Реферат: Реферат на тему



Министерство образования и науки РФ Лицей НГТУ

Реферат на тему

Современная наука о космосе

Группа: Л11- 2

Выполнили:

Вотрин Андрей

Ляшенко Артём

Преподаватель: Романенко Т.А.

Оценка:

Новосибирск 2009

Введение 3

1 Основные определения и понятия 7

2 Тёмная Энергия 15

2.1 Открытие тёмной энергии 15

2.2 Сверхновые звёзды и ускоряющаяся Вселенная 16

2.3 Природа тёмной энергии 17

3 Темная Материя 18

3.1 Скрытая масса и космологические параметры: проблема тёмной энергии 19

4 Барион 21

5 Чёрные Дыры 24

5.1 Основные свойства 25

5.2 Падение в чёрную дыру 26

5.3 Сверхмассивные чёрные дыры 27

5.4 Первичные чёрные дыры 28

5.5 Квантовые чёрные дыры 28

6 Интересные объекты Вселенной 29

6.1 Растворяющаяся планета 29

6.2 Радиогалактика 29

6.3 Туманности 30

7 Общая теория относительности 32

7.1 Основные принципы общей теории относительности 32

7.2 Кривизна пространства-времени 33

7.3 Предсказания общей теории относительности. Гравитационные эффекты. 33

Заключение 36

Список первоисточников 37


Введение
«Две вещи наполняют душу постоянно новым и возрастающим удивлением и благоговением и тем больше, чем чаще и внимательнее занимается ими размышление: звездное небо надо мной и нравственный закон во мне. То и другое, как бы покрытые мраком или бездною, находящиеся вне моего горизонта, я не должен исследовать, а только предполагать; я вижу их перед собой и непосредственно связываю их с сознанием своего существования.»

И. Кант.

Примерно за четыре тысячелетия до новой эры в долине Нила возникла одна из древнейших на Земле цивилизаций - египетская. Ещё через тысячу лет, после объединения двух царств (Верхнего и Нижнего Египта), здесь сложилось мощное государство. К тому времени, которое называют Древним царством, египтяне уже знали гончарный круг, умели выплавлять медь, изобрели письменность. Именно в ту эпоху были сооружены пирамиды. Тогда же, вероятно, появились египетские календари: лунно-звёздный - религиозный и схематический - гражданский. Обитатели долины Нила, где нет настоящей зимы, делили год на три сезона, которые зависели от поведения реки. Первый сезон - "ахет" (что в переводе с языка древних египтян означает "наводнение") - совпадал с разливом Нила. В то время, с июля по октябрь, река затопляла низины. Следующий сезон, длившийся тоже около четырёх месяцев, назывался "перет" (появление суши). Вода спадала, увлажнив землю и удобрив её илом; сезон начинался севом и заканчивался сбором урожая. С марта со стороны Сахары полтора месяца дули иссушающие ветры, и наступал последний сезон года, "тему" (отсутствие воды). С Нила, от которого зависела вся жизнь египтян, и началась астрономия этой древней цивилизации. "Египет - это дар Нила", - писал древнегреческий историк Геродот. Египетские жрецы-астрономы заметили, что незадолго до начала подъёма воды происходят два события: летнее солнцестояние и первое появление Сириуса на утренней заре после 70-дневного отсутствия на небосводе. Сириус, самую яркую звезду неба, египтяне назвали именем богини Сопдет. Греки произносили это имя как "Сотис"[5].

К тому времени в Египте существовал лунный календарь из 12 месяцев по 29 или 30 дней - от новолуния до новолуния. Чтобы его месяцы соответствовали сезонам года, раз в два-три года приходилось добавлять тринадцатый месяц. Сириус "помогал" определять время вставки этого месяца. Первым днём лунного года считался первый день новолуния, наступавший после возвращения этой звезды. Такой "наблюдательный" календарь с нерегулярным добавлением месяца плохо подходил для государства, где существовали строгий учёт и порядок Поэтому для административных и гражданских нужд был введён так называемый схематический календарь. В нём год делился на 12 месяцев по 30 дней с добавлением в конце года дополнительных пяти дней, т. е. содержал ровно 365 дней. Египтяне знали, что истинный год на четверть дня больше, чем введённый, и достаточно добавить в каждом четвёртом, високосном, году вместо пяти дополнительных дней шесть, чтобы согласовать его с сезонами. Но этого сделано не было. За 40 лет, т. е. за жизнь одного поколения, календарь уходил вперёд на десять дней, не на такую уж заметную величину, и писцы, управлявшие хозяйством, могли без труда приспособиться к медленным изменениям дат наступления сезонов. Через какое-то время в Египте появился и ещё один лунный календарь, приспособленный к скользящему гражданскому. В нём дополнительные месяцы вставлялись так, чтобы удержать начало года не вблизи момента появления Сириуса, около начала гражданского года. Этот "блуждающий" лунный календарь использовался наряду с двумя другими.

Возникнув в начале Древнего царства, гражданский календарь продержался в Египте вплоть до вхождения страны в состав Римской империи, хотя его пытались исправить, вводя високосные годы. Даже греческим царям из династии Птолемеев не удалось преодолеть силу традиции. В Древнем Египте существовала сложная мифология с множеством богов. Астрономические представления египтян были тесно связаны с ней. Согласно их верованиям, в середине мира находился Геб, один из прародителей богов, кормилец и защитник людей. Он олицетворял Землю. Жена и сестра Геба, Нут, была самим Небом. Её называли Огромной матерью звёзд и Рождающей богов. Считалось, что она каждое утро проглатывает светила и каждый вечер рождает их вновь. Из-за этой её привычки когда-то произошла ссора Нут и Геба. Тогда их отец Шу, Воздух, поднял Небо над Землёй и разлучил супругов. Нут была матерью Pa (Солнца) и звёзд и управляла ими. Ра в свою очередь создал Тота (Луну) как своего заместителя на ночном небе. Согласно другому мифу, днём Ра плывёт по небесному Нилу и освещает Землю, а вечером спускается в Дуат (преисподнюю). Там он путешествует по подземному Нилу, сражаясь с силами мрака, чтобы утром вновь появиться на горизонте. Ра изображался в образе сокола, а иногда в виде огромного кота. Его символом также был обелиск. Сохранились таблицы с указанием звёзд и их положений для каждого из 12 часов ночи. Положения обозначались фразами: "напротив сердца" (посередине фигуры), "над правым глазом", "над левым ухом", "над правым плечом" - всего семь положений. Как и первые два, этот способ определения времени, привязанный к скользящему календарю, требовал постоянного обновления таблиц и оказался недолговечным.

В Карнаке, около Фив, были найдены самые древние египетские водяные часы. Они изготовлены в ХIV в. до н. э. По-видимому, такие часы были известны лет за 300 до того: они появились незадолго до изобретения последних звёздных часов. Водяные часы, которые греки позднее назвали клепсидрой, представляли собой чашу с небольшим отверстием, из которого понемногу вытекала или капала вода. На внутренней стороне чаши помещались шкалы, по которым можно было судить, сколько времени "утекло". Египтяне той эпохи делили ночь и день на 12 часов, и часы получались разными в зависимости от сезонов. Поэтому в каждом месяце пользовались отдельной шкалой с его названием. Шкал было 12, хотя хватило бы 6, поскольку длины дней, находящихся на одном расстоянии от солнцестояний, практически одинаковы. Но египтяне были пленниками традиций и крайне неохотно шли на изменения первоначальных конструкций. Часы заполнялись водой в начале ночи, причём точкой отсчёта мог служить, например, заход Солнца, а дальше в ходе службы жрецам уже не нужно было смотреть на небо. Водяные часы не могли обойтись без регулировки. Вероятно, для этого отверстия клепсидр залепляли воском, в котором прокалывали дырочку нужного размера. Но требовалось ещё согласование "хода" этих часов с действительной длиной дня, т. е. нужны солнечные часы. Главными солнечными часами в Египте были, конечно, обелиски, посвящённые Солнцу-Ра. Такой астрономический прибор в виде вертикального столба называется гномон. Это первый инструмент, позволивший измерить высоту Солнца над горизонтом по длине тени. Так египтяне дополнили древнейшую "горизонтальную" астрономию вертикальным нахождением угловой высоты, тогда как в Стоунхендже измерялись только азимуты светил. Когда тень от гномона становилась самой короткой, наступал полдень. Остальные часы дня эти обелиски показывали не так точно.

Древние египтяне, как и все народы, делили небо на созвездия. О египетских созвездиях мы можем судить по упоминаниям в текстах и по рисункам на потолках храмов и гробниц. Египетские созвездия не похожи ни на вавилонские, ни на древнегреческие. Всего их известно 45. Сохранившиеся росписи потолков не образуют звёздной карты, и положение египетских созвездий на небе удаётся определить лишь приблизительно. Упоминаются, например, Мес (вероятно, Большая Медведица, которая изображалась в виде ноги быка); созвездие АН в виде фигуры с головой сокола, пронзающей копьём созвездие Мес; созвездие Бегемотихи, за которой изгибается огромный Крокодил. В древних текстах околополярные незаходящие созвездия именовались "неразрушимыми". Планеты египтянам были известны с давних времён. Египетские жрецы рано смогли разделить их на две группы. Верхние планеты, которые можно наблюдать в противостоянии Солнцу, считались воплощениями бога Хора. Так, Юпитер назывался "Хор, который освещает обе Земли", Сатурн - "Хор - бык небес", а Марс - "Красный Хор". Каждую из нижних планет, которые видны то утром, то вечером, египтяне, видимо, уже с середины II тысячелетия до н. э. знали как одно светило. Древнее название Венеры переводится как "Пересекатель", т. с. звезда, пересекающая путь Солнца. О Меркурии говорилось как о боге вечерних и утренних сумерек. Казалось бы, египетская астрономия не может похвастаться особыми достижениями. Египтяне, оседлый народ, живший в неширокой речной долине, не нуждались в астрономических методах ориентирования. Сроки сельскохозяйственных работ египтянам подсказывала река, и достаточно было установить момент начала её разлива, чтобы, не глядя на небо, знать, что будет дальше.[5]

Жрецы наблюдали звёзды в основном для измерения ночного времени, а писцы ввели упрощённый календарь, который не был привязан к сезонам и как бы пренебрегал астрономией. Тем не менее, именно" на египетской земле, в Александрии, работали позднее греческие учёные, заложившие основы современной астрономии. Здесь трудились Аристарх Самосский, Тимохарис, Эратосфен, именно здесь написал свой знаменитый астрономический труд Клавдий Птолемей. Оказала ли на них влияние наука Египта? Несомненно, и именно в той части, где она ушла от слепого следования за периодическими изменениями неба. Схематический календарь не следовал за сезонами, однако он послужил идеальной равномерной шкалой для определения интервалов между затмениями, наблюдавшимися через много лет одно после другого. Именно этим календарём пользовался в своих расчётах Птолемей, а позже и сам Коперник Египетская идея не зависящего от продолжительности дня часа легла в основу всех астрономических наблюдений. Пользуясь сейчас одинаковыми для каждого времени года часами, составляющими 1/24 длины суток, стоит помнить, что этот счёт времени был предложен миру древними египтянами.

Цель работы состоит в проведении поиска и подборки информации по соответствующей теме. Ознакомление с основными положениями существующей на сегодняшний день современной науки о космосе.

Эта тема нами выбрана неслучайно. На сегодняшний день было сделано множество интересных и познавательных открытий в области космоса, теория о создании и развитии вселенной полностью изменилась. В связи с нарастающим интересом в области астрофизики, данная тема нам кажется очень актуальной на сегодняшний день.
^ 1 Основные определения и понятия
Наш с вами загадочный мир состоит из частиц, будь то молекулы или атомы. Вплоть до 20 века люди не могли себе представить всё многообразие видов частиц на земле. Частицы, казалось бы неделимые, имели более сложное строение. На сегодняшний день можно выделить три порядка элементарных и три порядка составных частиц, представленных в таблицах 1.1 и 1.2.

Таблица 1.1 – Элементарные частицы

Фермионы

Кварки, Верхний, Нижний, Странный, Очарованный, Прелестный, Истинный

Лептоны

Электрон, Позитрон, Мюон, Тау-лептон, Нейтрино

^ Калибровочные бозоны

Фотоны, W- и Z-бозоны, Глюоны

До сих пор не обнаружены

Хиггсовский бозон, Гравитон, Другие гипотетические частицы

Таблица 1.2 – Составные частицы

Адроны

Барионы, Мезоны

Барионы

Нуклоны (Протон, Нейтрон), Гипероны, Экзотические барионы, Пентакварки

Мезоны

Пионы, Каоны, Кварконий, Экзотические мезоны, Атомные ядра, Атомы (Периодическая система элементов), Молекулы

Предлагаю сначала ознакомиться с некоторыми объектами наших исследований:

Фотон (от др. греч. φῶς, род. пад. φωτός, «свет») — элементарная частица, переносчик электромагнитного взаимодействия, квант электромагнитного поля. Фотоны обозначаются буквой γ, поэтому их часто называют гамма-квантами (особенно фотоны высоких энергий); эти термины практически синонимичны.

Вселенная — обычно определяется как совокупность всего, что существует физически. Это совокупность пространства и времени, всех форм материи, физических законов и констант, которые управляют ими. Однако термин Вселенная может трактоваться и иначе, как космос, мир или природа.[3]

^ Реликтовое излучение (или космическое микроволновое фоновое излучение от англ. cosmic microwave background radiation)— космическое электромагнитное излучение с высокой степенью изотропности и со спектром, характерным для абсолютно чёрного тела



^ Рисунок 1.1 - Снимок реликтового излучения

Красное смещение— сдвиг спектральных линий химических элементов в красную (длинноволновую) сторону. Это явление может происходить из-за эффекта Доплера, или эффектов ОТО: гравитационного и космологического красного смещения. Красное смещение может также являться следствием сразу нескольких из указанных выше причин. Сдвиг спектральных линий в фиолетовую (коротковолновую) сторону называется фиолетовым смещением. Каждый химический элемент поглощает или излучает электромагнитные волны на строго определённых частотах. Поэтому каждый химический элемент образует в спектре неповторимую картину из линий, используемую в спектральном анализе. В результате эффекта Доплера и/или эффектов ОТО, частота излучения от удалённых объектов, например, звёзд, может изменяться (понижаться или повышаться), а линии соответственно будут смещаться в красную (длинноволновую) или синюю (коротковолновую) часть спектра, сохраняя, однако, своё неповторимое относительное расположение. Смещение линий в красную сторону (обусловленное удалением объекта) и называется "красным смещением".



^ Рисунок 1.2 – Схема механизма красного смещения

Предел Чандрасекара — верхний предел массы, при котором звезда может существовать как белый карлик. Если масса звезды превышает этот предел, то она становится нейтронной звездой. Существование предела было доказано индийским астрофизиком Субраманьяном Чандрасекаром. В качестве значения обычно берется 1,4 солнечных массы. Строго говоря, предел Чандрасекара — это верхний предел массы холодного невращающегося белого карлика, определяемый условием равенства сил давления вырожденного электронного газа и гравитации. Значение предела обычно обозначается символом .

^ Постоянная Хаббла — коэффициент, входящий в закон Хаббла, который связывает расстояние до внегалактического объекта (галактики, квазара) со скоростью его удаления. Имеет размерность, обратную времени (с-1), но выражается обычно в км/с на мегапарсек. Наиболее надёжная оценка на 2008 год составляет (70,1±1,3) (км/с)/Мпк. В моделях расширяющейся Вселенной постоянная Хаббла изменяется со временем, но термин «постоянная» оправдан тем, что в каждый данный момент времени во всех точках Вселенной постоянная Хаббла одинакова. Величина, обратная постоянной Хаббла, имеет смысл характерного времени расширения Вселенной на текущий момент.

Лептон (греч. λεπτός — лёгкий) — фундаментальная частица с полуцелым спином, не участвующая в сильном взаимодействии. Название «лептон» было предложено Л. Розенфельдом в 1948 году и отражало тот факт, что все известные в то время лептоны были значительно легче тяжёлых частиц, входящих в класс барионов (греч. βαρύς — тяжёлый). Сейчас этимология термина уже не вполне согласуется с действительным положением дел, так как открытый в 1977 тау-лептон примерно в два раза тяжелее самых лёгких барионов (протона и нейтрона).

Существует три поколения лептонов:

-первое поколение: электрон, электронное нейтрино

-второе поколение: мюон, мюонное нейтрино

-третье поколение: тау-лептон, тау-нейтрино

(плюс соответствующие античастицы).

Нейтрино — стабильные нейтральные лептоны с полуцелым спином, участвующие только в слабом и гравитационном взаимодействиях. Нейтрино малой энергии чрезвычайно слабо взаимодействуют с веществом: так нейтрино с энергией порядка 3-10 МэВ имеют в воде длину свободного пробега ~ 1018 м (~ 100 св. лет). Также известно, что без видимых последствий каждую секунду через тело каждого человека на Земле проходит ~ 1014 нейтрино, испущенных Солнцем. В то же время, нейтрино высоких энергий успешно обнаруживаются по их взаимодействию с мишенями.

Позитрон (от англ. positive — положительный и «-трон» — часть названия электрона) — античастица электрона. Относится к антивеществу, имеет электрический заряд +1, спин 1/2, лептонный заряд −1 и массу, равную массе электрона. При аннигиляции позитрона с электроном их масса превращается в энергию в форме двух (и гораздо реже — трёх и более) гамма - квантов.

Адрон (от др. греч. ἁδρός — сильный, тяжёлый; термин предложен советским физиком Л. Б. Окунем) — класс элементарных частиц, подверженных сильному взаимодействию и не являющихся истинно элементарными. Адроны делятся на две основные группы в соответствии с их кварковым составом:

-мезоны — состоят из одного кварка и одного антикварка,

-барионы — состоят из трёх кварков трёх цветов, образуя так называемую бесцветную --комбинацию.

Именно из барионов построена подавляющая часть наблюдаемого нами вещества — это нуклоны, составляющие ядро атома и представленные протоном и нейтроном. К барионам относятся также многочисленные гипероны — более тяжёлые и нестабильные частицы, получаемые на ускорителях элементарных частиц. К мезонам относятся пионы (π - мезоны) и каоны (K-мезоны) и многие более тяжёлые мезоны. В последнее время были обнаружены так называемые экзотические адроны, которые также являются сильновзаимодействующими частицами, но которые не укладываются в рамки кварк - антикварковой или трёхкварковой классификации адронов. Некоторые адроны пока только подозреваются в экзотичности. Экзотические адроны делятся на:

-экзотические барионы, в частности пентакварки, минимальный кварковый состав которых 4 кварка и 1 антикварк.

-экзотические мезоны, (адронные молекулы, глюболы и гибридные мезоны).

Квазар (англ. quasar — сокращение от QUASi stellAR radio source — «квази звёздный радиоисточник») — класс внегалактических объектов, отличающихся очень высокой светимостью и настолько малым угловым размером, что в течение нескольких лет после открытия их не удавалось отличить от «точечных источников» — звёзд. Впервые квазары обнаружили в 1960 году как радиоисточники, совпадающие в оптическом диапазоне со слабыми звездообразными объектами. В 1963 году голландский астроном Мартин Шмидт доказал, что линии в их спектрах сильно смещены в красную сторону. Принимая, что это красное смещение вызвано эффектом Допплера, возникшего в результате удаления квазаров, до них определили расстояние по закону Хаббла. Очень сложно определить точное число обнаруженных на сегодняшний день квазаров. Это объясняется, с одной стороны, постоянным открытием новых квазаров, а с другой — некоторой размытостью границы между квазарами и другими типами активных галактик. В 2005 году группа астрономов использовала в своём исследовании данные о 195 000 квазаров. Ближайший и наиболее яркий квазар (3C 273) имеет блеск около 13m и красное смещение z = 0,158 (что соответствует расстоянию около 2 мл

Анализ и систематизация

Самые далёкие квазары, благодаря своей гигантской светимости, превосходящей в сотни раз светимость нормальных галактик, видны на расстоянии более 10 млрд световых лет. Нерегулярная переменность блеска квазаров на временных масштабах менее суток указывает на то, что область генерации их излучения имеет малый размер, сравнимый с размером Солнечной системы. Последние наблюдения показали, что большинство квазаров находятся вблизи центров огромных эллиптических галактик. Квазары сравнивают с маяками Вселенной. Они видны с огромных расстояний (до красного смещения z=6,4), по ним исследуют структуру и эволюцию Вселенной, определяют распределение вещества на луче зрения: сильные спектральные линии поглощения водорода разворачиваются в лес линий по красному смещению поглощающих облаков. Предположительно квазары представляют собой сверхмассивные чёрные дыры, на которые падает вещество.



^ Рисунок 1.3 – Квазар

Нейтронная звезда́ — астрономическое тело, один из конечных продуктов эволюции звёзд, состоит из нейтронной сердцевины и тонкой коры вырожденного вещества с преобладанием ядер железа и никеля.

Нейтронные звёзды имеют очень малый размер — 20—30 км в диаметре, поэтому средняя плотность вещества такой звезды в несколько раз превышает плотность атомного ядра (которая для тяжёлых ядер составляет в среднем 2,8×1017 кг/м³). Массы большинства известных нейтронных звёзд близки к 1,4 массы Солнца, что равно значению предела Чандрасекара. Силы тяготения в нейтронных звёздах уравновешиваются давлением вырожденного нейтронного газа, максимальное значение массы нейтронной звезды задаётся пределом Оппенгеймера — Волкова, численное значение которого зависит от (пока ещё плохо известного) уравнения состояния вещества в ядре звезды. Магнитное поле на поверхности нейтронных звёзд достигает значения 1012—1013 Гс (для сравнения — у Земли около 1 Гс), именно процессы в магнитосферах нейтронных звёзд ответственны за радиоизлучение пульсаров. Нейтронные звёзды — одни из немногих астрономических объектов, которые были теоретически предсказаны до открытия наблюдателями. Ещё в 1933 году В. Бааде и Ф. Цвикки высказали предположение, что в результате взрыва сверхновой образуется нейтронная звезда. Но первое общепризнанное наблюдение нейтронной звезды состоялось только в 1968, с открытием пульсаров.[3]



^ Рисунок 1.4 – Строение нейтронной звезды

Пульсар— космический источник радио-, оптического, рентгеновского, гамма- излучений, приходящих на Землю в виде периодически повторяющихся всплесков (импульсов). Пульсары были открыты в июне 1967 г. Джоселин Белл, аспиранткой Э. Хьюиша на меридианном радиотелескопе Маллардской радиоастрономической обсерватории Кембриджского университета на длине волны 3,5 м (85,7 МГц). За этот выдающийся результат Хьюиш получил в 1974 году Нобелевскую премию. Результаты наблюдений были засекречены на полгода. Это было связано с предположением искусственности строго периодических импульсов радиоизлучения. Пульсар, точнее радиопульсар, представляет собой нейтронную звезду. Она испускает узконаправленные потоки радиоизлучения. В результате вращения нейтронной звезды поток попадает в поле зрения внешнего наблюдателя через равные промежутки времени — так образуются импульсы пульсара. На 2008 год уже известно около 1790 радиопульсаров (по данным каталога ATNF). Ближайшие из них расположены на расстоянии около 0.12 кпк (около 390 световых лет) от Солнца. Несколько позже были открыты источники периодического рентгеновского излучения, названные рентгеновскими пульсарами. Как и радио, рентгеновские пульсары являются сильно замагниченными нейтронными звёздами. В отличие от радиопульсаров, расходующих собственную энергию вращения на излучение, рентгеновские пульсары излучают за счёт аккреции вещества звезды-соседа, заполнившего свою полость Роша. Как следствие, масса пульсара медленно растёт, увеличивается его момент инерции и частота вращения, в то время как радиопульсары со временем, наоборот, замедляются.



^ Рисунок 1.5 – Пульсар, схематическое изображение

.

Рисунок 1.6 – Изображение Крабовидной туманности в условных цветах (синий — рентгеновский, красный — оптический диапазон). В центре туманности — пульса.

Магнитар (реже магнетар)— нейтронная звезда, обладающая исключительно сильным магнитным полем (до 1011 Тл). Теоретически существование магнитаров было предсказано в 1992 г., а первое свидетельство их реального существования получено в 1998 г. при наблюдении мощной вспышки гамма - и рентгеновского излучения от источника SGR 1900+14 в созвездии Орла. Время жизни магнитаров мало, оно составляет около 10000 лет



^ Рисунок 1.7 - Магнитар, в представлениях художника

Кротовая нора, также «кротовина» или «червоточина» (последнее является дословным переводом англ. wormhole) — гипотетическая топологическая особенность пространства-времени, представляющая собой в каждый момент времени «туннель» в пространстве. Область вблизи самого узкого участка кротовины называется «горловиной». Кротовые норы делятся на «внутри-мировые» (англ. intra-universe) и «меж-мировые» (англ. inter-universe) в зависимости от того, можно ли соединить её входы кривой, не пересекающей горловину (на рисунке изображена внутри-мировая кротовая нора). Различают также проходимые (англ. traversable) и непроходимые кротовины. К последним относятся те туннели, которые коллапсируют слишком быстро для того, чтобы наблюдатель или сигнал (имеющие скорость не выше световой) успели добраться от одного входа до другого. Классический пример непроходимой кротовины — пространство Шварцшильда, а проходимой — кротовины Морриса-Торна.

Для существования проходимой кротовой норы необходимо, чтобы она была заполнена экзотической материей (англ.), создающей сильное гравитационное отталкивание и препятствующей схлопыванию норы. Проходимая внутри-мировая кротовая нора даёт гипотетическую возможность путешествий во времени, если, например, один из её входов движется относительно другого, или если он находится в сильном гравитационном поле, где течение времени замедляется.

Рисунок 1.8 – Компьютерное изображение кротовой норы
^ 2 Тёмная Энергия
Тёмная энергия (англ. Dark energy) — в космологии гипотетическая форма энергии, имеющая отрицательное давление и равномерно заполняющая всё пространство Вселенной. Согласно общей теории относительности, гравитация зависит не только от массы, но и от давления, причём отрицательное давление должно порождать отталкивание, антигравитацию. Согласно последним данным, обнаружившим ускоренное расширение Вселенной, такая сила действительно действует в космологических масштабах. Тёмная энергия также должна составлять значительную часть т. н. скрытой массы Вселенной. Существует два варианта объяснения сущности тёмной энергии:[3]

-тёмная энергия есть космологическая константа — неизменная энергетическая плотность, равномерно заполняющая пространство;

-тёмная энергия есть некая квинтэссенция — динамическое поле, энергетическая плотность которого может меняться в пространстве и времени.

^ Рисунок 2.1 – Компьютерное изображение галактики

Окончательный выбор между двумя вариантами требует высокоточных измерений скорости расширения Вселенной, чтобы понять, как эта скорость изменяется со временем. Темпы расширения Вселенной описываются космологическим уравнением состояния. Разрешение уравнения состояния для тёмной энергии является одной из самых насущных задач современной наблюдательной космологии. Введение космологической константы в стандартную космологическую модель (т. н. метрика Фримана-Лемэтра-Робертсона-Уокера, FLRW), привело к появлению современной модели космологии, известной как лямбда-CDM модель. Эта модель хорошо соответствует имеющимся космологическим наблюдениям.
^ 2.1 Открытие тёмной энергии
На основании проведённых в конце 1990-х годов наблюдений сверхновых звёзд типа Ia был сделан вывод, что расширение Вселенной ускоряется со временем. Затем эти наблюдения были подкреплены другими источниками. Например, измерениями реликтового излучения, гравитационного линзирования, нуклеосинтеза Большого Взрыва, постоянной Хаббла. Все полученные данные хорошо вписываются в лямбда-CDM модель.
^ 2.2 Сверхновые звёзды и ускоряющаяся Вселенная
Расстояния до других галактик определяются измерением их красного смещения. По закону Хаббла, величина красного смещения света удаленных галактик прямо пропорциональна относительной скорости этих галактик. Соотношение между расстоянием и величиной красного смещения называется параметром Хаббла (или, не совсем точно, постоянной Хаббла). Однако само значение параметра Хаббла требуется сначала каким-то способом установить, а для этого нужно измерить значения красного смещения для галактик, расстояния до которых уже вычислены другими методами. Для этого в астрономии применяются «стандартные свечи», то есть объекты, светимость которых известна. Лучшим типом «стандартной свечи» для космологических наблюдений являются сверхновые звёзды типа Ia. Они обладают очень высокой яркостью и вспыхивают только тогда, когда масса старой звезды типа «белый карлик» достигает предела Чандрасекара, значение которого известно с высокой точностью. Следовательно, все вспыхивающие сверхновые типа Ia, находящиеся на одинаковом расстоянии, должны иметь одинаковую наблюдаемую яркость. Сравнивая наблюдаемую яркость сверхновых в разных галактиках, можно определить расстояния до этих галактик.

В конце 1990-х годов было обнаружено, что в удалённых галактиках, расстояние до которых было определено по закону Хаббла, сверхновые типа Ia имеют яркость ниже той, которая им полагается. Иными словами, расстояние до этих галактик, вычисленное по методу «стандартных свеч» (сверхновых Ia), оказывается больше расстояния, вычисленного на основании ранее установленного значения параметра Хаббла. Предположим, что есть удалённый объект, расстояние до которого от нас, определённое по методу «стандартных свеч», равно DC. Свет, дошедший до нас от объекта, прошёл расстояние DC=D1 + D2, где D1 — первая часть пути, D2 — вторая часть пути. Красное смещение на первой части пути составило R1=H1D1 (где Н1 — значение параметра Хаббла на этом промежутке пути), на второй части пути R2=H2D2 (где H2 — нынешнее значение параметра Хаббла). Если предположить, что H1=H2 (то есть параметр Хаббла постоянен), то расстояние, определённое по закону Хаббла, DH=R1/H2 + R2/H2, должно быть равно DС. Однако, как уже сказано, для удалённых галактик (и их сверхновых типа Ia) оказалось, что DH < DC. Отсюда следует, что H1 < H2.

Был сделан вывод: параметр Хаббла для относительно близких галактик выше, чем для далёких галактик. То есть, параметр Хаббла не оставался постоянным на протяжении значительных промежутков времени (сотни миллионов и миллиарды лет), — он увеличивался, и, следует полагать, продолжает увеличиваться. Вселенная не просто расширяется, она расширяется с ускорением. Ранее существовавшие космологические модели предполагали, что расширение Вселенной замедляется. Они исходили из предположения, что основную часть массы Вселенной составляет материя — как видимая, так и невидимая (тёмная материя). На основании новых наблюдений, свидетельствующих об ускорении расширения, было постулировано существование неизвестного вида энергии с отрицательным давлением (см. уравнения состояния). Её назвали тёмной энергией.
^ 2.3 Природа тёмной энергии
Сущность тёмной энергии является предметом споров. Известно, что она очень равномерно распределена, имеет низкую плотность, и не взаимодействует сколько-нибудь заметно посредством известных фундаментальных типов взаимодействия — за исключением гравитации. Поскольку гипотетическая плотность тёмной энергии не слишком велика — порядка 10−29 граммов на кубический сантиметр — её вряд ли удастся обнаружить лабораторным экспериментом (хотя уже были заявления о таком обнаружении). Тёмная энергия может оказывать такое глубокое влияние на Вселенную (составляя 70 % процентов всей энергии) только потому, что она однородно наполняет пустое (в иных отношениях) пространство. Существуют две главные модели, объясняющие природу тёмной энергии: «космологическая константа» и «квинтэссенция».
^ 3 Темная Материя
Скрытая масса (англ. Dark matter) (в космологии и астрофизике также тёмная материя, тёмное вещество, тёмная энергия) — общее название совокупности астрономических объектов, недоступных прямым наблюдениям современными средствами астрономии (то есть не испускающие электромагнитного излучения достаточной для наблюдений интенсивности), но наблюдаемым косвенно по гравитационным эффектам, оказываемым на наблюдаемые объекты. По современным представлениям, только около 4,4 % массы Вселенной составляет обычная барионная материя. Приблизительно 23 % приходится на небарионную тёмную материю, не участвующую в сильном и электромагнитном взаимодействии. Она наблюдается только в гравитационных эффектах. В зависимости от скорости частиц различают горячую и холодную тёмную материю.

^ Рисунок 3.1 – Схематическое изображение Темной Материи

Горячая тёмная материя состоит из частиц, движущихся с околосветовыми скоростями, по-видимому, из нейтрино. Горячей тёмной материи недостаточно, по современным представлениям, для формирования галактик. Исследование структуры реликтового излучения показало, что существовали очень мелкие флуктуации плотности вещества. Быстро движущаяся горячая тёмная материя не могла бы сформировать такую тонкую структуру.

^ Рисунок 3.2 – Схематическое изображение

Холодная тёмная материя должна состоять из массивных медленно движущихся (и в этом смысле «холодных») частиц или сгустков вещества. Экспериментально такие частицы не обнаружены.В качестве кандидатов на роль холодной тёмной материи выступают слабо взаимодействующие массивные частицы (Weakly Interactive Massive Particles, WIMP), такие как аксионы и суперсимметричные партнёры-фермионы лёгких бозонов — фотино, гравитино и др. Впервые предположение о существовании материи, взаимодействующей с обычным веществом только через гравитацию, было высказано в начале XX века в связи с аномальным движением Меркурия. Однако эта проблема была решена благодаря теории относительности.
^ 3.1 Скрытая масса и космологические параметры: проблема тёмной энергии
Одной из основных проблем космологии является вопрос о средней кривизне пространства и темпе расширения Вселенной. Если кривизна пространства нулевая или отрицательная, то расширение Вселенной происходит неограниченно (плоская и открытая модели Вселенной); если кривизна положительна, то расширение Вселенной должно смениться сжатием (закрытая модель Вселенной). В свою очередь, в рамках общей теории относительности (ОТО), средняя кривизна пространства Вселенной зависит от её средней плотности, нулевой кривизне соответствует критическая плотность Ωcrit ~ 10-29 г/см³, что эквивалентно примерно 5 атомов водорода на м³. Однако, несмотря на то, что наблюдаемое значение средней плотности светящейся материи Ωvis составляет порядка 1 % от критической, данные наблюдений свидетельствуют о том, что кривизна Вселенной близка к нулю, т. е. Ω довольно близко к Ωcrit В 1917 г. Эйнштейн для обеспечения стационарности (независимости от времени) космологической модели ОТО ввёл космологическую постоянную Λ, действующую в больших масштабах как силу отталкивания, однако в 1922 г. Фридман опубликовал работу по космологической модели нестационарной расширяющейся Вселенной, в которой космологическая постоянная была равна нулю. После открытия Хабблом красного смещения, т. е. космологического расширения, основания для введения космологической постоянной отпали, и сам Эйнштейн в
еще рефераты
Еще работы по разное