Реферат: Тема «Пифагоровы тройки. Алгебраические и трансцендентные числа» Содержание


Тема «Пифагоровы тройки. Алгебраические и трансцендентные числа »


Содержание


Пифагоровы тройки

Алгебраические числа. Введение

I. Краткий исторический очерк

II. Поле алгебраических чисел

2.1. Понятие числового поля

2.2. Алгебраическое число

2.3. Поле алгебраических чисел

III. Рациональные приближения алгебраических чисел

3.1 Теорема Лиувиля

3.2 Трансцендентные числа Лиувиля

Простые Числа Мерсенна, совершенные числа

Заключение


Пифагоровы тройки

Пусть a, b — катеты прямоугольного треугольника, c — его гипотенуза. Построим квадрат ABCD со стороной a+b и возьмём на его сторонах AB, BC, CD, DA такие точки E, F, G, H соот­ветственно, что AE=BF=CG=DH=a (рис. 1). Иными словами, от каждой из вершин A, B, C, D откладывается по отрезку дли­ны a в направлении к следующей вершине; «следующей» значит «следующей в порядке ABCDA». Наш квадрат разбивается на че­тырёхугольник EFGH и четыре прямоугольных треугольника EBF, FCG, GDH, HAE. У каждого из треугольников один катет равен a, а другой — b. Значит, все эти треугольники равны, так что, в частности, АЕН= ВРЕ. Гипотенуза равна c, а площадь
треугольника есть ^ 1/2ab. У четырёхугольника ЕРОН длина каждой стороны равна c, так что это ромб. Кроме того, все его углы прямые.

Например, НЕР=АЕВ—ВЕР—^ ЛЕН= 180°—ВЕР— ВРЕ= =ЕВР=90°. Итак, EFGH — квадрат со стороной c, так что его площадь равна c2. Но сумма его площади и площадей че­тырёх треугольников равна площади исходного большого квадрата, т. е. c2+4·1/2ab=(a+b)2. Левая часть равна c2+2ab, а правая — a2+2ab+b2, откуда и видно, что c2=a2+b2. Мы использовали алгебраическую символику, которой в Вавилоне не было, но вави­лонские математики умели проделывать всё, что здесь требуется, иначе, хотя это и было более громоздко.

Это самое простое и легко запоминающееся доказательство те­оремы Пифагора. Теперь его часто используют в школе. Но если вы посмотрите учебники, которые были приняты как основные в течение длительного времени, то вы там его не най­дёте. Почему? Неужели их авторы, люди вполне сведущие и ум­ные, не знали этого рассуждения, известного уже несколько тысяч лет, или не понимали, что оно понятнее, проще, лучше запомина­ется, чем другие? Позднее узнаем, в чём, по-моему, здесь дело.

С теоремой Пифагора связана арифметическая задача. Име­ются такие тройки натуральных (т. е. целых положительных) чисел x, y, z, что

x2+y2=z2. (1)

Их называют пифагоровыми тройками. Например, годятся числа x=3, y=4, z = 5: 9+16 = 25. Это пример. А можно ли указать все пифагоровы тройки (x, y, z)? Иными словами, можно ли найти все решения уравнения x2+y2=z2 в натуральных числах? (В связи с терминологией обратите внимание, что решение — это не одно число, а три.) Да. О твет таков: каждое такое решение можно представить в виде

x=l(m2−n2), y=2lmn, z=l(m2+n2), (2)

где l, m, n — натуральные числа, причём m>n, или в аналогичном виде, в котором x и y меняются местами. Можно чуть короче ска­зать, что x, y, z из (2) со всевозможными натуральными l и m>n суть все возможные решения (1) с точностью до перестановки x и y. Например, тройка (3, 4, 5) получается при l=1, m=2, n=1. То, что при любых натуральных l, m, n с m>n тройка (x, y, z), определяемая согласно (2), является решением (1), можно прове­рить непосредственно путём простого вычисления, и я на этом останавливаться не буду. Интересно другое: почему любое решение обязательно имеет вид (2)? Об этом и будем говорить. На самом деле, как это часто бывает, «прокручивая в обратную сторону» мои рассуждения, тоже можно доказать, что любая тройка вида (2) является решением, но на этом я тоже не буду останавливаться. Что при перестановке x и y снова получается решение — об этом и говорить нечего.

По-видимому, вавилоняне знали этот ответ, но как они к не­му пришли — неизвестно. (Впрочем, не ясно, знали ли они, что все решения (1) представимы в виде (2), да и задавались ли они таким вопросом. Имеется правдоподобная, хотя и гипотетическая, реконструкция их рассуждений, в которой этим вопросом не зада­ются, а ищут способ как-нибудь получить побольше решений.) Как его позднее доказывали древние греки — известно; по существу, их доказательство в модернизированном виде (с явным использо­ванием алгебры) воспроизводится во многих книгах, и, вероятно, многие из вас его знают. А теперь расскажем несколько более простое доказательство.

Сперва несколько простых замечаний, которые предшествуют и обычному доказательству. Если x, y и z имеют общий делитель k>1, скажем x=ku, y=kv, z=kw, где u, v, w — натуральные числа, то ясно, что тройка (u, v, w) снова является решением (1). Обратно, если мы знаем какое-то решение (x, y, z), то, умножив эти три числа на какое-нибудь натуральное k, мы снова получим решение. Поэтому можно ограничиться разысканием решений, не имеющих общего делителя. В данный момент речь идёт об об­щем делителе всех трёх чисел. Но если бы у двух из этих чисел, скажем уxиy, был общий делитель, то тот же делитель был бы и у третьего. Поэтому мы можем ограничиться разысканием решений, в которых любые два числа (x и y, x и z, y и z) не имеют общих делителей, больших 1. Это выражают словами: рассматри­ваемые числа x, y, z попарно взаимно просты.

При числа x, y, z в (2) не взаимно просты: они имеют общий делитель l. Так что если мы интересуемся только вза­имно простыми x, y, z, то для них в (2) должно быть l=1, и утверждение, которое мы хотим доказать, несколько упрощается: натуральные решения (x, y, z) уравнения (1) с взаимно простыми x, y, z с точностью до перестановки x и y представимы в виде

x=m2 − n2, y=2mn, z=m2+n2, (3)

где m, n — натуральные числа и m>n. Заметьте, что вовсе не утверждается обратного: что любые (x, y, z), получающиеся соглас­но (3) с натуральными m>n, являются решением (1) и попарно взаимно просты. Решением эта тройка будет, но числа x, y, z не обязательно получатся взаимно простыми. Ведь если у m и n есть общий делитель, то он войдёт (даже с квадратом) и в x, и в y, и в z.

Так что если бы настаивать на обратном утверждении, что любые (x, y, z), получающиеся согласно (3) с натуральными m>n, будут решением (1) с попарно взаимно простыми x, y, z, то, самое меньшее, что должен был бы уточнить: с взаимно простыми т и n. А было бы такого уточнения достаточно? О казывается, нет (вначале, должен сознаться, я было подумал, что да, но меня поправили). Ведь если mиn оба нечётные, то x получится чётным, а y в (3) всегда чётное. Но если одно из чисел m, n чётное, а другое нечётное, то x получится нечётным, и общим с y у него мог бы быть только нечётный делитель. Тогда у x и y имеется и нечётный простой делитель p. Раз 2mn делится на p, то m или n делится на p, а тогда, раз m2 − n2 тоже делится на p, то и второе из чисел m, n делится на p, т. е. m и n не взаимно просты, а мы уже решили, что будем брать только взаимно простые m, n. Но главное, что этого нам сейчас не нужно. Нам надо только установить, что решение (1) с взаимно простыми натуральными x, y, z обязательно представимо в виде (3) с какими-то m, n, а что при каких-то других m, n могут получиться решения с не взаимно простыми x, y, z — это нас сейчас не касается.

Другое замечание состоит в том, что когда мы ограничиваемся решениями с попарно взаимно простыми x, y, z, то одно из чи­сел x и y должно быть чётным, а другое — нечётным; z при этом, конечно, нечётно. Действительно, если x и y оба чётные, то они не взаимно просты, а имеют общий делитель 2. Если же они оба нечётны, то мы можем написать, что x=2r −1, y=2s − 1 с неко­торыми натуральными r, s. Отсюда

z2=(2r− 1)2+(2s − 1)2=4(r2 − r+s2− s)+2.

Получается, что z2 делится на 2, но не делится на 4. Но это невозможно: если z нечётно, то z2 и на 2 не делится, а если z чётно, то z2 делится на 4.

Раз одно из чисел x и y чётно, а другое нечётно, то мож­но считать, что нечётно x, а чётно y, — в противном случае мы просто изменим обозначения. Вот теперь начинается главное. Пе­репишем (1)

так:

или, обозначая z/y через u и x/y через v, в виде u2 − v2 = 1, т. е. (u+v)(u − v)=1. u и v суть частные двух натуральных чисел, т. е. положительные рациональные числа (дроби). u+v тоже рациональное число, причём положительное. Любое такое число представляется в виде несократимой дроби m/n; здесь m и n — нату­ральные числа, причём взаимно простые (раз дробь несократимая). А если m/n(u − v)=1, то u − v= n/m . Итак,

(4)

где m, n — взаимно простые натуральные числа. Рассматривая (4) как линейную систему уравнений относительно u, v, решим её, для чего достаточно сложить эти два уравнения, откуда получится 2u, и вычесть второе из первого, откуда получится 2v:

(5)

Отсюда видно, кстати, что m>n.

Мы знаем, что z/y и x/y — несократимые дроби. Если бы мы знали, что дробь тоже несократимая, то из (5) сразу следовали бы соотношения (3). Но пока что мы этого не знаем; однако о дробях z/y, x/y мы знаем, что они несократимые. Поэтому из (5) мы вправе сделать заключение, несколько более слабое, чем (3): суще­ствует такое натуральное k, что

m2+n2=kz, 2mn=ky, m2 − n2=kx. (6)

Допустим, что k имеет нечётный простой делитель p. Тогда 2mn делится на p, а раз это нечётное простое число, то m или n делится на p. Но тогда и одно из слагаемых в левой части равенства m2+n2=kz, и его правая часть делятся на p; выходит, что и второе слагаемое в левой части тоже делится на p. Получается, что и m, и n делятся на p, хотя они взаимно просты. Итак, у k нет нечётных простых делителей, так что k есть степень двойки. Вспомним, что у — чётное число, y=2w. Получается, что 2mn=2kw, mn=kw, и если k — степень двойки (с ненулевым показателем), то число тп чётное. Тогда хотя бы одно из чисел m, n — чётное. Но из m2+n2=kz следует, что m2+n2 — чётное число, и если вдобавок одно из чисел m или n — чётное, то и другое должно быть чётным. Снова у m и n нашёлся общий делитель. Остаётся признать, что k=1, а это и означает (3).

Тема «Алгебраические и трансцендентные числа»

^ Курсовая по алгебре
Тема: «Алгебраические числа»

Введение.

Первоначальные элементы математики связаны с появлением навыков счета, возникающих в примитивной форме на сравнительно ранних ступенях развития человеческого общества, в процессе трудовой деятельности.

Исторически теория чисел возникла как непосредственное развитие арифметики. В настоящее время в теорию чисел включают значительно более широкий круг вопросов, выходящих за рамки изучения натуральных чисел. В теории чисел рассматриваются не только натуральные числа, но и множество всех целых чисел, а так же множество рациональных чисел.

Если рассматривать корни многочленов: f(x)=xn+a1xn-1+…+an с целыми коэффициентами, то обычные целые числа соответствуют случаю, когда этот многочлен имеет степень n=1. Во множестве комплексных чисел естественно выделить так называемые целые алгебраические числа, представляющие собой корни многочленов с целыми коэффициентами.

Изучение свойств таких чисел составляет содержание одного из важнейших разделов современной теории чисел, называемого алгебраической теорией чисел. Она связана с изучением различных классов алгебраических чисел.


^ I. Краткий исторический очерк.


Огромное значение в развитии теории чисел имели замечательные работы К. Гаусса (1777-1855). Гаусс наряду с изучением обычных чисел начал рассматривать так же и арифметику чисел, получивших название целых гауссовских чисел, а именно числа вида a+bi, где a и b – обычные целые числа. Эти его исследования положили начала алгебраической теории чисел.

Теория алгебраических чисел была построена в работах Куммера (1810-1893) и Дирихле (1805-1859) и развита затем Кронекером (1823-1891), Дедекиндом (1831-1916) и Е.И. Золотаревым (1847-1878). Работы Лиувилля (1809-1882) и Эрмита (1822-1901) явились основой трансцендентных чисел.

Вопросы аппроксимации алгебраических чисел рациональными были существенно продвинуты в начале века А. Туэ, а затем в пятидесятых годах в работах К. Рота.

В последнее время все большее внимание специалистов по теории чисел привлекает алгебраическая теория чисел.

Здесь надо назвать работы Г. Хассе, Е. Гекке, а в особенности французского математика А. Вейля, результаты которого были использованы во многих теорико-числовых исследованиях, как например Д. Берджессом в проблеме о наименьшем квадратичном вычете.

К алгебраической теории чисел относятся и интересные работы советского математика И.Р. Шафаревича, а так же работы Б.Н. Делонга по теории кубических форм.


^ II. Поле алгебраических чисел.


2.1 Понятие числового поля

Естественный и важный подход к выделению и изучению тех или иных множеств чисел связан с замкнутостью множеств чисел относительно тех или иных действий.


Определение 1: Мы говорим, что некоторое множество чисел М замкнуто относительно некоторого действия, если для всяких двух чисел их М, для которых определен результат данного действия над ним, число, является этим результатом, всегда принадлежащим М.


Пример:

N Множество натуральных чисел замкнуто относительно сложения, т.к. a, bN  (a+b) N.

В отношении умножения множество N так же замкнуто. Но оно не является замкнутым относительно вычитания и деления. Действительно:

5, 7 N, но 5-7=-2 N,

3, 2N, но 3:2=1,5 N

Множество целых чисел Z замкнуто относительно сложения, вычитания и умножения.

Множество чисел вида 2к, кN, замкнуто относительно умножения и деления.

2к2l=2k+l

2к:2l=2k-l

В связи с замкнутостью действий на множестве выделились классы числовых множеств.

Рассмотрим один их классов, называемых полем.


Определение 2: Множество чисел М, содержащие не менее двух чисел, называется числовым полем, если оно замкнуто относительно действий сложения, вычитания, умножения и деления.


Последнее означает, что для любых a, b M, должно иметь место a+b, a-b, a*b M. Так же для любого aM и любого b0 из М, должно выполняться a:bM.


Пример:

Среди важнейших числовых полей наиболее важными являются:

поле всех рациональных чисел;

поле всех вещественных чисел;

поле всех комплексных чисел.

Что касается множества всех целых чисел, то оно не является числовым полем, ибо не замкнуто относительно деления.

Существует бесконечно много числовых полей. Нас, в данном случае интересует поле алгебраических чисел.


2.^ 2 Определение алгебраического числа.

Существуют различные признаки, по которым их общего множества Z выделяю те или иные подмножества, подвергаемые специальному изучению. С точки зрения важного для алгебры понятия алгебраического уравнения, естественным представляется выделение классов чисел, являющихся корнями алгебраических уравнений, коэффициенты которых принадлежат тому или иному классу чисел.


Определение 3: Число Z называется алгебраическим, если оно является корнем какого-нибудь алгебраического уравнения с целыми коэффициентами:

anxn+an-1xn-1+…+a1x+a0=0

(a0, a1, … ,anZ; an0),

т.е. выполняется:

anzn+an-1zn-1+…+a1z+a0=0


Числа не являющиеся алгебраическими называются трансцендентными.

В определении алгебраического числа можно допустить, чтобы коэффициенты a0, a1, … ,an-1, an были любыми рациональными числами, поскольку, умножив левую и правую части уравнения на целое число, являющиеся общим кратным знаменателем всех коэффициентов, мы получили уравнение с целыми коэффициентами, корнем которого будет наше число.

К алгебраическим числам принадлежат, в частности, и все рациональные числа. Действительно, рациональное число z= (p, qN) очевидно является корнем уравнения: qx-p=0.

Также всякое значение корня любой степени из рационального числа является алгебраическим числом. Действительно, число z= (p, qN) является корнем уравнения:

qxn-p=0.

Существуют и другие алгебраические числа, нежели указанное выше.


Пример:

Чиcло z= является алгебраическим. Действительно, возводя в квадрат обе части равенства, определяющего число z, получим: z2=2+2+3. Отсюда z2-5=. Возводя в квадрат обе части этого равенства, получим: z4-10z2+25=24. Отсюда следует, что число z является корнем следующего уравнения:

x4-10x2+1=0

Всякое число z=a+bi, у которого компоненты a и b – рациональные числа, являются алгебраическими. Докажем это.

, (p, q, N).

Из равенства , получаем: . Отсюда, возводя в квадрат, получим: . Следовательно, я является корнем уравнения:



все коэффициенты которого целые числа.

В дальнейшем мы будем рассматривать только действительные алгебраические числа, не оговаривая этого каждый раз.

Из f(x)=0 следует f(z)(x)=0, где в качестве (x) можно взять любой многочлен с целыми коэффициентами. Таким образом для любого алгебраического числа z, из всех этих многочленов обычно рассматривают многочлен наименьшей степени.


Определение 4: Число n называется степенью алгебраического числа z, если z есть корень некоторого многочлена n-ой степени с рациональными коэффициентами и не существует тождественно не равного нулю многочлена с рациональными коэффициентами степени, меньшей чем n, корнем которого является z.


Если корень многочлена n-ой степени с целыми рациональными коэффициентами z не является корнем ни одного тождественно неравного нулю многочлена с целыми коэффициентами степени меньшей чем n, то z не может быть корнем и тождественно неравного нулю многочлена с рациональными коэффициентами степени меньшей чем n, т.е. z – алгебраическое число степени n.

Рациональные числа являются алгебраическими числами первой степени. Любая квадратическая иррациональность представляет собой алгебраическое число 2-й степени, так как, являясь корнем квадратичного уравнения с целыми коэффициентами, она не является корнем какого-либо уравнения 1-й степени с целыми коэффициентами. Алгебраические числа 3-й степени часто называют кубическими иррациональностями, а 4-й степени биквадратическими иррациональностями.


Пример:

- алгебраическое число 3-й степени, т.е. кубическая иррациональность. Действительно, это число есть корень многочлена 3-й степени с целыми коэффициентами x3-2=0 и не является корнем какого-либо многочлена 1-й или 2-й степени с целыми коэффициентами.


Определение 5: Если алгебраическое число n-й степени z является корнем многочлена f(x)=xn+b1xn-1+ … +bn (n1) (1) с рациональными коэффициентами, то f(x) называется минимальным многочленом для z.

Таким образом, минимальным многочленом для z называется многочлен наименьшей степени с рациональными коэффициентами и старшим коэффициентом, равном единице, корнем которого является z.

Если вместо многочлена (1) взять какой-либо другой многочлен с рациональными коэффициентами степени n, корнем которого является z, то многочлен (1) может быть получен из него делением всех коэффициентов на старший член.


Пример:

Минимальным многочленом для является x3-2, так как корень этого многочлена не является корнем какого-либо многочлена степени с рациональными коэффициентами.


Теорема 1: Если f(x) минимальный многочлен алгебраического числа z и f(x) многочлен с рациональными коэффициентами, такой, что F(z)=0, то f(x) делитель F(x), т.е. F(x)=f(x)g(x), где g(x) также многочлен с рациональными коэффициентами.


Доказательство: Согласно известной теореме алгебры F(x) можно представить в виде:

F(x)=f(x)g(x)+r(x)

где g(x) и к(ч) – многочлены с рациональными коэффициентами, причем степень r(x) меньше степени f(x). Поскольку F(x)=0 и f(z)=0, то придавая x значение z, получаем r(z)=0; z – корень многочлена r(x) с рациональными коэффициентами степени, меньшей чем у минимального для z многочлена, т.е. меньшей чем степень z. Это может быть только если r(x) тождественно равен нулю, а значит F(x)=f(x)g(x). Теорема доказана.


Теорема 2: Для любого алгебраического числа z минимальный многочлен неприводим над полем рациональных чисел.

Доказательство:

Пусть f(x) – минимальный многочлен для z. Предположим, что f(x) приводим над полем рациональных чисел, т.е., что f(x)=(x)(x), (x)(x) – многочлены с рациональными коэффициентами, степени меньшей, чем n.

Из равенства (x)(x)=f(x)=0 следует, что из двух чисел (x) и (x), по крайней мере одно равно нулю. Пусть например (x)=0, тогда z – корень тождественно не равного нулю многочлена (x) с рациональными коэффициентами, степени меньшей, чем n, т.е. меньшей чем у f(x). А это противоречит тому, что f(x) – минимальный многочлен для z. Предположение, что f(x) приводим над полем рациональных чисел, оказалось неверным, т.е. f(x) неприводим над этим полем. Теорема доказана.


Теорема 3: Если z корень неприводимого над полем рациональных чисел многочлена F(x) с рациональными коэффициентами степени n, то z – алгебраическое число степени n.

Доказательство:

Обозначим минимальный многочлен для z через f(x). Согласно теоремы 1: F(x)=f(x)g(x); где g(x) – многочлен с рациональными коэффициентами. Поскольку F(x) неприводим над полем рациональных чисел и f(x) отлично от постоянного, то g(x)=c, где c – рационально. F(x)=cf(x), т.е. z – алгебраическое число n-й степени. Теорема доказана.


Пример:

Пусть p – простое число.

при любом простом целом a (a>1), не равном p-ой степени другого целого, представляет собой алгебраическое число степени p. Действительно это число есть корень неприводимого над полем рациональных чисел многочлена.

xp-a=0

Если z – алгебраическое число степени n и f(x) – минимальный многочлен для z, то все корни z1, z2, … zn уравнения f(x)=0, отличные от z, называют сопряженным с z.

Один из корней совпадает с z, будем ставить его на первое место, т.е. z=z1.


^ 2.3. Поле алгебраических чисел

Теорема 4: Множество всех действительных алгебраических чисел представляет собой поле, т.е. сумма, разность, произведение и частное двух алгебраических чисел  и  (для частного при 0) являются алгебраическими числами.

Доказательство:

Пусть  - корень многочлена f(x) степени n с целыми коэффициентами, корни которого 1, 2, … ,n,  и  - корень многочлена (x) степени m с целыми коэффициентами, корни которого 1, 2, … m (=1). Рассмотрим многочлен:

F(x)=(x-(i+i))=

= (x-1-1) (x-1-2) … (x-1-m)

(x-2-1) (x-2-2) … (x-2-m)

- - - - - - - - - - - - - - - - - - - - - - - - - -

(x-n-1) (x-n-2) … (x-n-m) (2)

Если в этом произведении сделать какую угодно подстановку величин 1, 2, … ,n, то некоторые строки переставляется местами, но произведение в целом не изменится. Это значит, что F(x) – симметрический многочлен по отношению 1, 2, … m. В целом F(x) – симметрический многочлен от двух систем аргументов: 1, 2, … ,n и 1, 2, … m.

Согласно известным теоремам о симметрических многочленах, коэффициенты многочлена F(x) могут быть выражены рационально через элементарные симметрические функции от 1, 2, … ,n и 1, 2, … m, т.е. через целые коэффициенты, f(x) и (x). Это значит, что коэффициенты F(x) рациональны, и, следовательно, число +=1+1, являющегося, как это непосредственно видно из формулы (2), корнем F(x), есть алгебраическое число.

Для доказательства того, что произведение двух алгебраических чисел  и  есть алгебраическое число, достаточно, аналогично тому, как это было только что сделано для многочлена (2), рассмотреть многочлен:

F(x)=(x-ii) (3)

Этот многочлен имеет в качестве одного из своих корней 11=.

Пусть  - корень многочлена (x)=b0xn+ b1xn-1+ … bn, (bi – целые числа). Тогда - является корнем многочлена с целыми коэффициентами.

(-x)=(-1)nb0xn+(-1)n-1b1xn-1+ … bn, а при 0 корень многочлена xn()=b0+b1x+ … bnxn. Таким образом, вместе с  алгебраическими числами являются - и .

Разность может быть представлена в виде +(-), т.е. в виде суммы двух алгебраических чисел. При 0 частное , являясь произведением двух алгебраических чисел, представляет собой так же алгебраическое число.

Если степени алгебраических чисел  и  равны m и n, то, взяв в качестве f(x) и (x) соответствующие минимальные многочлены будем в (2) и (3) иметь многочлены степени mn, и  алгебраические числа степени, не большей, чем mn. Многочлены (x), (-x), и xn одинаковой степени, а, следовательно, , -, - алгебраические числа одной и той же степени, откуда следует, что и - и имеют степени не больше, чем mn. Теорема доказана.


Пример:

1) и алгебраические числа 2-й степени, а - алгебраическое число 4 степени. Действительно, если =, то 2=5+, 24-102+1=0, т.е.  корень многочлена f(x)=x4-10x2+1 с целыми коэффициентами, и f(x)=(x-)(x-)(x+)(x+) (4)

Из теоремы единственности над полем рациональных чисел множители f(x) должны являться произведением каких-то множителей правой части равенства (4). Легко видеть, что из этих множителей нельзя составить многочлен с рациональными коэффициентами степени меньшей, чем 4, т.е. f(x) – неприводимый над полем рациональных чисел многочлен, а, следовательно, согласно теореме 3, - алгебраическое число 4-й степени.

2) = и =, как легко видеть, это алгебраические числа 6-й степени, а произведение = - алгебраическое число 3-й степени.


III. Рациональные приближения алгебраических чисел.


3.1. Теорема Лиувилля.

Алгебраические числа не могут иметь слишком хороших рациональных приближений: погрешность при замене алгебраического числа рациональной дробью не может быть достаточно мала по порядку в сравнении с величиной, обратной знаменателю рациональной дроби.

Для алгебраического числа 1-й степени существует постоянная c>0, такая, что для любой рациональной дроби , отличной от , будет выполняться неравенство:

(5)

Для алгебраического числа 2-й степени можно подобрать c>0, такое, что для любой рациональной дроби, будет иметь место неравенство:

(6)

В 1844 г., французским математиком Лиувиллем, впервые была доказана общая теорема:


Теорема 5: Для любого действительного алгебраического числа  степени n можно подобрать положительноеc, зависящее только от , такое, что для всех рациональных чисел () будет иметь место неравенство:

(7)

Доказательство:

Пусть f(x)=A0xn+ A1xn-1+An неприводимый многочлен с целыми коэффициентами, корнем которого является . В качестве f(x) можно, например, взять многочлен, получающийся из минимального для  многочлена после умножения всех коэффициентов на наименьшее кратное их знаменателей.

Согласно теореме Безу, имеем:

f(x)=(x-)g(x), (8)

где g(x) – многочлен с действительными коэффициентами.

Возьмем произвольное >0. |g(x)| - непрерывная, а следовательно, ограниченная функция от x в сегменте -; +, т.е. существует положительное число M, такое, что |g(x)|M, для всех x из этого сегмента. Обозначим через c=min , так, что и .

Для произвольного рационального числа могут представиться две возможности:

лежит вне сегмента |-; +|, тогда

удовлетворяет неравенствам:

-+, тогда |g()|M и, подставляя в (8) вместо x значение , получаем:

(9)

Неприводимый над полем рациональных чисел многочлен f(x) степени n2 не имеет рациональных корней, а при n=1 не имеет корней, отличных от , так что:

f()=

Поскольку числитель - целое неотрицательное, отличное от нуля, т.е. число большее или равное 1, то (10). Сравнивая неравенства (9) и (10) получаем , так что и в этом случае имеем: . Теорема доказана.


^ Пример:

Пусть z – неквадратное целое число. Найти c>0, такое, что для всех рациональных чисел имело бы место неравенство:

.

- корень многочлена x-В. Деля x2-D на x-, находим g(x)=x+.

При -<x<+ имеем , т.е. M=+. В качестве c берем , при этом выгодней всего взять  так, что 2+-1=0, т.е. =.

При таком  получаем , так что при любых целых a и b имеем: .


3.2. Трансцендентные числа Лиувилля.

Числа, являющиеся корнями уравнений с целыми коэффициентами, не исчерпывают все множество действительных чисел, т.е. существуют действительные числа отличные от алгебраических.


Определение 6: Любое неалгебраическое число называется трансцендентным.

Впервые существование трансцендентных чисел доказано Лиувиллем. Доказательство существования трансцендентных чисел у Лаувилля эффективно; на основе следующей теоремы, являющейся непосредственным следствием теоремы 5, строятся конкретные примеры трансцендентных чисел.

Теорема 6: Пусть  – действительное число. Если для любого натурального n1 и любого действительного c>0 существует хотя бы одна рациональная дробь , такая, что (11), то  – трансцендентное число.

Доказательство:

Если бы  было алгебраическим, то нашлось бы (теорема 5) целое положительное n и действительное c>0 такие, что для любой дроби было бы , а это противоречит тому, что имеет место (11). Предположение, что  алгебраическое число, т.е. трансце
еще рефераты
Еще работы по разное