартными и длинноходовыми штанговыми насосами. Схема установки, принцип действия и основные параметры. Динамометрирование насосных скважин.


Эксплуатация нефтяных скважин погружными центробежными электронасосами (ПЦЭН). Схема установки, принцип действия. Основные параметры ПЦЭН. Расчеты работы скважин при использовании ПЦЭН. Влияние попутного газа на работу ПЦЭН и способы его защиты от вредного влияния газа. Конструкции сепараторов для ПЦЭН. Достоинства и недостатки применения ПЦЭН для добычи нефти. Области применения установок.


Новые способы эксплуатации нефтяных скважин. Гидропоршневые насосные установки (ГПНУ). Принцип действия, схемы оборудования скважин при эксплуатации их с применением ГПНУ. Основные параметры ГПНУ.


Винтовые установки (УЭВН) и струйные насосы (УСН). Принцип действия. Схемы обустройства скважин при использовании УЭВН и УСН. Основные параметры установок. Область применения УЭВН и УСН.


Эксплуатация горизонтальных скважин.


Методы воздействия на призабойную зону скважин: интенсификация добычи нефти, изоляция пластовых вод. Гидроразрыв пласта.


Мероприятия, обеспечивающие сохранность окружающей среды при добыче нефти. Совместная эксплуатация двух пластов и более. Методы и системы подготовки воды и закачки ее в пласт.


<img width=«706» height=«1068» src=«ref-2_486310171-5361.coolpic» v:shapes="_x0000_s1366 _x0000_s1367 _x0000_s1368 _x0000_s1369 _x0000_s1370 _x0000_s1371 _x0000_s1372 _x0000_s1373 _x0000_s1374 _x0000_s1375 _x0000_s1376 _x0000_s1377 _x0000_s1378 _x0000_s1379 _x0000_s1380 _x0000_s1381 _x0000_s1382 _x0000_s1383 _x0000_s1384 _x0000_s1385">Сбор и подготовка скважинной продукции. Принципиальная схема получения товарной нефти на промысле. Разгазирование, обезвоживание и обессоливание нефти.


8. Технология добычи газа


Основные требования к конструкции и оборудованию газовых скважин. Определение диаметра лифтовой колонны. Забойное и устьевое оборудование газовых скважин.


Технологические режимы работы газовых скважин. Особенности эксплуатации газовых скважин в осложненных условиях. Эксплуатация скважин в условиях разрушения призабойных зон. Эксплуатация скважин в условиях многолетнемерзлых пород и гидратообразования. Особенности конструкций и эксплуатация скважин в условиях коррозионно-агрессивной среды. Гидродинамические характеристики скважин для газоконденсатных месторождений.


Раздельная эксплуатация двух пластов в одной скважине и основное оборудование.


Способы эксплуатации скважин на завершающей стадии разработки месторождений. Работа скважин в условиях обводнения пластовой продукции. Газоотдача продуктивных пластов. Методы увеличения газоотдачи пластов, методы воздействия на призабойную зону. Методы удаления жидкости из газовых скважин. Методы удаления солей и гидратных пробок.


Нефтяные качалки


<img border=«0» width=«132» height=«120» src=«ref-2_486315532-4691.coolpic» alt=«станок качалка привод кривошипный шкивный oil pumping unit» v:shapes=«Рисунок_x0020_21»>   <img border=«0» width=«170» height=«120» src=«ref-2_486320223-5711.coolpic» alt=«нефть, газ, ТЭК, нефтяные компании, газовые компании, нефтегаз, нефтегазовая отрасль, нефтегазовый комплекс, НГК, нефтегазовый, транспортные компании, журнал, выставки, конференции, транспортировка нефти, нефтяной, газовый, вакансии, фото, фотобанк, производители, предприятия-изготовители, оборудование, поставки оборудования, нефтегазовое машиностроение, нефтегазовое оборудование, поставщики, производители, нефтепродукты, бензин, отраслевые союзы, топливо, нефтепереработка, газопереработка, добыча, геофизика, наука и технологии, услуги, архивы, колтюбинг, бурение, IT-технологии, нефть и капитал, oilcapital, oil & capital, нефтяной рынок, разведка, скважина, добыча нефти, месторождение, переработка нефти, каталог, поиск, нефтегазовые ресурсы, ресурсы ТЭК, размещение информации, прайс-лист, научно-технические приложения, региональные приложения, трубопровод, технологии, биографии, персоналии, компании, проекты, новости, аналитика, обзор прессы, СМИ, ресурсы, промышленный, нефтеперерабатывающий, АЗС, реализация, промышленность, предприятие, инвестиции, прогноз, СРП, СП, НПЗ, цены на нефть, Минэнерго, МПР, шельф, месторождение, Каспий, КТК, БТС, Газпром, Лукойл, Итера, Транснефть, Юкос, Сахалин, Югра, Приобское, Тимано-Печора, Татарстан, Самарская область, Красноярский край, курсы валют, отраслевые показатели, пресса, подписка, комментарии, реклама, нефтяная торговля, дайджест» v:shapes=«Рисунок_x0020_22»>   <img border=«0» width=«159» height=«120» src=«ref-2_486325934-5123.coolpic» alt=«oil pumping unit Качалки станок качалка станки качалки привод штангового насоса» v:shapes=«Рисунок_x0020_23»>   <img border=«0» width=«84» height=«120» src=«ref-2_486331057-3623.coolpic» alt=«pumping unit oilfield нефтедобыча добыча нефти добывать нефть добывающие нефть» v:shapes=«Рисунок_x0020_24»>   <img border=«0» width=«170» height=«120» src=«ref-2_486334680-5165.coolpic» alt=«pumping unit oilfield» v:shapes=«Рисунок_x0020_25»>

<img width=«696» height=«1072» src=«ref-2_486339845-5379.coolpic» v:shapes="_x0000_s1386 _x0000_s1387 _x0000_s1388 _x0000_s1389 _x0000_s1390 _x0000_s1391 _x0000_s1392 _x0000_s1393 _x0000_s1394 _x0000_s1395 _x0000_s1396 _x0000_s1397 _x0000_s1398 _x0000_s1399 _x0000_s1400 _x0000_s1401 _x0000_s1402 _x0000_s1403 _x0000_s1404 _x0000_s1405">   Безбалансирные станки-качалки ПНКШ (с кривошипно-шкивным преобразующим механизмом) используются для привода погружного штангового насоса при откачке пластовой воды из дегазационных скважин, которые бурятся с поверхности земли в угольный пласт с целью извлечения метана.
   Откачка воды производится посредством объемного штангового погружного насоса, спускаемого в скважину, при этом приводом, обеспечивающим возвратно-поступательное движение плунжера насоса, является станок качалка, устанавливаемый на поверхности.
   Назначение станка-качалки: преобразовать вращательное движение электродвигателя в возвратно-поступательное движение траверсы и далее через колонну штанг, опущенную в скважину, передать это движение плунжеру насоса.
   Указанный способ откачки воды из дегазационных скважин является наиболее экономичным и широко применяется в мировой практике дегазации угольных пластов. При этом экономические показатели тем выше, чем ниже эксплуатационные расходы, связанные с работой станка-качалки, которые в свою очередь зависят от совершенства конструкции станка-качалки.
   Безбалансирные станки качалки ПНКШ имеют оригинальную конструкцию кривошипно-шкивного преобразующего механизма с V -образным расположением ветвей каната, благодаря которому отсутствуют массивный качающийся балансир и громоздкая поворотная головка у балансирной качалки, что позволило многократно снизить динамические нагрузки, обеспечить высокую степень уравновешивания, а также полное отсутствие отрицательных крутящих моментов на редукторе, что в целом обеспечивает следующие преимущества ПНКШ перед другими видами нефтедобывающего оборудования:
  1. Значительное (на 15...20%) снижение расхода электроэнергии, а также повышение cos ф.
  2. Увеличение срока эксплуатации редуктора, достигаемое за счет отсутствия отрицательных крутящих моментов на выходном валу.
  3. Увеличение срока службы колонны штанг, так как практически нет динамических нагрузок, вибрации.
  4. Увеличение коэффициента подачи насоса, за счет повышенной длины хода, которая компенсирует вытяжку колонны штанг.
  5. Повышение коэффициента наполняемости насоса, за счет уменьшения числа качаний, а следовательно числа срабатываний <img width=«698» height=«1074» src=«ref-2_486345224-5354.coolpic» v:shapes="_x0000_s1406 _x0000_s1407 _x0000_s1408 _x0000_s1409 _x0000_s1410 _x0000_s1411 _x0000_s1412 _x0000_s1413 _x0000_s1414 _x0000_s1415 _x0000_s1416 _x0000_s1417 _x0000_s1418 _x0000_s1419 _x0000_s1420 _x0000_s1421 _x0000_s1422 _x0000_s1423 _x0000_s1424 _x0000_s1425">шарикового
клапана, каждое из которых сопровождается утечками пластовой жидкости.
  6. Повышение срока службы штангового насоса, т.к. увеличение длины хода качалки предполагает удлиненный цилиндр, что существенно снизит износ его рабочей поверхности.
  7. Снижение затрат при монтаже на промысле, так как объем фундамента ПНКШ в 5 раз меньше в сравнении с другими типами станков-качалок.
Ниже в таблице приведены основные технические данные станков-качалок ПНКШ.


 

   


Кинематическая схема кривошипно-шкивного преобразующего механизма привода ПНКШ.


<img border=«0» width=«376» height=«367» src=«ref-2_486350578-4206.coolpic» alt=«www.promsnab.dn.ua/neft/foto/pnkshcinematic.gif» v:shapes=«Рисунок_x0020_26»>

1- Стойка(трехполюсная)
2- Кривошип приводной
3- Шкив натяжной
4- Шкив направляющий
5- Гибкое звено(канат)
6- Ходовая траверса

А— точка крепления неподвижного конца каната 5

g— угол между V-образно расположенными ветвями каната 5

q— угол дезаксиала

S0— длина хода ходовой траверсы (max)

 

Назначение привода — придание плунжеру скважинного штангового насоса возвратно-поступательного движения посредством колонны <img width=«696» height=«1066» src=«ref-2_486354784-5315.coolpic» v:shapes="_x0000_s1426 _x0000_s1427 _x0000_s1428 _x0000_s1429 _x0000_s1430 _x0000_s1431 _x0000_s1432 _x0000_s1433 _x0000_s1434 _x0000_s1435 _x0000_s1436 _x0000_s1437 _x0000_s1438 _x0000_s1439 _x0000_s1440 _x0000_s1441 _x0000_s1442 _x0000_s1443 _x0000_s1444 _x0000_s1445">насосных штанг.
   Отличительной особенностью безбалансирного кривошипно-шкивного привода ПНКШ является оригинальная конструкция механизма, преобразующего вращательное движение кривошипов, установленных на ведомом валу редуктора, в возвратно-поступательное движение ходовой траверсы, являющейся выходным (исполнительным) звеном привода.
   Суть этого преобразующего механизма состоит в том, что кривошипы 2 снабжены натяжными шкивами 3 с огибаемыми их канатами 5, нижние концы которых шарнирно присоединены к стойке 1 (раме) в точке А, а к верхним, перекинутым через направляющие шкивы 4, расположенные в верхней части стойки 1 (стреле), подвешена ходовая траверса 6, при этом ветви канатов, отходящие от натяжных шкивов, расположены V-образно (под углом g). Особенностью данного преобразующего механизма является и то, что он, в отличие от других кривошипных механизмов с гибким звеном, способен, при определенных геометрических соотношениях звеньев, генерировать возвратно-поступательные движения, с асимметричным (дезаксиальным) циклом.
   Работает привод следующим образом. Кривошипы 2, совершая вращательное движение по направлению, указанном стрелкой, своими натяжными шкивами 3 воздействуют на огибающие их канаты 5. Так как одни концы этих канатов закреплены неподвижно, то другие, перекинутые через направляющие шкивы, вместе с ходовой траверсой 6 совершают возвратно-поступательные движения, приводя в действие посредством колонны штанг, находящийся на глубине, скважинный штанговый насос. При этом, угол g между V-образно расположенными ветвями каната за каждый цикл работы привода меняет свое значение от большего к меньшему при ходе ходовой траверсы вверх и, наоборот, от меньшего к большему при ходе ее вниз.
   Такое изменение угла между V-образно расположенными ветвями каната, наличие оптимального дезаксиала оказывает значительное положительное влияние на характер изменения крутящего момента на кривошипе, создаваемого скважинной нагрузкой, действующей на ходовую траверсу привода, приближая закон изменения этого крутящего момента к синусоидальному, поддающемуся более полному погашению (уравновешиванию) его кривошипным уравновешиванием, изменяющимся за цикл строго по синусоиде.  В результате этого остаточный после уравновешивания крутящий момент, воспринимаемый редуктором в приводах ПНКШ, при прочих равных условиях, снижается более, чем на четверть, а во многих случаях и на треть, не только по отношению к своему предшественнику, безбалансирному кривошипному приводу типа СБМ, но еще в большей степени по отношению к обычным (стандартным) балансирным станкам-качалкам.



   Из сказанного следует, что удельная длина хода, приходящаяся на каждый кНм крутящего момента на редукторе, в приводах ПНКШ, при прочих равных условиях, примерно в 1,5 раза больше, чем в обычных (стандартных) балансирных станках-качалках.    Это обстоятельство, а также компактность кривошипно-шкивного преобразующего механизма, позволяет, при той же мощности, по крутящему моменту редуктора реализовать длинноходовые приводы типа ПНКШ с длиною хода до 6 м, при этом горизонтальные габариты этих станков не превышают габариты балансирных станков-качалок с длиною хода в полтора раза меньшей.
   Значительное снижение и выравнивание крутящего момента на редукторе, практическое отсутствие отрицательных его значений ведет к существенному снижению эффективной мощности электродвигателя и к одновременному повышению к.п.д. и cos j его работы.


<img width=«698» height=«1074» src=«ref-2_486360099-5405.coolpic» v:shapes="_x0000_s1446 _x0000_s1447 _x0000_s1448 _x0000_s1449 _x0000_s1450 _x0000_s1451 _x0000_s1452 _x0000_s1453 _x0000_s1454 _x0000_s1455 _x0000_s1456 _x0000_s1457 _x0000_s1458 _x0000_s1459 _x0000_s1460 _x0000_s1461 _x0000_s1462 _x0000_s1463 _x0000_s1464 _x0000_s1465"><img border=«0» width=«333» height=«340» src=«ref-2_486365504-12052.coolpic» alt=«oilfield equipment» v:shapes=«Рисунок_x0020_27»>


   При одинаковой нагрузке на редукторе и одинаковой скорости откачки (т. е. при произведении Sn=const) приводы ПНКШ, имея при <img width=«688» height=«1066» src=«ref-2_486377556-5303.coolpic» v:shapes="_x0000_s1466 _x0000_s1467 _x0000_s1468 _x0000_s1469 _x0000_s1470 _x0000_s1471 _x0000_s1472 _x0000_s1473 _x0000_s1474 _x0000_s1475 _x0000_s1476 _x0000_s1477 _x0000_s1478 _x0000_s1479 _x0000_s1480 _x0000_s1481 _x0000_s1482 _x0000_s1483 _x0000_s1484 _x0000_s1485">этом значительно большую длину хода, потребляют электроэнергии примерно в 1,5 раза меньше, чем обычные балансирные станки-качалки, при этом 30-35% экономии электроэнергии достигается за счет совершенства привода, позволяющего обеспечить более высокую степень уравновешивания, и 10-15% — за счет увеличения длины хода, повышающей коэффициент подачи насосной установки и снижающей динамическую составляющую в скважинной нагрузке. Приведенные здесь данные подтверждаются замерами на нефтепромыслах.
   Полуторакратное увеличение длины хода, с одновременным снижением числа ходов, при сохранении подачи насосной установки в прежнем объеме, более чем в 1,7 раза увеличивает срок службы штанг, связанный с усталостными явлениями в металле, как за счет снижения числа циклов нагружения в единицу времени, так и за счет снижения приведенного напряжения в штангах. Увеличение длины хода и снижение числа циклов работы насосной установки ведет, также, и к увеличению срока службы НКТ и скважинного насоса.
   Наличие возможности создавать на штанговращателе (в случае его применения) высокие крутящие моменты, без опасения скручивания канатов подвески штанг между собой, исключает отворот штанг и обеспечивает равномерный износ, увеличивая тем самым срок их службы.
   Увеличение длины хода создает условия для применения стеклопластиковых штанг и полимерных НКТ в глубоких скважинах, а тихоходный режим откачки позволяет более успешно откачивать высоковязкую нефть.
   Привод имеет высокую технологичность регулирования и обслуживания, включая:
— механизированный отвод стрелы от устья скважины, при необходимости выполнения подземного ремонта скважины, при этом величина отвода составляет более 1 м;
— мгновенное торможение привода и последующее механическое стопорение, обеспечивающее безопасное выполнение работ при обслуживании механизмов;
удобный доступ к механизму натяжения клиновых ремней;
— изменение длины хода (перестановка натяжного шкива), перемещение противовесов осуществляется с помощью приспособлений, входящих в комплект поставки.
   Для установки приводов не требуется сплошного и высокого фундамента, что ускоряет и удешевляет работы по их установке, а сами приводы менее чувствительны к неравномерной осадке фундамента (свай).
   Значительно меньше габариты, по сравнению с другими кривошипными приводами, позволяют рационально использовать ПНКШ в стесненных условиях морских площадок и при кустовом расположении скважин.
   Ниже приводится номенклатурный ряд приводов ПНКШ, способных обеспечить подъем жидкости при любых условиях эксплуатации и при самых низких энергетических затратах и самым продолжительным межремонтным периодом работы, по сравнению с другими кривошипными приводами.


Номенклатурный ряд и краткие технические данные кривошипно-шкивных приводов (ПНКШ) скважинного штангового насоса

    продолжение
--PAGE_BREAK--<img width=«698» height=«1074» src=«ref-2_486382859-5384.coolpic» v:shapes="_x0000_s1486 _x0000_s1487 _x0000_s1488 _x0000_s1489 _x0000_s1490 _x0000_s1491 _x0000_s1492 _x0000_s1493 _x0000_s1494 _x0000_s1495 _x0000_s1496 _x0000_s1497 _x0000_s1498 _x0000_s1499 _x0000_s1500 _x0000_s1501 _x0000_s1502 _x0000_s1503 _x0000_s1504 _x0000_s1505">
<img border=«0» width=«300» height=«205» src=«ref-2_486388243-14703.coolpic» alt=«Oil beamless pumping unit pumping jack crude pump Oilfield Equipment Oil Extracting Machine» v:shapes=«Рисунок_x0020_28»>

 

 

<img width=«698» height=«1074» src=«ref-2_486402946-5400.coolpic» v:shapes="_x0000_s1506 _x0000_s1507 _x0000_s1508 _x0000_s1509 _x0000_s1510 _x0000_s1511 _x0000_s1512 _x0000_s1513 _x0000_s1514 _x0000_s1515 _x0000_s1516 _x0000_s1517 _x0000_s1518 _x0000_s1519 _x0000_s1520 _x0000_s1521 _x0000_s1522 _x0000_s1523 _x0000_s1524 _x0000_s1525">Классификация методов бурения. Все методы бурения могут быть подразделены на ударное и вращательное бурение. Установка ударного бурения бурит скважину путем возвратно-поступательного движения (падения и подъема) тяжелой колонны труб бурового инструмента; эти удары крошат породу, а раздробленные частицы породы поднимаются и выносятся из скважины в виде водной суспензии. При вращательном (роторном) бурении проходка горных пород осуществляется тяжелой вращающейся буровой колонной; срезанные у дна (забоя) скважины обломки породы непрерывно поднимаются на поверхность рабочей жидкостью, циркулирующей в скважине под давлением (рис. 4).


<img border=«0» width=«252» height=«430» src=«ref-2_486408346-98909.coolpic» alt=«Рис. 4. УСТАНОВКА РОТОРНОГО БУРЕНИЯ, используемая для бурения на большие глубины.» v:shapes=«Рисунок_x0020_37»>. УСТАНОВКА РОТОРНОГО БУРЕНИЯ, используемая для бурения на большие глубины.

<img width=«691» height=«1066» src=«ref-2_486507255-5316.coolpic» v:shapes="_x0000_s1526 _x0000_s1527 _x0000_s1528 _x0000_s1529 _x0000_s1530 _x0000_s1531 _x0000_s1532 _x0000_s1533 _x0000_s1534 _x0000_s1535 _x0000_s1536 _x0000_s1537 _x0000_s1538 _x0000_s1539 _x0000_s1540 _x0000_s1541 _x0000_s1542 _x0000_s1543 _x0000_s1544 _x0000_s1545">Под действием веса тяжелой буровой колонны, которая давит на долото, и ее вращения долото разрушает породы и углубляется в них. При этом бурильщик медленно опускает буровую колонну, постепенно отпуская подъемный трос с барабана лебети. При бурении многое зависит от поддержания правильного давления на долото и скорости вращения буровой колонны. Употребляется несколько разных типов буровых долот; одни используются для бурения мягких пород, другие

при проходке более твердых пород. Специальный инструмент предназначается для отбора образцов пород (керна) на забое или из стенок скважины. Скорость проходки при роторном бурении изменяется в широких пределах в зависимости от характера разбуриваемых пород, глубины скважины, качества оборудования и мастерства бурильщика. В плотных известняках или хорошо сцементированных песчаниках скорость проходки не превосходит 30 см/ч, а в мягких отложениях может достигать 24 м/ч. Когда долото снашивается, буровую колонну развинчивают в «свечи» длиной 25

40 м, а после смены изношенного долота свечи вновь соединяют и опускают в скважину.



<img width=«698» height=«1074» src=«ref-2_486294164-5385.coolpic» v:shapes="_x0000_s1546 _x0000_s1547 _x0000_s1548 _x0000_s1549 _x0000_s1550 _x0000_s1551 _x0000_s1552 _x0000_s1553 _x0000_s1554 _x0000_s1555 _x0000_s1556 _x0000_s1557 _x0000_s1558 _x0000_s1559 _x0000_s1560 _x0000_s1561 _x0000_s1562 _x0000_s1563 _x0000_s1564 _x0000_s1565">Эффективность глубокого роторного бурения зависит от поддержания подходящей вязкости и плотности бурового раствора. Этот раствор не только поднимает к поверхности частицы разбуренной породы (шлам), но также выполняет роль смазки и охлаждения колонны буровых труб и долота; он же образует глинистую корку на стенках скважины, которая изолирует пористые пласты от проникновения в них бурового раствора. Иногда вместо водного бурового раствора используется раствор на нефтяной основе. Для получения и стабилизации необходимых физических свойств буровых растворов часто используются различные химические реагенты и добавки, такие, как тонкоперетертые порошки тяжелых минералов (обычно барита) и тонкодисперсные коллоидные глины.


Важной разновидностью вращательного бурения является бурение с помощью турбобура. При роторном бурении приводной двигатель находится на поверхности земли и с помощью ротора приводит во вращение всю колонну труб с долотом на забое. При турбинном бурении двигатель турбобура с буровым долотом крепится к низу колонны труб. В буровую колонну закачивается буровой раствор, который приводит в движение турбину и тем самым вращает долото. Поднимающийся к поверхности в затрубном пространстве (между стенками скважины и буровой колонной) буровой раствор, как и при роторном бурении, выносит из скважины шлам и играет роль смазки. В разных горно-геологических условиях и при разных глубинах применяются те или иные виды вращательного бурения и их комбинации.


Крепление скважин. Скважины укрепляют обсадными колоннами для предохранения стенок скважин от обрушения и образования каверн, для изоляции водоносных горизонтов и ограничения тех участков скважины, где могут неожиданно встретиться какие-либо проявления нефти и газа.


Обсадная колонна образуется из труб большого диаметра, выработанных по определенной технологии. Обсаживание скважины допускает некоторую свободу в выборе диаметра, длины и толщины труб; отдельные трубы соединяются друг с другом посредством муфт с резьбой и устанавливаются в скважине по специальному проекту.


При обсадке нефтяной или газоносной скважины обычно используется несколько колонн, которые телескопически вставляются одна в другую и опускаются на различные глубины.


Изоляция водопритока в скважину. Пластовые воды, которые встречаются при бурении скважин, должны быть изолированы. Они обычно изолируются цементацией пространства между стенкой скважины и обсадной колонной.


<img width=«696» height=«1058» src=«ref-2_486517956-5303.coolpic» v:shapes="_x0000_s1566 _x0000_s1567 _x0000_s1568 _x0000_s1569 _x0000_s1570 _x0000_s1571 _x0000_s1572 _x0000_s1573 _x0000_s1574 _x0000_s1575 _x0000_s1576 _x0000_s1577 _x0000_s1578 _x0000_s1579 _x0000_s1580 _x0000_s1581 _x0000_s1582 _x0000_s1583 _x0000_s1584 _x0000_s1585">Инструменты и методы ловильных (аварийных) работ. Для извлечения из скважины разрушенных или поврежденных частей бурового инструмента, обсадных труб и другого скважинного оборудования часто необходимы специальные инструменты. Смятые части обсадных колонн могут быть отремонтированы в скважине с помощью специальной оправки для ремонта обсадных труб. Оторвавшиеся части труб в скважине могут быть захвачены специальной труболовкой, ершом или овершотом (пружинным захватом), специальным колоколом для ловли обсадных труб или ловильными метчиками.


Направленное бурение. Обычно планируется бурение вертикальной и прямолинейной скважины, но при бурении часто происходит отклонение от вертикали или ствол скважины изгибается. Существуют специальные скважинные приборы для определения участков такого отклонения. В некоторых случаях, напротив, ставится цель отклонения от вертикали для того, чтобы достичь объекта на расстоянии, отстоящем в несколько десятков или сотен метров по латерали от расположения устья скважины. Таким образом, забой скважины может уходить от устья на километр или более, например, от берега под дно океана, озера или реки.


Морское бурение. Существует по крайней мере пять способов бурения в пределах водоемов (рис. 5). Созданы суда, специально приспособленные для бурения в научных целях на дне океанов. Такие суда сохраняют свое положение с помощью якорей или специальных гребных винтов.


<img width=«696» height=«1066» src=«ref-2_486523259-5336.coolpic» v:shapes="_x0000_s1586 _x0000_s1587 _x0000_s1588 _x0000_s1589 _x0000_s1590 _x0000_s1591 _x0000_s1592 _x0000_s1593 _x0000_s1594 _x0000_s1595 _x0000_s1596 _x0000_s1597 _x0000_s1598 _x0000_s1599 _x0000_s1600 _x0000_s1601 _x0000_s1602 _x0000_s1603 _x0000_s1604 _x0000_s1605"><img border=«0» width=«430» height=«180» src=«ref-2_486528595-83269.coolpic» alt=«Рис. 5. РАЗНЫЕ ТИПЫ УСТАНОВОК МОРСКОГО БУРЕНИЯ могут обеспечить добычу нефти из-под воды на разных глубинах.» v:shapes=«Рисунок_x0020_38»>Рис. 5. РАЗНЫЕ ТИПЫ УСТАНОВОК МОРСКОГО БУРЕНИЯ могут обеспечить добычу нефти из-под воды на разных глубинах.

<img border=«0» width=«430» height=«284» src=«ref-2_486611864-105157.coolpic» alt=«РАЗВЕДКА МОРСКИХ МЕСТОРОЖДЕНИЙ нефти и газа в Венесуэле.» v:shapes=«Рисунок_x0020_39»>РАЗВЕДКА МОРСКИХ МЕСТОРОЖДЕНИЙ нефти и газа в Венесуэле.
Сбор и подготовка

(резервуары)


Поступающая из нефтяных и газовых скважин продукция не представляет собой соответственно чистые нефть и газ. Из скважин вместе с нефтью поступают пластовая вода, попутный (нефтяной) газ, твердые частицы механических примесей (горных пород, затвердевшего цемента).

Пластовая вода — это сильно минерализованная среда с содержанием солей до 300 г/л. Содержание пластовой воды в нефти может достигать 80%. Минеральная вода вызывает повышенное коррозионное разрушение труб, резервуаров; твердые частицы, поступающие с потоком нефти из скважины, вызывают износ трубопроводов и оборудования. Попутный (нефтяной) газ используется как сырье и топливо.

<img width=«698» height=«1074» src=«ref-2_486717021-5366.coolpic» v:shapes="_x0000_s1606 _x0000_s1607 _x0000_s1608 _x0000_s1609 _x0000_s1610 _x0000_s1611 _x0000_s1612 _x0000_s1613 _x0000_s1614 _x0000_s1615 _x0000_s1616 _x0000_s1617 _x0000_s1618 _x0000_s1619 _x0000_s1620 _x0000_s1621 _x0000_s1622 _x0000_s1623 _x0000_s1624 _x0000_s1625">Технически и экономически целесообразно нефть перед подачей в магистральный нефтепровод подвергать специальной подготовке с целью ее обессоливания, обезвоживания, дегазации, удаления твердых частиц.

На нефтяных промыслах чаще всего используют централизованную схему сбора и подготовки нефти (рис.18.1). Сбор продукции производят от группы скважин на автоматизированные групповые замерные установки (АГЗУ). От каждой скважины по индивидуальному трубопроводу на АГЗУ поступает нефть вместе с газом и пластовой водой. На АГЗУ производят учет точного количества поступающей от каждой скважины нефти, а также первичную сепарацию для частичного отделения пластовой воды, нефтяного газа и механических примесей с направлением отделенного газа по газопроводу на ГПЗ (газоперерабатывающий завод). Частично обезвоженная и частично дегазированная нефть поступает по сборному коллектору на центральный пункт сбора (ЦПС). Обычно на одном нефтяном месторождении устраивают один ЦПС. Но в ряде случаев один ЦПС устраивают на несколько месторождений с размещением его на более крупном месторождении. В этом случае на отдельных месторождениях могут сооружаться комплексные сборные пункты (КСП), где частично производится обработка нефти. На ЦПС сосредоточены установки по подготовке нефти и воды. На установке по подготовке нефти осуществляют в комплексе все технологические операции по ее подготовке. Комплект этого оборудования называется УКПН — установка по комплексной подготовке нефти.




<img border=«0» width=«600» height=«285» src=«ref-2_486722387-26973.coolpic» alt=«Схема сбора и подготовки продукции скважин на нефтяном промысле» v:shapes=«Рисунок_x0020_49»>
Рисунок 18.1.

<img width=«698» height=«1074» src=«ref-2_486749360-5354.coolpic» v:shapes="_x0000_s1626 _x0000_s1627 _x0000_s1628 _x0000_s1629 _x0000_s1630 _x0000_s1631 _x0000_s1632 _x0000_s1633 _x0000_s1634 _x0000_s1635 _x0000_s1636 _x0000_s1637 _x0000_s1638 _x0000_s1639 _x0000_s1640 _x0000_s1641 _x0000_s1642 _x0000_s1643 _x0000_s1644 _x0000_s1645">

Схема сбора и подготовки продукции скважин на нефтяном промысле:

1 — нефтяная скважина;
2 — автоматизированные групповые замерные установки (АГЗУ);
3 — дожимная насосная станция (ДНС);
4 — установка очистки пластовой воды;
5 — установка подготовки нефти;
6 — газокомпрессорная станция;
7 — центральный пункт сбора нефти, газа и воды;
8 — резервуарный парк

Обезвоженная, обессоленная и дегазированная нефть после завершения окончательного контроля поступает в резервуары товарной нефти и затем на головную насосную станцию магистрального нефтепровода.

Обезвоживание нефти затруднено тем, что нефть и вода образуют стойкие эмульсии типа «вода в нефти». В этом случае вода диспергирует в нефтяной среде на мельчайшие капли, образуя стойкую эмульсию. Следовательно, для обезвоживания и обессоливания нефти необходимо отделить от нее эти мельчайшие капли воды и удалить воду из нефти. Для обезвоживания и обессоливания нефти используют следующие технологические процессы: гравитационный отстой нефти, горячий отстой нефти, термохимические методы, электрообессоливание и электрообезвоживание нефти. Наиболее прост
<img width=«698» height=«1074» src=«ref-2_486717021-5366.coolpic» v:shapes="_x0000_s1646 _x0000_s1647 _x0000_s1648 _x0000_s1649 _x0000_s1650 _x0000_s1651 _x0000_s1652 _x0000_s1653 _x0000_s1654 _x0000_s1655 _x0000_s1656 _x0000_s1657 _x0000_s1658 _x0000_s1659 _x0000_s1660 _x0000_s1661 _x0000_s1662 _x0000_s1663 _x0000_s1664 _x0000_s1665">по технологии процесс гравитационного отстоя. В этом случае нефтью заполняют резервуары и выдерживают определенное время (48 ч и более). Во время выдержки происходят процессы коагуляции капель воды, и более крупные и тяжелые капли воды под действием сил тяжести (гравитации) оседают на дно и скапливаются в виде слоя подтоварной воды.

Однако гравитационный процесс отстоя холодной нефти — малопроизводительный и недостаточно эффективный метод обезвоживания нефти. Более эффективен горячий отстой обводненной нефти, когда за счет предварительного нагрева нефти до температуры 50 -70
°
С значительно облегчаются процессы коагуляции капель воды и ускоряется обезвоживание нефти при отстое. Недостатком гравитационных методов обезвоживания является его малая эффективность.

Более эффективны методы химические, термохимические, а также электрообезвоживание и обессоливание. При химических методах в обводненную нефть вводят специальные вещества, называемые деэмульгаторами. В качестве деэмульгаторов используют ПАВ. Их вводят в состав нефти в небольших количествах от 5-10 до 50-60 г на 1 т нефти. Наилучшие результаты показывают так называемые неионогенные ПАВ, которые в нефти не распадаются на анионы и катионы. Это такие вещества, как дисолваны, сепаролы, дипроксилины и др. Деэмульгаторы адсорбируются на поверхности раздела фаз «нефть-вода» и вытесняют или заменяют менее поверхностно-активные природные эмульгаторы, содержащиеся в жидкости. Причем пленка, образующаяся на поверхности капель воды, непрочная, что отмечает слияние мелких капель в крупные, т.е. процесс коалесценции. Крупные капли влаги легко оседают на дно резервуара. Эффективность и скорость химического обезвоживания значительно повышается за счет нагрева нефти, т.е. при термохимических методах, за счет снижения вязкости нефти при нагреве и облегчения процесса коалесценции капель воды.

Наиболее низкое остаточное содержание воды достигается при использовании электрических методов обезвоживания и обессоливания. Электрообезвоживание и электро-обессоливание нефти связаны с
<img width=«696» height=«1058» src=«ref-2_486760080-5295.coolpic» v:shapes="_x0000_s1666 _x0000_s1667 _x0000_s1668 _x0000_s1669 _x0000_s1670 _x0000_s1671 _x0000_s1672 _x0000_s1673 _x0000_s1674 _x0000_s1675 _x0000_s1676 _x0000_s1677 _x0000_s1678 _x0000_s1679 _x0000_s1680 _x0000_s1681 _x0000_s1682 _x0000_s1683 _x0000_s1684 _x0000_s1685">пропусканием нефти через специальные аппараты-электродегидраторы, где нефть проходит между электродами, создающими электрическое поле высокого напряжения (20-30 кВ). Для повышения скорости электрообезвоживания нефть предварительно подогревают до температуры 50-70
°
С. При хранении такой нефти в резервуарах, при транспортировке ее по трубопроводам, в цистернах по железной дороге или водным путем значительная часть этих углеводородов теряется за счет испарения. Легкие углеводороды являются инициаторами интенсивного испарения нефти, так как они увлекают за собой и более тяжелые углеводороды.

В то же время легкие углеводороды являются ценным сырьем и топливом (легкие бензины). Поэтому перед подачей нефти из нее извлекают легкие низкокипящие углеводороды. Эта технологическая операция и называется стабилизацией нефти. Для стабилизации нефти ее подвергают ректификации или горячей сепарации. Наиболее простой и более широко применяемой в промысловой подготовке нефти является горячая сепарация, выполняемая на специальной стабилизационной установке. При горячей сепарации нефть предварительно подогревают в специальных нагревателях и подают в сепаратор, обычно горизонтальный. В сепараторе из подогретой до 40-80
°
С нефти активно испаряются легкие углеводороды, которые отсасываются компрессором и через холодильную установку и бензосепаратор направляются в сборный газопровод. В бензосепараторе от легкой фракции дополнительно отделяют за счет конденсации тяжелые углеводороды.

Вода, отделенная от нефти на УКПН, поступает на УПВ, расположенную также на ЦПС. Особенно большое количество воды отделяют от нефти на завершающей стадии эксплуатации нефтяных месторождений, когда содержание воды в нефти может достигать до 80%, т.е. с каждым кубометром нефти извлекается 4 м3 воды. Пластовая вода, отделенная от нефти, содержит механические примеси, капли нефти, гидраты закиси и окиси железа и большое количество солей. Механические примеси забивают поры в продуктивных пластах и препятствуют проникновению воды в капиллярные каналы пластов, а следовательно, приводят к нарушению контакта «вода-нефть» в пласте и снижению эффективности поддержания пластового давления. Этому же
<img width=«696» height=«1058» src=«ref-2_486765375-5295.coolpic» v:shapes="_x0000_s1686 _x0000_s1687 _x0000_s1688 _x0000_s1689 _x0000_s1690 _x0000_s1691 _x0000_s1692 _x0000_s1693 _x0000_s1694 _x0000_s1695 _x0000_s1696 _x0000_s1697 _x0000_s1698 _x0000_s1699 _x0000_s1700 _x0000_s1701 _x0000_s1702 _x0000_s1703 _x0000_s1704 _x0000_s1705">способствуют и гидраты окиси железа, выпадающие в осадок. Соли, содержащиеся в воде, способствуют коррозии трубопроводов и оборудования. Поэтому сточные воды, отделенные от нефти на УКПН, необходимо очистить от механических примесей, капель нефти, гидратов окиси железа и солей, и только после этого закачивать в продуктивные пласты. Допустимые содержания в закачиваемой воде механических примесей, нефти, соединений железа устанавливают конкретно для каждого нефтяного месторождения. Для очистки сточных вод применяют закрытую (герметизированную) систему очистки.

В герметизированной системе в основном используют три метода: отстой, фильтрования и флотацию. Метод отстоя основан на гравитационном разделении твердых частиц механических примесей, капель нефти и воды. Процесс отстоя проводят в горизонтальных аппаратах — отстойниках или вертикальных резервуарах-отстойниках. Метод фильтрования основан на прохождении загрязненной пластовой воды через гидрофобный фильтрующий слой, например через гранулы полиэтилена. Гранулы полиэтилена «захватывают» капельки нефти и частицы механических примесей и свободно пропускают воду. Метод флотации основан на одноименном явлении, когда пузырьки воздуха или газа, проходя через слой загрязненной воды снизу вверх, осаждаются на поверхности твердых частиц, капель нефти и способствуют их всплытию на поверхность. Очистку сточных вод осуществляют на установках очистки вод типа УОВ-750, УОВ-1500, УОВ-3000 и УОВ-10000, имеющих пропускную способность соответственно 750, 1500, 3000 и 10000 м3/сут. Следует отметить, что установка УОВ-10000 состоит из трех установок УОВ-3000. Каждая такая установка состоит из четырех блоков: отстойника, флотации, сепарации и насосного.

Вместе с очищенной пластовой водой в продуктивные пласты для поддержания пластового давления закачивают пресную воду, полученную из двух источников: подземных (артезианских скважин) и открытых водоемов (рек). Грунтовые воды, добываемые из артезианских скважин, отличаются высокой степенью чистоты и во многих случаях не требуют глубокой очистки перед закачкой в пласты. В то же время вода открытых водоемов значительно загрязнена глинистыми
<img width=«698» height=«1074» src=«ref-2_486770670-5306.coolpic» v:shapes="_x0000_s1706 _x0000_s1707 _x0000_s1708 _x0000_s1709 _x0000_s1710 _x0000_s1711 _x0000_s1712 _x0000_s1713 _x0000_s1714 _x0000_s1715 _x0000_s1716 _x0000_s1717 _x0000_s1718 _x0000_s1719 _x0000_s1720 _x0000_s1721 _x0000_s1722 _x0000_s1723 _x0000_s1724 _x0000_s1725">частицами, соединениями железа, микроорганизмами и требует дополнительной очистки. В настоящее время применяют два вида забора воды из открытых водоемов: подрусловый и открытый. При подрусловом методе воду забирают ниже дна реки — «под руслом». Для этого в пойме реки пробуривают скважины глубиной 20-30 м диаметром 300 мм. Эти скважины обязательно проходят через слой песчаного грунта. Скважину укрепляют обсадными трубами с отверстиями на спицах и в них опускают водозаборные трубы диаметром 200 мм. В каждом случае получают как бы два сообщающихся сосуда — «река-скважина», разделенных естественным фильтром (слоем песчаного грунта). Вода из реки профильтровывается через песок и накапливается в скважине. Приток воды из скважины форсируется вакуум-насосом или водоподъемным насосом и подается на кустовую насосную станцию (КНС). При открытом методе воду с помощью насосов первого подъема откачивают из реки и подают на водоочистную станцию, где она проходит цикл очистки и попадает в отстойник. В отстойнике с помощью реагентов-коагуляторов частицы механических примесей и соединений железа выводятся в осадок. Окончательная очистка воды происходит в фильтрах, где в качестве фильтрирующих материалов используют чистый песок или мелкий уголь.

Все оборудование системы сбора и подготовки нефти и воды поставляют в комплектно-блочном исполнении в виде полностью готовых блоков и суперблоков.


    продолжение
--PAGE_BREAK--
еще рефераты
Еще работы по производству