Реферат: И коллоидная химия



Государственное образовательное учреждение высшего

профессионального образования

ПЕТРОЗАВОДСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ


БИОЛОГИЧЕСКАЯ, ФИЗИЧЕСКАЯ

И КОЛЛОИДНАЯ ХИМИЯ


Методические указания

к лабораторным работам и контрольные вопросы и задачи для студентов II курса агротехнического факультета специальности «Зоотехния»


Петрозаводск

Издательство ПетрГУ

2007


Рассмотрены и утверждены к печати на заседании редакционной комиссии по отрасли науки и техники «биология» 11 сентября 2007 г.


Печатаются по решению редакционно-издательского совета

Петрозаводского государственного университета


Составители

^ В. В. Осташкова, канд. биол. наук;

В. П. Андреев, доктор хим. наук;

Я. П. Нижник, канд. хим. наук


ПРЕДИСЛОВИЕ


Настоящие методические указания содержат лабораторные работы по биологической, физической и коллоидной химии, выполняемые студентами II курса агротехнического факультета специальности «Зоотехния» в процессе изучения предмета. На лабораторных занятиях студенты овладевают методами экспериментальных исследований, закрепляют теоретические знания, анализируют полученные на практических занятиях результаты. В каждой лабораторной работе излагаются цель и задачи, поставленные перед студентом, принцип используемого метода, ход работы, предлагается проанализировать результаты проведенных исследований и сделать выводы. Представленные в конце каждого раздела вопросы и задачи способствуют лучшему усвоению теоретического материала при самоподготовке.

^ БИОЛОГИЧЕСКАЯ ХИМИЯ

РАЗДЕЛ 1. МЕТОДЫ ИССЛЕДОВАНИЯ В БИОХИМИИ


РАБОТА 1. КОЛОРИМЕТРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ОКРАШЕННЫХ ВЕЩЕСТВ В РАСТВОРАХ. ПРИНЦИП И ТЕХНИКА КОЛОРИМЕТ-РИРОВАНИЯ. УСТРОЙСТВО И ПРАВИЛА РАБОТЫ НА КФК-2

^ Цель работы: ознакомиться с одним из наиболее распространенных в биохимии методов количественного определения веществ в исследуемом растворе.

Задачи:

ознакомиться с основными принципами и правилами работы на КФК-2;

измерить оптическую плотность двух окрашенных растворов;

подобрать наиболее оптимальную длину волны и размер кюветы для определения оптической плотности предложенных растворов.


Фотометрия — метод количественного анализа, основанный на определении концентрации вещества по спектру поглощения, испускания или флуоресценции.

В зависимости от характера возникающих изменений выделяется несколько видов фотометрии (колориметрия, нефелометрия, турбидиметрия, флуориметрия, рефрактометрия, поляриметрия и др.). Фотометрические методы анализа характеризуются высокой чувствительностью, достигающей 10-4-10-6 % определяемого элемента в твердых образцах и 10-5-10-7 % – в водных растворах. Колориметрический метод получил самое широкое распространение среди биохимических методов количественного определения веществ в биологических объектах.

^ Принцип метода. В основе этого метода лежит закон Бугера- Ламберта  Бера, согласно которому существует прямо пропорцио-нальная зависимость между концентрацией вещества в окрашенном растворе и степенью поглощения света данным раствором.

Интенсивность поглощения света зависит не только от количества и природы растворенного вещества, но и от толщины слоя раствора, длины волны падающего света, температуры раствора.

D = cl,

где D  оптическая плотность;

  коэффициент экстинкции (л/моль·см);

с  молярная концентрация (моль/л);

l-  толщина слоя раствора (см).

Степень поглощения света окрашенным раствором выражается оптической плотностью (экстинкцией), под которой понимают логарифм отношения интенсивности света, падающего на раствор, к интенсивности света, прошедшего через раствор [D = lg(I0/I)]. Величина оптической плотности обозначается буквой Е или D. Чем больше оптическая плотность, тем меньше света пропускает раствор. Для определения оптической плотности или светопропускания используют фотоэлектроколориметры.


^ 1.Устройство фотоэлектроколориметра КФК-2

Колориметр фотоэлектрический концентрационный (КФК-2) предназначен для количественного определения веществ в окрашенных растворах по их оптической плотности или коэффициенту светопропускания в диапазоне волн 315-980 нм. КФК-2 состоит из оптического блока (передняя часть прибора), где находятся осветитель, светофильтр, оптика, кюветное отделение, фотометрическое устройство и регистрирующий прибор, и блока питания (задняя часть), где расположен стабилизатор напряжения с выпрямителем и силовой трансформатор.

Источником света в колориметре служит галогенная лампа. Приемниками излучения являются фотоэлемент Ф-26 для работы в диапазоне волн 315-540 нм и фотодиод ФД-24К для работы в специальном диапазоне 590-980 нм.

Световой поток лампы с помощью специальных устройств конденсируется, усиливается и проходит через светофильтр, кювету с исследуемым раствором и падает на приемник излучения. При этом световое излучение преобразуется в электрические сигналы, которые подаются на измерительный прибор. Показания микроамперметра пропорциональны световому потоку, проходящему через исследуемый раствор.

^ 2. Выбор светофильтра

При проведении фотоэлектроколориметрии следует учитывать, что в данном методе используется монохроматический свет, причем различных длин волн. Для преобразования полихроматического света в монохроматический используются светофильтры. В КФК-2 имеется набор из 11 светофильтров. Использование конкретного светофильтра позволяет пропускать через раствор лучи определенной длины, поглощение которых наиболее характерно для исследуемого вещества. Обычно эффективная длина волны и цвет светофильтра указаны в применяемом методе. Если же такой ссылки нет, то выбрать нужный светофильтр можно с помощью таблицы.

Таблица


Окраска исследуемого раствора

Цвет нужного светофильтра

Длина волны пропускаемого света, нм

Желтая

синий

420 - 450

Оранжевая

синий

430 – 460

Красная

зеленый

460 - 500

Пурпурная

зеленый

490 - 530

Синяя

оранжевый

590

Сине-зеленая

красный

600 - 650

Голубая

красный

750

Сине-фиолетовая

красный

750


Примечание. Выбор светофильтра по данной таблице приблизителен, так как некоторые растворы одинакового цвета могут избирательно поглощать лучи с различной длиной волны. Поэтому при подборе светофильтра желательно знать спектр поглощения исследуемого вещества, причем выбор его осуществляют таким образом, чтобы он пропускал лучи с длиной волны, максимально поглощаемой исследуемым раствором. Таким образом, при выборе светофильтра оптимальной длиной волны окажется та, при прохождении которой через исследуемый раствор оптическая плотность будет максимальной.

^ 3. Подбор кювет

Известно, что чем толще слой жидкости, через который проходит луч света, тем больше будет поглощение светового пучка и тем выше показание оптической плотности исследуемого раствора. К колориметру прилагается набор кювет, отличающихся расстоянием между рабочими гранями, через которые проходит световой поток. Это расстояние (в мм) указано на одной из рабочих граней. На боковой стенке кюветы имеется метка, до которой необходимо наливать жидкость. При работе с летучими растворами кюветы закрывают специальными крышками.

К каждому прибору прилагается набор кювет с толщиной слоя исследуемого раствора от 1 до 50 мм. Подбор кювет осуществляется таким образом, чтобы оптическая плотность исследуемого раствора не была ниже величины 0,15 и выше 0,7. Именно в этих пределах наиболее точно выполняется закон Бугера - Ламберта  Бера. Следовательно, при интенсивной окраске раствора необходимо взять кюветы с меньшим расстоянием между рабочими гранями, а при слабой окраске – с большим расстоянием.


^ 4. Общая схема прибора и обозначения



1  рукоятка установки светофильтра (около рукоятки маркировка по длине волны);

2 – ручка перемещения кювет в кюветном отделении;

3 – ручка включения чувствительности фотоприемников (обозначена цифрами 1, 2 и 3 черного цвета при работе в диапазоне волн от 315 до 540 нм и красного цвета - в диапазоне от 590 до 980 нм);

4 – микроамперметр (имеет две шкалы: по верхней измеряют коэффициент светопропускания, а по нижней – оптическую плотность раствора);

5 – ручка «грубой» настройки микроамперметра;

6 – установка «точной» настройки микроамперметра;

7 – крышка кюветного отделения.


5. Правила работы на КФК-2

I. Подготовка прибора к работе

Установить нужный светофильтр (рукоятка 1).

Рукоятку 3 (чувствительность фотоэлемента) установить на цифру 1 соответствующего цвета: при работе в диапазоне волн от 315 до 540 нм чувствительность обозначена цифрами черного цвета, в диапазоне от 590 до980 нм – красного цвета.

Проверить, выключен ли микроамперметр (рукоятки 5 и 6 должны быть повернуты до отказа влево).

Прибор включить (вилку – в сеть; тумблер, расположенный на задней стенке в нижнем левом углу, переключить в положение «вкл»). При этом загорается лампочка накаливания.

Прибор прогреть в течение 15-20 минут.


^ II. Измерение оптической плотности раствора

Кювету с контролем или растворителем поставить в дальнее (от исследователя) гнездо кюветодержателя; кювету с исследуемым раствором (опыт) – в ближнее гнездо кюветодержателя.

Кювету с контролем (или растворителем) поместить в световой поток поворотом ручки 2 до отказа влево.

Закрыть крышку кюветного отделения (7).

Установить стрелку микроамперметра на 0 по нижней шкале поворотом ручки 5 («грубой» настройки). В случае необходимости воспользоваться ручкой 6 («точной» настройки).


Примечание. Если не удается вывести стрелку микроамперметра на 0, то необходимо повысить чувствительность фотоэлемента. Для этого необходимо:

а) микроамперметр выключить (рукоятки 5 и 6 до отказа влево);

б) рукоятку переключения чувствительности фотоэлемента (3) поставить на цифру 2 соответствующего цвета;

в) вывести стрелку микроамперметра на 0 по нижней шкале (то есть повторить действия, указанные в пункте 4).

Если и в этом случае стрелка микроамперметра не выводится на 0, необходимо еще раз повысить чувствительность фотоэлемента, повторяя все действия, перечисленные в пунктах «а», «б» и «в», но установив рукоятку 3 на цифру 3 соответствующего цвета.

5. Заменить в световом потоке кювету с контролем на кювету с исследуемым раствором (опытом), поворачивая рукоятку 2 до отказа вправо.

Записать величину оптической плотности исследуемого раствора по нижней шкале микроамперметра.

Микроамперметр выключить (рукоятки 5 и 6 до отказа влево).


III. Завершение работы на приборе

Реактивы из кювет вылить.

Кюветы сполоснуть дистиллированной водой и поставить в чашку Петри вверх донышком (кюветы необходимо полоскать только после полного завершения работы или методики, в промежутках между отдельными измерениями этого делать не следует !).

Прибор выключить (тумблер, расположенный на задней стенке в левом углу, переключить в положение «выкл.»; вилку вынуть из розетки).

Крышку кюветного отделения закрыть.


Примечание. При работе на КФК-2 необходимо соблюдать следующие правила:

До включения прибора в сеть проверить заземление.

Не оставлять прибор включенным без надобности.

Следить за чистотой прибора, не проливать реактивы.

Не хлопать крышкой кюветного отделения.

Особенно осторожно обращаться с кюветами, не царапать, протирать только мягкой и чистой тряпочкой (марлей).

При смене светофильтра работу продолжать не ранее чем через 5 минут.

При переключении светофильтров и замене кювет в кюветодержателе микроамперметр должен быть выключен (рукоятки 5 и 6 должны находиться в крайнем левом положении!).


^ 6. Определение концентрации вещества в растворе

по оптической плотности

Определение концентрации вещества в окрашенном растворе по оптической плотности можно осуществить двумя способами – путем сравнения с оптической плотностью стандартного раствора (такой способ используется, например, в ортотолуидиновом методе определения глюкозы в крови) или, более точно, в результате построения калибровочной кривой. В этом случае готовят ряд растворов определяемого вещества с известными концентрациями (стандартные растворы), проделывают с ними необходимые химические реакции и измеряют на ФЭКе их оптическую плотность. Полученные результаты отражают графически, откладывая по оси абсцисс концентрацию вещества, а по оси ординат – соответствующую ей оптическую плотность. Определив оптическую плотность исследуемого раствора, находят по калибровочной кривой содержание в нем вещества.


^ Результаты проведенных исследований оформляют в виде таблицы:


Длина волны

Цвет светофильтра

Е голубого раствора

Е желтого раствора






































Выводы:


РАЗДЕЛ 2. состав И СВОЙСТВА БЕЛКОВ

^ 2. 1. АНАЛИЗ АМИНОКИСЛОТНОГО СОСТАВА БЕЛКОВ

Анализ аминокислотного состава белков можно осуществлять несколькими способами. Присутствие тех или иных аминокислот может быть выявлено с помощью цветных реакций на белок, а также в результате кислотного его гидролиза и последующего разделения полученной смеси аминокислот методом хроматографии.


^ РАБОТА 2. ЦВЕТНЫЕ РЕАКЦИИ НА БЕЛКИ

Цель работы: ознакомиться с основными наиболее распространенными цветными реакциями на белки и доказать, что с их помощью можно выявить сходство и различия в аминокислотном составе исследуемых белков (яичный альбумин и желатин).

Задачи:

провести цветные реакции на белки с раствором яичного альбумина и желатина;

показать, что существуют универсальные цветные реакции, которые дают все белки, независимо от их аминокислотного состава, и специфические цветные реакции на определенные аминокислоты, позволяющие выявить различия в исследуемых белках;

сравнить результаты проведенных исследований и сделать выводы;

отметить, какие из проведенных реакций являются универсальными, а какие – специфическими.

Цветные реакции на белки являются качественными реакциями, обусловленными наличием специфических групп. Некоторые из таких реакций широко используются в биохимической практике для изучения структуры и аминокислотного состава белков, их количественного определения.


^ 1. Биуретовая реакция (на обнаружение

пептидных связей в белках)

Принцип метода. Белки (пептиды) в щелочном растворе в присутствии солей меди (II) образуют комплексные ее соединения, окрашенные в сине-фиолетовый или красно-фиолетовый цвет.

Для пептидной (амидной) группы характерна лактам-лактимная таутомерия:





В щелочной среде преобладающая лактимная (енольная) форма полипептида взаимодействует с гидроксидом меди(II) с образованием стабильного окрашенного комплекса:





^ Ход работы. К 1 мл 1%-го раствора белка (желатина, яичного белка или сывороточного альбумина) добавляют 1 мл 10%-го раствора щелочи (NaOH или KOH) и 1 каплю 1%-го раствора сульфата меди. Появляется сине-фиолетовое или красно-фиолетовое окрашивание.


^ 2. Нингидриновая реакция (на аминогруппу,

находящуюся в -положении)

Принцип метода. Белки, полипептиды и свободные -амино-кислоты при нагревании реагируют с нингидрином с образованием продукта конденсации, окрашенного в фиолетовый цвет:





^ Ход работы. К 1 мл 1%-го раствора белка прибавляют 0,5 мл 0,5%-го раствора нингидрина и нагревают до кипения. Появляется фиолетово-синее окрашивание.

Проделывают эту реакцию с раствором аминокислоты, взяв вместо раствора белка 1%-й раствор глицина. Сравнить полученные результаты и сделать вывод.


^ 3. Реакция Сакагучи (на аргинин)

Принцип метода. Белки, содержащие аргинин, в присутствии щелочи дают красное окрашивание с гипобромитом и -нафтолом. Гуанидиновая группа аргинина окисляется гипобромитом, и окисленный аргинин при взаимодействии с -нафтолом образует продукт конденсации красного цвета:




^ Ход работы. К 0,5 мл 1%-го раствора белка (яичного белка, желатина) добавляют 0,5 мл 10%-го раствора щелочи, 3 капли 0,1%-го спиртового раствора -нафтола и после перемешивания – 2-3 капли 2%-го раствора гипобромита натрия (NaBrO). Появляется красное окрашивание.


4. Реакция Фоля (на цистеин и цистин)

^ Принцип метода. При кипячении белка со щелочью от цистеина (цистина) легко отщепляется сера в виде сероводорода, который в щелочной среде образует сульфид натрия:





Для выявления сульфида натрия используют ацетат свинца, который при взаимодействии с избытком гидроксида натрия превращается в тетрагидроксоплюмбат:


Pb(CH3COO)2 + 4NaOH  Na2[Pb(OH)4]+ 2CH3COONa


В результате взаимодействий ионов серы и свинца образуется сульфид свинца черного или бурого цвета:


Na2S + Na2[Pb(OH)4]  PbS + 4NaOH

^ Ход работы. К 1 мл 1%-го раствора яичного белка или кусочку шерстяной нити добавляют 1 мл 30%-й щелочи и 3-4 капли 5%-го раствора ацетата свинца. При интенсивном кипячении жидкость окрашивается в бурый или черный цвет.

Реакцию Фоля проделывают с 1%-м раствором желатина, сравнивают полученные результаты и делают вывод.


^ 5. Ксантопротеиновая реакция (на ароматические аминокислоты)

Принцип метода. При нагревании с концентрированной азотной кислотой белки дают желтое окрашивание. Реакция обусловлена наличием в белках ароматических аминокислот (фенилаланина, тирозина и триптофана) и основана на образовании нитропроизводных этих аминокислот, имеющих желтую окраску:





Нитропроизводные аминокислот в щелочной среде образуют соли хиноидной структуры, окрашенные в оранжевый цвет:





^ Ход работы. К 1 мл 1%-го раствора альбумина или яичного белка добавляют 5 капель концентрированной азотной кислоты. Появляется осадок. При осторожном нагревании смесь окрашивается в желтый цвет. После охлаждения осторожно добавляют 10 капель концентрированного раствора аммиака (или 30%-й раствор едкого натра), при этом желтая окраска переходит в оранжевую.

Проделывают эту реакцию с 1%-м раствором желатина и 0,1%-м раствором тирозина, сравнивают результаты и делают выводы.


6. Реакция Миллона (на тирозин)

^ Принцип метода. Реакция Миллона открывает в белке тирозин, в составе которого имеется фенольный радикал. При нагревании белка с реактивом Миллона (смесь нитратов и нитритов ртути (I) и (II), растворенных в концентрированной азотной кислоте) образуется осадок, окрашенный сначала в розовый, а затем в красный цвет. Реактив Миллона дает окрашивание почти со всеми фенолами:





^ Ход работы. К 1 мл 1%-го раствора яичного белка добавляют 3-5 капель реактива Миллона и осторожно нагревают до образования окрашенного в красный цвет осадка.

Аналогично проделывают реакцию с растворами желатина, тирозина и фенола. Полученные результаты сравнивают и делают вывод.


7. Реакция Адамкевича (на триптофан)

^ Принцип метода. Белки, содержащие триптофан, в присутствии глиоксиловой и серной кислот дают красно-фиолетовое окрашивание. Реакция основана на способности триптофана взаимодействовать в кислой среде с альдегидами (глиоксиловой кислотой) с образованием окрашенных продуктов конденсации:




Глиоксилевая кислота всегда присутствует в небольшом количестве в ледяной уксусной кислоте, которую используют в реакции Адамкевича.

^ Ход работы. К 1 мл 1%-го раствора белка добавляют 1 мл ледяной (концентрированной) уксусной кислоты и осторожно нагревают до растворения осадка. После охлаждения к смеси осторожно добавляют 1 мл концентрированной серной кислоты (по каплям, по стенке пробирки, чтобы жидкости не смешались). Через 5-10 минут на границе раздела двух слоев наблюдают образование красно-фиолетового кольца.

Проделывают реакцию Адамкевича с 0,1%-м раствором триптофана, сравнивают полученные результаты и делают вывод.


8. Реакция Ваузене (на триптофан)

^ Принцип метода. Белки, содержащие триптофан, дают в кислой среде в присутствии нитрита натрия и формальдегида сине-фиолетовое окрашивание. В этой реакции триптофан взаимодействует с формальдегидом с образованием продукта конденсации (бис-2-триптофанил-метана), который окисляется нитритом натрия до бис-2-триптофанил-карбинола, который в присутствии минеральных кислот образует соли сине-фиолетового цвета.



^ Ход работы. К 2 мл 1%-го раствора яичного белка добавляют 1 каплю 2,5%-го раствора формальдегида. К полученной смеси, тщательно перемешивая, добавляют осторожно, по каплям 6 мл концентрированной серной кислоты, охлаждая пробирку в ванночке со льдом. Через 10 минут добавляют, перемешивая, 10 капель 0,5%-го раствора нитрита натрия. Появляется сине-фиолетовая окраска.


9. Реакция Паули (на гистидин и тирозин)

^ Принцип метода. Реакция Паули позволяет обнаружить в белке аминокислоты гистидин и тирозин, которые образуют с диазобензол-сульфоновой кислотой соединения вишнево-красного цвета. Диазобензолсульфоксилота кислота образуется в реакции диазотирования при взаимодействии сульфаниловой кислоты с нитритом натрия (или калия) в кислой среде:







^ Ход работы. К 1 мл 1%-го раствора сульфаниловой кислоты (готовится на 5%-м растворе соляной кислоты) прибавляют 2 мл 0,5%-го раствора нитрита натрия, тщательно перемешивают, добавляют 2 мл 1%-го раствора яичного белка и после перемешивания  6 мл 10%-го раствора карбоната натрия. После перемешивания смесь окрашивается в вишнево-красный цвет.

Проделывают эту реакцию с 0,1%-м раствором гистидина, сравнивают полученные результаты и делают вывод.


Общие выводы по работе:


^ РАБОТА 3. ВЫДЕЛЕНИЕ БЕЛКОВ ИЗ ТКАНЕЙ

И БИОЛОГИЧЕСКИХ ЖИДКОСТЕЙ.

ИЗУЧЕНИЕ СОСТАВА простых и сложных белков

Цель работы: ознакомиться с основными этапами изучения состава простых и сложных белков (гомогенизация биоматериала, экстракция белков, гидролиз и разделение смеси аминокислот методом распределительной хроматографии, определение составных компонентов простетической группы).

Задачи:

выделить белки из мышечной ткани и яичного альбумина;

провести кислотный гидролиз яичного альбумина;

разделить предложенную смесь аминокислот методом распределительной хроматографии, определить, какие аминокислоты входят в ее состав;

с помощью качественных реакций определить основные компоненты простетической группы сложных белков (на примере нуклеопротеидов дрожжей).


^ Первый этап. Выделение белков из биоматериала

а) Выделение белков из мышечной ткани

Принцип метода. Миофибриллы мышечной клетки содержат сократительные белки (миозин и актин) и регуляторные белки (тропомиозин и тропонин). Белки миофибрилл не растворяются в воде, но их можно экстрагировать из мышечной ткани солевыми растворами с концентрацией соли 0,5 моль/л. Многие белки саркоплазмы (гиалоплазмы мышечных клеток) растворимы в воде или солевых растворах низкой концентрации (0,05 моль/л). При экстракции мышечной ткани 5%-м раствором хлорида калия извлекаются как миофибриллярные, так и саркоплазматические белки.

^ Ход работы

1. Взвешивают 2 г мышечной ткани. Измельченную ножницами навеску помещают в фарфоровую ступку, добавляют 2 мл 5%-го раствора хлорида калия и растирают со стеклянным песком до гомогенного состояния. К гомогенату добавляют 3 мл раствора хлорида калия и растирают кашицу в течение 5 минут, после чего прибавляют еще 5 мл 5%-го раствора хлорида калия и продолжают растирание в течение 5 минут.

2. Полученный гомогенат фильтруют через два слоя марли или центрифугируют в течение 15 минут при 4000 об/мин.

3. С фильтратом (или центрифугатом) проделывают цветные реакции на белки (биуретовую, ксантопротеиновую, реакцию Миллона, Фоля и Сакагучи).

б) Выделение яичного альбумина

^ Принцип метода. Яичный белок представляет собой смесь нескольких белков. Примерно 70% яичного белка составляет альбумин, который легко отделяется от глобулинов. При десятикратном разведении яичного белка дистиллированной водой глобулины выпадают в осадок, а альбумин остается в растворе.

^ Ход работы

1. Чтобы отделить белок от желтка, осторожно проделывают отверстия в скорлупе яйца с двух концов и выливают белок в стакан емкостью 500 мл, затем в стакан добавляют 250 мл дистиллированной воды и содержимое тщательно перемешивают стеклянной палочкой с резиновым наконечником.

2. Раствор переносят в мерный цилиндр и объем доводят дистиллированной водой до 300 мл. Раствор оставляют на 30 минут при комнатной температуре для образования хлопьевидного осадка глобулинов.

Примечание: работу, описанную в пунктах 1 и 2, выполняет и демонстрирует дежурный студент, приготовленную суспензию затем использует каждый студент в группе.

20 мл полученной суспензии дважды фильтруют через склад-чатый фильтр.

С фильтратом, содержащим яичный альбумин, проделывают цветные реакции на белки (биуретовую, нингидриновую, ксантопротеиновую, реакции Миллона, Фоля).


^ Второй этап. Кислотный гидролиз белков

Принцип метода. В процессе гидролиза белков происходит разрыв пептидных связей и молекула белка распадается сначала на высокомолекулярные полипептиды, затем на более простые пептиды и, наконец, на аминокислоты. Кислотный гидролиз белков проводят в присутствии соляной или серной кислот при кипячении.

Гидролиз, проводимый в лабораторных условиях, является важным методом изучения первичной структуры белка. В организме гидролиз постоянно протекает в процессе пищеварения и в тканях под действием протеолитических ферментов.

^ Ход работы. В небольшую колбочку, снабженную обратным холодильником, наливают 2-3 мл 2%-го раствора альбумина и 15-20 мл 25%-го раствора серной кислоты. Содержимое колбы кипятят под тягой в течение 60-90 минут. Через каждые полчаса (с момента закипания) с гидролизатом проделывают биуретовую реакцию, для этого к 0,5 мл гидролизата добавляют 30%-й раствор щелочи до нейтральной реакции по универсальной индикаторной бумаге и 1-2 капли 1%-го раствора сульфата меди. Отрицательная биуретовая реакция указывает на полное расщепление белка до аминокислот.

Для сравнения биуретовую реакцию делают с 2%-м раствором альбумина.

^ Вывод (написать уравнение гидролиза белков):


Третий этап. Разделение смеси аминокислот методом

распределительной хроматографии на бумаге

Принцип метода. Метод основан на различной растворимости аминокислот в двух частично смешивающихся жидкостях: воде и органическом растворителе. Водная фаза неподвижна, так как вода сорбирована на инертном носителе – целлюлозе, которая в насыщенной влагой атмосфере (хроматографической камере) удерживает до 20-22% воды. Подвижной фазой является насыщенный водой органический растворитель. Чем больше растворимость аминокислот в воде и меньше в органическом растворителе, тем медленнее движется аминокислота на бумаге.

Положение аминокислот на бумаге можно определить с помощью нингидриновой реакции: в присутствии нингидрина отдельные аминокислоты выявляются в виде окрашенных пятен.

Показателем скорости движения аминокислоты является коэффициент распределения (Rf). Коэффициентом распределения называется отношение расстояния (в миллиметрах) от места нанесения аминокислоты (точка старта) до середины ее пятна (а) к расстоянию от точки старта до фронта растворителя (в): Rf = а/в. Коэффициент распределения является характерной величиной для каждой аминокислоты и постоянен при данных условиях опыта (растворитель, температура, сорт бумаги и др.).

Идентификация аминокислот на хроматограммах проводится путем сравнения Rf разделяемых и известных аминокислот (стандартов).

Существуют различные способы хроматографического разделения смеси аминокислот на бумаге.

^ Радиальная (круговая) хроматография
Для разделения смеси аминокислот используется растворитель, состоящий из смеси н-бутанола, ледяной уксусной кислоты и воды в соотношении 4:1:5. Приготовленная смесь встряхивается в делительной воронке в течение 5 минут, а затем отстаивается 7-10 часов, после чего нижний слой используется для насыщения хроматографической камеры парами, а верхний – для разделения аминокислот. Хроматографической камерой служит эксикатор.


^ Ход работы

Хроматографическую бумагу вырезают в форме диска, диаметр которого соответствует внутренним размерам диаметра эксикатора. В центр диска (на точку старта) наносят микропипеткой в несколько приемов 0,005-0,01 мл исследуемой смеси аминокислот. Нанесение смеси следует проводить очень аккуратно, слегка касаясь микропипеткой стартовой точки, чтобы диаметр мокрого пятна был не более 5 мм. После каждого нанесения пятно подсушивают над электроплиткой или в термостате.

В центре хроматограмм делают иглой отверстие, в которое пропускают фитилек из сложенной вчетверо нити. Хроматограмму помещают в эксикатор, на дно которого предварительно наливают верхний слой растворителя. Проверяют положение фитилька и хроматограммы: конец фитилька должен быть погружен в растворитель, а края хроматограммы должны находиться на выступах эксикатора. Закрывают эксикатор крышкой.

Растворитель поднимается вверх по фитильку, а затем радиально распространяется по бумаге от центра. Когда растворитель достигнет края бумаги, ее вынимают из эксикатора, высушивают под тягой, обрабатывают 0,5%-м раствором нингидрина (готовится на ацетоне или спирте) и помещают в сушильный шкаф при 60-70 оС на 10-15 минут. На хроматограмме появляются сине-фиолетовые пятна, каждое из которых соответствует отдельной аминокислоте.
^ Нисходящая хроматография
В качестве хроматографической камеры используют высокие стеклянные банки с выступом в верхней части. На выступ в строго горизонтальном положении ставят лодочку – специальный стеклянный сосуд для растворителя.


^ Ход работы

Из хроматографической бумаги вырезают полоску шириной 5 см и длиной, примерно соответствующей высоте камеры. На расстоянии 10 см от конца полоски проводят простым карандашом стартовую линию, в середине которой отмечают точку старта. На стартовую точку микропипеткой наносят 0,005-0,01 мл смеси аминокислот (в несколько приемов, диаметр мокрого пятна не более 5 мм), периодически просушивая бумагу над электрической плиткой (или над настольной лампой).

На дно хроматографической камеры наливают небольшое количество нижнего слоя растворителя, а в установленную лодочку – верхний слой растворителя. Хроматограмму с нанесенной смесью аминокислот помещают в камеру так, чтобы ближний к старту конец был опущен в лодочку и зафиксирован в ней предметным стеклом, а другой висел вертикально, не касаясь стенок камеры. Камеру закрывают крышкой и оставляют при комнатной температуре на 18-20 часов.

Растворитель продвигается по хроматограмме сверху вниз, и когда фронт его приблизится к нижнему краю бумаги, хроматограмму вынимают и^ Осаждение белков минеральными кислотами
Ход работы. В пробирку осторожно наливают около 1 мл концентрированной азотной кислоты. Затем, наклонив пробирку, медленно, по стенке добавляют 1 мл 1%-го раствора белка. На границе двух жидкостей появляется осадок в виде белого кольца.

Такую же реакцию проделывают с концентрированной соляной и серной кислотами.
^ Осаждение белков солями тяжелых металлов
Ход работы. В три пробирки наливают по 1 мл 1%-го раствора белка и добавляют по 3-4 капли: в первую пробирку – 7%-го раствора сульфата меди, во вторую – 5%-го раствора ацетата свинца, в третью – 5%-го раствора нитрата серебра. Во всех пробирках образуется осадок.


Осаждение белков органическими осадителями
^ Осаждение белка органическими кислотами
Ход работы. В 2 пробирки наливают по 2 мл 1%-го раствора белка и добавляют: в одну пробирку 4-5 капель 10%-го раствора сульфосалициловой кислоты, в другую – 5-10 капель 10%-й трихлоруксусной кислоты (CCl3COOH). Выпадает осадок белка.
^ Осаждение белка органическими растворителями
Ход работы. К 1 мл 1%-го раствора белка добавляют 2 мл органического растворителя (96%-го этанола, хлороформа, ацетона или эфира) и перемешивают. Образование осадка можно усилить добавлением нескольких капель насыщенного раствора хлорида натрия.

^ Осаждение белков реактивами на алкалоиды
Ход работы. В три пробирки наливают по 1 мл 1%-го раствора белка, по 4-5 капель 1%-го раствора уксусной кислоты и по 2-3 капли: в первую пробирку – 10%-го раствора пикриновой кислоты, во вторую – насыщенного раствора танина, в третью – 5%-го раствора железистосинеродистого калия. Наблюдают выпадение осадка.
3. Осаждение белков при нагревании
^ Ход работы. В пять пробирок наливают по 0,5 мл 1%-го раствора яичного белка.

Содержимое первой пробирки нагревают до появления опалесценции (помутнения раствора).

К раствору белка во второй пробирке осторожно добавляют 1 каплю 1%-го раствора уксусной кислоты, нагревают и наблюдают вначале появление опалесценции, а затем выпадение белого хлопье-видного осадка белка. Это объясняется тем, что белок теряет заряд и находится в изоэлектрическом состоянии.

К раствору белка в третьей пробирке добавляют 1-2 капли 10%-го раствора уксусной кислоты и нагревают. Осадок не образуется, так как в кислой среде частицы белка перезаряжаются и приобретают положительный заряд.

К раствору белка в четвертой пробирке добавляют 1-2 капли 10%-го раствора уксусной кислоты, 1 каплю насыщенного раствора хлорида натрия и нагревают. Выпадает осадок вследствие адсорбции ионов электролита (образование двойного электрического слоя) и нейтрализации заряда на частицах белка.

К раствору белка в пятой пробирке добавляют 1 каплю 10%-го раствора гидроксида натрия и нагревают. Осадок не образуется, так как в щелочной среде отрицательный заряд на частицах белка усиливается.


Обратимое осаждение белков (высаливание)

При добавлении к водным растворам белков сульфатов или хлоридов щелочных и щелочно-земельных металлов (Na2SO4, NaCl, MgSO4 и др.) происходит дегидратация и нейтрализация белковых частиц, при этом белки выпадают в осадок без изменения нативной структуры. Такой тип осаждения белков называется высаливанием. Высаливание – обратимый процесс, и после удаления соли (разбавлением водой, диализом) белок вновь приобретает природные свойства. Поскольку разные белки высаливаются при различных концентрациях солей, этот метод используется для фракционирования белков. Для разделения белков методом высаливания широко применяется сульфат аммония.


^ Фракционное осаждение белков плазмы крови

сульфатом аммония

Принцип метода. Фибриноген выпадает в осадок при 33%-м насыщении плазмы сернокислым аммонием, глобулины – при полунасыщении, а альбумины – при полном насыщении.

^ Ход работы

К 2 мл плазмы крови (для измерения объемов жидкостей в данном опыте используют мерные пробирки) добавляют 5 мл дистиллированной воды, 3,5 мл насыщенного раствора сульфата аммония и перемешивают. В осадок выпадает фибриноген (можно наблюдать лишь незначительное помутнение), который отделяют фильтрованием. Наличие белка на фильтре проверяют биуретовой реакцией: для этого воронку с фильтром переносят в чистую пробирку и на фильтр наливают 1 мл 10%-го раствора гидроксида натрия и 1 каплю 1%-го раствора сульфата меди. Фильтрат (№ 1) используют для дальнейшей работы.

К 4 мл фильтрата № 1 добавляют 4 мл насыщенного раствора сульфата аммония и перемешивают. В осадок выпадают глобулины, которые отделяют
еще рефераты
Еще работы по разное