Реферат: План Введение 1 Действие тяжелых металлов на растительные организмы 3 Химическая природа тяжелых металлов 3



Действие гормонов, тяжелых металлов и стресса на растения


План


Введение 1

1.Действие тяжелых металлов на растительные организмы 3

1.1. Химическая природа тяжелых металлов 3

1.2. Тяжелые металлы в естественных и искусственных экосистемах
7

1.3. Влияние основных тяжелых металлов на растения 11

1.3.1. Кобальт 11

1.3.2. Молибден 12

1.3.3. Никель 14

1.3.4. Марганец 16

1.3.5. Медь 20

1.3.6. Цинк 23

Заключение к разделу 26

2. Действие гормонов на растительные организмы 28

2.1. Химическая природа гормонов растений 28

2.2. Основные классы гормонов растений 30

2.2.1. Ауксины 30

2.2.2. Гиббереллины 33

2.2.3. Цитокинины 34

2.2.4. Гормоны цветения 35

2.2.5.Дормины 35

2.2.6. Витамины группы В и синтетические ретарданты 36

Заключение к главе 36

3. Устойчивость растений к стрессовым воздействиям 37

3.1. Растительная мембрана как мишень стресс-воздействия у растений 38

3.2. Биогенный стресс и катаболизм растений 43

Заключение к главе 50

Список использованной литературы 50



Введение

Уникальный набор реакций растительных организмов на действие факторов внешней среды, которого они не могут избежать из-за отсутствия у них мобильности, составляет основу для включения этих внешних сигналов в осуществление нормальных путей их развития и жизнедеятельности.

В связи с этим выяснение стратегии формирования функциональных взаимоотношений организмов с окружающей средой, обеспечивающих их рост, репродукцию и распространение в разнообразнейших по естественным экологическим условиям и антропогенному прессингу районах земного шара, является одним из актуальнейших на сегодня направлений биологии растений.

На растения в местах их произрастания действует комплекс разнообразных факторов, однако, выживание и рост растений определяются в конкретной экологической нише несколькими критическими факторами, влияющими на биологическую продуктивность вида.

В настоящее время термин «стресс» широко употребляется в экологических исследованиях на самых разных уровнях организации живой материи. Стресс у растений отличается от такового у животных и человека.

Для растений стресс описывается как состояние, при котором увеличение неблагоприятного прессинга ведет к начальной дестабилизации функций, их последующей нормализации и повышению сопротивляемости (Larcher, 1987).

Таким образом, в качестве стресса относительно растений может быть рассмотрено действие любого фактора, выходящего за пределы нормы: увеличение солености почвы, засуха, переувлажнение, высокие и низкие температуры, действие ксенобиотиков (тяжелые металлы, гормоны, удобрения).

Ответные реакции растений на действие тяжелых металлов и гормонов, а также общее понятие стресса у растений и составило цель написания данной работы.


^ Действие тяжелых металлов на растительные организмы 1.1. Химическая природа тяжелых металлов

Термин тяжелые металлы характеризует широкую группу загрязняющих веществ. С увеличением темпов производства в последнее время понятие «тяжелые металлы» получило значительное распространение и вышло из границ научного термина в общее употребление.

В различных научных и прикладных работах авторы по-разному трактуют значение этого понятия. В связи с этим количество элементов, относимых к группе тяжелых металлов, изменяется в широких пределах. Как критерии принадлежности используются многочисленные характеристики: атомная масса, плотность, токсичность, распространенность в природной среде, степень вовлеченности в природные и техногенные циклы. В ряде случаев под определение тяжелых металлов попадают элементы, относящиеся к хрупким (например, висмут) или металлоидам (например, мышьяк).

В работах, посвященных проблемам загрязнения окружающей природной среды и экологического мониторинга, на сегодняшний день к тяжелым металлам относят более 40 металлов периодической системы Д.И. Менделеева с атомной массой свыше 50 атомных единиц: V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Cd, Sn, Hg, Pb, Bi и др.

Немаловажную роль в категорировании тяжелых металлов играют следующие условия: их высокая токсичность для живых организмов в относительно низких концентрациях, а также способность к биоаккумуляции и биомагнификации.

Почти все металлы, попадающие под это определение (за исключением свинца, ртути, кадмия и висмута, биологическая роль которых на настоящий момент не ясна), активно участвуют в биологических процессах, входят в состав многих ферментов. По классификации Н.Реймерса, тяжелыми следует считать металлы с плотностью более 8 г/см3. Таким образом, к тяжелым металлам относятся Pb, Cu, Zn, Ni, Cd, Co, Sb, Sn, Bi, Hg.

Формально определению тяжелые металлы соответствует большое количество элементов. Однако, по мнению исследователей, занятых практической деятельностью, связанной с организацией наблюдений за состоянием и загрязнением окружающей среды, соединения этих элементов далеко не равнозначны как загрязняющие вещества. Поэтому во многих работах происходит сужение рамок группы тяжелых металлов, в соответствии с критериями приоритетности, обусловленными направлением и спецификой работ.

Так, в ставших уже классическими работах Ю.А. Израэля в перечне химических веществ, подлежащих определению в природных средах на фоновых станциях в биосферных заповедниках, в разделе тяжелые металлы поименованы Pb, Hg, Cd, As.

С другой стороны, согласно решению Целевой группы по выбросам тяжелых металлов, работающей под эгидой Европейской Экономической Комиссии ООН и занимающейся сбором и анализом информации о выбросах загрязняющих веществ в европейских странах, только Zn, As, Se и Sb были отнесены к тяжелым металлам. По определению Н. Реймерса отдельно от тяжелых металлов стоят благородные и редкие металлы, соответственно, остаются только Pb, Cu, Zn, Ni, Cd, Co, Sb, Sn, Bi, Hg. В прикладных работах к числу тяжелых металлов чаще всего добавляют Pt, Ag, W, Fe, Au, Mn.

Ионы металлов являются непременными компонентами природных водоемов. В зависимости от условий среды (pH, окислительно-восстановительный потенциал, наличие лигандов) они существуют в разных степенях окисления и входят в состав разнообразных неорганических и металлорганических соединений, которые могут быть истинно растворенными, коллоидно-дисперсными или входить в состав минеральных и органических взвесей.

Истинно растворенные формы металлов, в свою очередь, весьма разнообразны, что связано с процессами гидролиза, гидролитической полимеризации (образованием полиядерных гидроксокомплексов) и комплексообразования с различными лигандами. Соответственно, как каталитические свойства металлов, так и доступность для водных микроорганизмов зависят от форм существования их в водной экосистеме.

Многие металлы образуют довольно прочные комплексы с органикой; эти комплексы являются одной из важнейших форм миграции элементов в природных водах. Большинство органических комплексов образуются по хелатному циклу и являются устойчивыми. Комплексы, образуемые почвенными кислотами с солями железа, алюминия, титана, урана, ванадия, меди, молибдена и других тяжелых металлов, относительно хорошо растворимы в условиях нейтральной, слабокислой и слабощелочной сред. Поэтому металлорганические комплексы способны мигрировать в природных водах на весьма значительные расстояния. Особенно важно это для маломинерализованных и в первую очередь поверхностных вод, в которых образование других комплексов невозможно.

Для понимания факторов, которые регулируют концентрацию металла в природных водах, их химическую реакционную способность, биологическую доступность и токсичность, необходимо знать не только валовое содержание, но и долю свободных и связанных форм металла.

Переход металлов в водной среде в металлокомплексную форму имеет три следствия:

может происходить увеличение суммарной концентрации ионов металла за счет перехода его в раствор из донных отложений;

мембранная проницаемость комплексных ионов может существенно отличаться от проницаемости гидратированных ионов;

токсичность металла в результате комплексообразования может сильно измениться.

Так, хелатные формы Cu, Cd, Hg менее токсичны, нежели свободные ионы. Для понимания факторов, которые регулируют концентрацию металла в природных водах, их химическую реакционную способность, биологическую доступность и токсичность, необходимо знать не только валовое содержание, но и долю связанных и свободных форм.

Источниками загрязнения вод тяжелыми металлами служат сточные воды гальванических цехов, предприятий горнодобывающей, черной и цветной металлургии, машиностроительных заводов. Тяжелые металлы входят в состав удобрений и пестицидов и могут попадать в водоемы вместе со стоком с сельскохозяйственных угодий.

Повышение концентрации тяжелых металлов в природных водах часто связано с другими видами загрязнения, например, с закислением. Выпадение кислотных осадков способствует снижению значения рН и переходу металлов из сорбированного на минеральных и органических веществах состояния в свободное.

^ 1.2. Тяжелые металлы в естественных и искусственных экосистемах


Процессы естественного развития экосистем и наступающие изменения в их функционировании под влиянием антропогенных агентов во многом
определяются не только силой воздействия или временными характеристиками,
но и, в первую очередь, природой действующих факторов.

В зависимости от природы техногенных факторов их воздействие на агроэкосистемы может осуществляться как в результате непосредственного действия источника, так и при миграции загрязняющих веществ по сельскохозяйственным цепочкам. Большинство химических элементов необходимы для нормальной с жизнедеятельности растений поэтому, говоря об устойчивости растений к тяжелым металлам, имеются в виду их токсические концентрации в субстрате.

Наибольший техногенный пресс испытывают водные и наземные экосистемы. Естественные уровни содержания тяжелых металлов в водных и почвенных растворах подвержены значительным колебаниям. Так, например, валовое содержание никеля в почвах мира колеблется от 1 до 200 мг/кг (Кабата-Пендиас А., Пендиас X., 1989). В почвах Западной Сибири его валовое количество изменяется от 15 до 50 мг/кг, подвижная форма составляет от валовой 30-40%.

Приведенные концентрации характеризуют районы антропогенно незагрязненные. Содержание никеля в промышленных зонах может возрастать в 2 раза и более.

Существует два источника поступления тяжелых металлов в окружающую среду: природный и техногенный.

Из природных - наибольшее значение имеют выветривание горных пород и минералов, эрозия почв, вулканическая деятельность, высокие естественные уровни содержания тяжелых металлов в почвообразующих породах.

Основными техногенными источниками поступления тяжелых металлов в окружающую среду являются выбросы промышленных предприятий черной и цветной металлургии, металлообрабатывающей, горнодобывающей и горно- обрабатывающей промышленности, тепловой энергетики, а также автомобильный транспорт.

Загрязнению способствует и широкое использование средств химизации в сельском и лесном хозяйстве (минеральные удобрения, металлосодержащие пестициды), шахтные отвалы, твердые отходы металлургических производств и осадки сточных вод, применяемые в качестве агромелиорантов.

Антропогенные источники загрязнения располагаются в регионах с развитой промышленностью, высокой плотностью населения и интенсивным сельским хозяйством, но их влияние может проявляться и на значительном удалении вследствие атмосферного переноса и водной миграции загрязняющих веществ.

Состав, уровни и опасность загрязнения определяются, с одной стороны, отраслевой принадлежностью и характеристиками источника загрязнения, а с другой - почвенно-климатическими особенностями, рельефом местности и другими природными условиями, структурой землепользования и применяемыми в сельскохозяйственном производстве технологиями.

Металлургические шлаки представляют собой силикатные системы с различным содержанием железа и в качестве примесей содержат тяжелые металлы, мышьяк, сурьму и другие вредные вещества, которые из отвалов и других накопителей отходов попадают в окружающую среду. Сточные воды предприятий черной и цветной металлургии наряду с солями тяжелых металлов, содержат цианиды, тиоцианаты, сульфиды, сероводород и соединения мышьяка, отравляющие гидробиоту и делающие воду непригодной для питья, водопоя, орошения, а, зачастую, и для технического использования.

Производство цветных металлов, сплавов и гальваническое производство поставляют в окружающую среду Se, As, Sb, Си, Ag, Sr, Zn, Cd, Hg, Al, Sn, Pb, Bi, Mo, W, Ni.

Среди сельскохозяйственных источников выделяются вещества и химические соединения, используемые в качестве минеральных и органических удобрений и агромелиорантов (обезвреженные осадки промышленных и бытовых сточных вод, конверсионные продукты - фосфогипс, шлаки, силикагели и др.).

Передвижение соединений тяжелых металлов происходит с участием корней растений. Тяжелые металлы во взвешенном веществе могут быть в составе алюмосиликатного материала, в форме минеральных соединений, а также в форме сложных комплексов переменного состава. В составе органо-минеральных соединений металлы могут присутствовать в форме комплексных хелатных соединений или сложных металлоорганических комплексов переменного состава.

При внесении металлов в почву в виде растворимых в воде солей их ионы быстро взаимодействуют с почвенными компонентами. Характерное для конкретного металла и типа почвы динамическое равновесие устанавливается в течение нескольких часов или суток и определяется физико-химическими свойствами элемента и сорбирующей способностью почвы.

Тяжелые металлы попадают в растения из загрязненных почв, воды и атмосферного воздуха в результате биологического поглощения. В большинстве случаев, ведущим является почвенный путь поступления в растения и последующая миграция опасных и вредных веществ по сельскохозяйственным цепочкам. К факторам, определяющим уровни накопления тяжелых металлов из водных растворов растениями, относятся физико-химические свойства самих загрязняющих веществ, видовые и сортовые особенности культур, а также используемые технологии их возделывания. На техногенно загрязненных территориях подвижность тяжелых металлов и доступность их для сельскохозяйственных культур определяется такими свойствами почв, как кислотно-щелочные условия, окислительно-восстановительные режимы, содержание гумуса, гранулометрический состав и связанная с ними емкость поглощения.

В настоящее время градация почв по содержанию валовых и подвижных форм тяжелых металлов включает 5 групп. Первая группа соответствует концентрациям элементов в почвах ниже 0,5 ПДК (ОДК), а численное значение верхней границы второй группы соответствует ПДК (ОДК) данного элемента в почве. Почвы, попавшие в третью группу, относятся к территориям с неудовлетворительной экологической обстановкой. Четвертая группа характеризует почвы с чрезвычайной экологической ситуацией, а пятая - к зоне экологического бедствия.

Таким образом, миграция тяжелых металлов в природных и аграрных экосистемах определяется в основном влиянием почвенных условий и биологических особенностей растений. К одному из основных почвенных факторов, влияющим на доступность тяжелых металлов растениям, относят реакцию (рН) почвы.

Высшие растения, благодаря различным морфологическим и физиологическим свойствам, способны адаптироваться к неблагоприятным факторам. Растение, являясь саморегулируемой системой, обладая мощным адаптивным потенциалом, может быть активным компонентом в системе почва-растение.

Факторы, способные вызвать повреждения в растительном организме, индуцируют у него целый комплекс защитно-приспособительных реакций. Растения способны накапливать микроэлементы, в том числе тяжелые
металлы, в тканях или на поверхности, являясь промежуточным звеном в цепи: почва — растение — животное - человек. Химический состав растений зависит от состава сред, на которых произрастают растения, но не повторяет его, так как растения избирательно поглощают необходимые им элементы в соответствии с физиологическими и биохимическими потребностями.

Любой элемент, который поступает из среды в растение, проходит через корневую систему и только после этого поступает в стебель, листья и плоды. Поскольку корневая система является первым барьером на пути металла, поступающего из почвы в растение, возможно, она может предотвращать ^ свободный их доступ в надземную часть. В этом случае, исключается вредное
воздействие металла на ткани растения, ответственные за фотосинтез. Знание механизма переноса металла в тканях сельскохозяйственных растений очень важно.

^ 1.3. Влияние основных тяжелых металлов на растения 1.3.1. Кобальт

В биосфере кобальт преимущественно рассеивается, однако на участках, где есть растения — концентраторы кобальта, образуются кобальтовые месторождения.

В верхней части земной коры наблюдается резкая дифференциация кобальта — в глинах и сланцах в среднем содержится 2·10-3% кобальта, в песчаниках 3·10-5, в известняках 1·10-5. Наиболее бедны кобальтом песчаные почвы лесных районов. В поверхностных водах его мало, в Мировом океане его лишь 5·10-8%. Будучи слабым водным мигрантом, он легко переходит в осадки, адсорбируясь гидроокисями марганца, глинами и другими высокодисперсными минералами.

Содержание кобальта в почвах определяет количест­во этого элемента в составе растений данной местности, а от этого зависит поступление кобальта в организм травоядных животных.

Постоянно присутствуя в тканях растений, кобальт участвует в обменных процессах. В животном организме его содержание зависит от его уровня в кормовых растениях и почвах. Концентрация кобальта в растениях пастбищ и лугов в среднем составляет 2,2·10-5—4,5·10-5% на сухое вещество.

Способность к накоплению этого элемента у бобовых выше, чем у злаковых и овощных растений. В связи с высокой способностью к концентрации кобальта морские водоросли по его содержанию мало отличаются от наземных растений, хотя в морской воде его значительно меньше, чем в почвах. Кобальт участвует в ферментных системах клубеньковых бактерий, осуществляющих фиксацию атмосферного азота; стимулирует рост, развитие и продуктивность бобовых и растений ряда других семейств. В микродозах кобальт является необходимым элементом для нормальной жизнедеятельности многих растений и животных. Вместе с тем повышенные концентрации соединений кобальта являются токсичными.

Кобальт применяют в сельском хозяйстве как микроудобрения – удобрения, содержащие микроэлементы (В, Cu, Mn, Zn, Со и др.), т. е. вещества, потребляемые растениями в небольших количествах.

Известкование почв снижает усвояемость растения­ми кобальта. Так же влияет избыток марганца и железа в почвах; наоборот, фосфор усиливает поступление ко­бальта в растения.

Применение кобальтовых солей (сернокислого ко­бальта) в качестве удобрений, как оказалось, способст­вует ускорению созревания ячменя, повышает урожай семян красного клевера, увеличивает содержание жи­ра в семенах льна. Под влиянием кобальта повышается урожайность сахарной свеклы.

Внесение 300 г сернокислого кобальта на 1 га значительно повышает урожай винограда: вес ягод увеличи­вается на 35%, сахаристость — на 14%, кислотность снижается на 10%.

М. Я. Школьник предлагает вносить кобальт в ка­честве удобрений в следующих дозах: внесение в почву перед посевом — 2—6 кг на 1 га; внесение в междурядье в виде подкормки — 0,5 кг на 1 га; внекорневое пита­ние— 0,1-процентный раствор; намачивание семян — 0,1-процентный раствор. При внесении кобальтовых удобрений с самолета применяется измельченный сер­нокислый кобальт в дозе 1,415 кг на 1 га.

Помимо чистых химических соединений кобальта, в качестве удобрений могут быть также использованы продукты переработки шлаков никелевого производства и колчеданных огарков.

1.3.2. Молибден

Среднее содержание молибдена в почвах составляет 0,0003%, в изверженных породах — 0,000154%, в осадочных породах —0,00024%. Больше всего молибдена находится в болотистых почвах и в почвах тундр. Богатство почв органическими веществами обусловливает низкий окислительный потен­циал среды.

Наиболее растворимы в воде и доступны для растений соединения Мо6 в нейтральной и слабощелочной среде. На кислых почвах молибден мало доступен растениям, поэтому в таких условиях сказывается положительно внесение молибденовых удобрений.

Влияние молибдена зависит от многих факторов: на кислых почвах эффект молибдена зависит от содержания подвижного алюминия (чем больше алюминия, тем выше эффект молибдена). Между молибденом и марганцем наблюдается обратная зависимость—избыток марганца вызывает недостаток молибдена, и, наоборот, присутствие молибдена улучша­ет состояние растений (льна), болеющих на кислых почвах от избытка марганца. Антагонистическая зависи­мость наблюдается также между молибденом и медью (молибден вытесняет медь).

Молибден особенно важен для бобовых растений; он концентрируется в клубеньках бобовых, способствует их образованию и росту и стимулирует фиксацию клубень­ковыми бактериями атмосферного азота. Входя в состав фермента нитраторедуктазы (являющейся по своему строению молибдофлавопротеином), молибден восста­навливает нитраты у высших и низших растений и сти­мулирует синтез белка в них. Поэтому в условиях не­достатка молибдена в растениях накапливаются нитраты, одновременно уменьшаются азотистая раство­римая фракция и уровень азотистой белковой фракции. Молибден и марганец, по-видимому, катализируют от­дельные реакции, каждая из которых влияет на кон­центрацию аминокислот — промежуточных продуктов белкового обмена. Молибден активирует реакцию, веду­щую от нитратов к образованию аминокислот, тогда как марганец, по-видимому, активирует дальнейшие фазы превращения аминокислот в белки.

Молибден оказывает положительное влияние не только на бобовые растения, но и на цветную капусту, томаты, сахарную свеклу, лен и др. Растениями-инди­каторами недостатка молибдена могут быть томаты, ко­чанная капуста, шпинат, салат, лимоны.

Молибден необходим не только для процесса синтеза белков в растениях, но и для синтеза витамина С и ка­ротина, синтеза и передвижения углеводов, использова­ния фосфора.

Болезни молибденовой недостаточности:

болезнь нитевидности цветной капусты.

Выражается в уменьшении листовой пластинки. Поражает растения на кислых почвах: известкование может предотвратить появление болезни. Описана преимущественно в Австра­лии и Новой Зеландии.

желтая пятнистость цитрусовых.

Выра­жается в появлении желтых пятен на листьях, быстро опадающих. При этом значительно уменьшается количе­ство плодов. Заболевание наблюдается во Флориде (США).

Применяются различные способы внесе­ния молибдена в качестве удобрения. Так, урожай и сахаристость сахарной свеклы увеличиваются при внесении в почву путем подкормки в междурядья на 0,5 кг с 1 га, при непосредственном внесении в почву—на 2,8 кг с 1 га. То же было установлено названным автором при изу­чении действия молибдена (молибденовокислого аммо­ния) на урожай семян красного клевера. На неизвесткованной почве эффект молибдена значительно более выражен.

Ввиду высокой стоимости молибденовых солей реко­мендуют применение предпосевной обработки семян — 0,8 г/л. При этом методе потребность в молибденовых солях уменьшается в сотни раз. Для внекорневого питания потребность в молибдате аммония составляет 600 л 0,03—0,05-процентного раствора на 1 га.

1.3.3. Никель

Содержание никеля в почвах составляет 0,004%, в природных поверхностных водах — 0,000 000 34%. В растениях в среднем содер­жится 0,00005% на живой вес (в зависимости от вида растения, местности, почвы, климата и др.).

Растения в районе никелевых месторождений могут накоплять в себе значительные количества никеля. При этом наблюдаются явления эндемического заболевания растений, например уродливые формы астр, что может быть биологическим и видовым индикатором в поисках никелевых месторождений.

Морфологически измененные анемоны в обога­щенных никелем биогеохимических провинциях кон­центрируют никель в 30-кратном размере; повышенное содержание никеля в почвенных растворах и в почвах Южного Урала, обогащенных никелем в 50-кратном размере, является причиной появления уродливых форм у сон-травы (семейство лютиковых) и грудницы (семей­ство сложноцветных).

Критические значения концентра­ции никеля в питательном растворе—1,5 мг/кг и в сухой массе ячменя, выращенного на такой среде — 26 мг/кг. Токсический уровень этого элемента в листьях растений начинается с превышения 1,0 мг/кг сухой массы.

При усвоении никеля растениями происходит взаимодействие с содержащимися в почве железом, кобальтом, хромом, магнием, медью, цинком, марганцем; при этом ионы марганца и магния не ингибируют, а ионы кобальта, меди, железа и цинка — ингибируют абсорбцию никеля на 25—42%.

Существуют указания на то, что растения, произрастающие на серпентиновых почвах, не про­являют признаков токсического повреждающего воздействия никеля, в случаях, если соотношение медь: никель равно или более 1, или соотношение железо: никель равно или более 5. Среди растений существует различие в чувствительности по отношению к воздействию никеля. Токсические уровни никеля в листве растений (млн -1 сухой массы): рис 20—25, ячмень 26, виды твердой дре­весины 100—150, цитрусовые 55—140, сорняки 154.

Типичные симптомы повреждающего токсического действия никеля: хлороз, по­явление желтого окрашивания с последующим некрозом, оста­новка роста корней и появления молодых побегов или ростков, деформация частей растения, необычная пятнистость, в некото­рых случаях — гибель всего растения.

1.3.4. Марганец

Марганец находится в почвах в среднем в количестве 0,085%. Однако в отдельных случаях при высоком общем содержании марганца в почвах количество усвояемых его форм, пе­реходящих в солянокислую или солевую форму, может быть явно недостаточно. В среднем растворимая часть Мn в почве составляет 1 —10% от общего его содержа­ния.

Кислая реакция почвы (при рН ниже 6,0) благоприятствует усвоению растениями Мn2+; слабощелочная реакция (рН выше 7,5) стимулирует образование гидрата Мn(ОН)2, трудно усваиваемого растениями.

Подвижность марганца в пахотном слое также опре­деляется буферностью почв по отношению к кислотам, что зависит от суммы обменных оснований (преимуще­ственно Са и Mg) в них. При высокой буферности почв подвижность Мn2+ уменьшается. При низкой буфер­ной емкости почв подвижность марганца выше. Марга­нец мобилизует фосфорную кислоту почвы. Целый ряд почвенных микроорганизмов, участвующих в усвоении растениями атмосферного азота, усиливают свою актив­ность под влиянием марганца.

Сред­нее содержание марганца в растениях равно 0,001 %. Марганец служит катализатором процессов дыхания растений, принимает участие в про­цессе фотосинтеза. Исходя из высокого окислительно-восстановителыюго потенциала марганца можно думать, что марганец играет такую же роль для растительных клеток, как железо – для животных.

Марганец входит в состав либо является активато­ром ряда ферментативных систем; регулирует отноше­ние Fe2+↔Fe3+, тем самым влияя на окислительно-восстановительные процессы, совершающиеся с помощью железа.

Марганец усиливает гидролитические процессы, в ре­зультате чего нарастает количество аминокислот, способ­ствует продвижению ассимилятов, образующихся в процессе фотосинтеза от листьев к корням и другим органам. По данным П. А. Власюка, марганец при нит­ратном питании растений ведет себя как восстановитель, тогда как при аммиачном — как окислитель. Благодаря этому с помощью марганца можно воздействовать на процессы сахарообразования и синтеза белков.

Благотворное влияние марганца на рост и развитие растений очевидно; так, И. В. Мичурин подметил, что у гибридных сеянцев миндаля под влиянием марганца срок первого плодоношения ускоряется на 6 лет. Этот факт явился первым описанным в литературе случаем замечательного ускорения роста и созревания растений под влиянием микроэлементов.

При недостатке марганца в почвах (низком содержа­нии либо неблагоприятных условиях для усвоения его растениями) возникают заболевания растений, харак­теризующиеся в общем появлением на листьях растений хлоротичных пятен, которые в дальнейшем переходят в очаги некроза (отмирания). Обычно при этом заболева­нии происходит задержка роста растений и их гибель.

У различных видов растений заболевание марганцевой недостаточностью имеет свои специфические проявления и получило соответственные названия.

- cерая пятнистость злаков наблюдается у овса, ячменя, пшеницы, ржи, кукурузы.

Характеризует­ся появлением на листьях узкой поперечной линии увя­дания. Листья загибаются по линии увядания и свешиваются вниз. У кукурузы на листьях появляются отдель­ные хлоротичные пятна, в дальнейшем отмирающие, что ведет к образованию отверстий на листьях. Болезнь распространена обычно на щелочных почвах при высо­ким содержании гумуса.

- болезнь сахарного тростинка.

На молодых листьях появляются длинные беловатые полосы хлоротичных участков, в дальнейшем краснеющие; на этих местах наступает разрыв листьев. Содержание мар­ганца в листьях резко падает; наблюдаются лишь следы (вместо 0,003% в норме). Заболевание растений развивается на щелочных и нейтральных почвах. Внесе­ние в почву серы, суперфосфатов (веществ, подкисляю­щих почву и повышающих содержание доступного мар­ганца) излечивает или предупреждает названное забо­левание.

- пятнистая желтуха сахарной свеклы, а также кормовой, столовой свеклы и шпина­та.

В пространствах между жилками листьев появля­ются желтые хлоротичные участки; края листьев завора­чиваются кверху. Содержание марганца в тканях боль­ных растений резко уменьшается: в здоровом листе сахарной свеклы обычно 181 мг марганца на 1 кг сухого вещества, а в больном — лишь 13 мг на 1 кг.

- болотная пятнистость семян гороха.

По­ражаются как листья (легкий хлороз), так и семена гороха. На семенах появляются корич­невые или черные пятна; на внутренней поверхности семядолей образуются полости. Рядом с больными мо­гут находиться и здоровые семена.

- болезни плодовых растений.

Проявляются в хлорозе листьев (у главной жилки), преимущественно старых (недостаточность железа проявляется главным образом на молодых листьях). Отмирают ветви, светле­ют плоды. Сильнее всего поражается груша; вишня и яблоня — меньше.

пятнистость листьев тунга.

Заболевание встречается преимущественно в США. При низком содержании обменного марганца в почвах, на листьях между жилками появляются хлоротичные участки, раз­растающиеся в пятна.

Явление недо­статочности марганца у растений в виде приведенных выше специфических заболеваний наблюдается при значительном дефиците марганца в почвах, однако и при относительном недостатке подвижного марганца мо­гут наблюдаться «стертые» формы недостаточности, проявляющиеся в задержке роста, уменьшении урожай­ности и т. п.

Обогащение растений марганцем ведет к улучшению роста, плодоношения деревьев и урожайности многих культур, что нашло практическое использование. В качестве удобрений применяют отходы марганцеворудной промышленности, отходы производства серной кис­лоты и др.

Марганцевые отходы имеют пре­имущество перед чистыми марганцевыми солями: они используются растениями постепенно и действуют более эффективно. Доза удобрений зависит от источника по­лучения отходов и от вида растений.

Внесение марганцевых отходов в почву в качестве удобрений положительно сказывается на урожайности сахарной свеклы, озимой пшеницы, кукурузы, картофеля, овощных культур и дру­гих культур, уменьшает полегаемость растений. Помимо обычного внесения марганцевых удобрений в почву, применяют и другие методы использования марганца, при которых ис­ключаются неблагоприятные условия усвояемости мар­ганца из почв.

Избыток марганца, так же как и его недостаток, неблагоприятно сказывается на растениях.

Л. П. Виноградов отмстил значительные морфологи­ческие изменения у растений, произрастающих на бога­тых марганцем почвах (например в Чиатури).

По данным Л. Я. Леванидова, существуют растения, способные в значительной степени накапливать марганец; такие растения называют манганофилами. Способность концентрировать марганец не обязательно свойственна всем видам данного рода и не связана с систематическим положением растения. Концентраторами марганца являются лютик золотистый, полынь лекарственная, некоторые папоротники, сосна, береза, паслено­вые.

Растения-манганофилы активно извлекают марганец из почв. Если растения-манганофилы произрастают на почвах с малым содержанием легко усвояемого марган­ца, то они особенно страдают от его недостатка. Так, на черноземе, бедном доступным марганцем, могут про­израстать только такие растения-манганофилы, как бе­реза, мобилизующая марганец своими кислыми корневыми выделениями.

1.3.5. Медь

Общее содержание меди в почвах составляет около 0,002%, причем на долю растворимой части приходится около 1% этого ко­личества.

В почвах встречаются не­сколько форм меди, в различной степени усваиваемой растениями:

водоорастворимая медь,

обменная медь, поглощенная органическими и минеральными коллоидами,

труднорастворимые медные соли,

медь­содержащие минералы,

комплексные металлоорганические соединения меди.

Подвижность меди и поступление ее в ра­стения уменьшаются при известковании почв, связывании меди в виде органических соединений и закреплении почвенным гумусом. Часть меди почв прочно связана с почвенными перегнойными кислотами — гуминовой, креновой, апокреновой; в этой форме она становится не­подвижной и неусвояемой для растений.

Медь образует также комплексные соединения с ря­дом органических кислот — щавелевой, лимонной, малеиновой, янтарной. Важную роль в фиксации меди иг­рают микроорганизмы почвы.

Количество воднорастворимой дос­тупной меди определяет в основном условия жизни ра­стений в данной местности. Растения богатых медью почв обогащаются названным элементом, причем некото­рые виды приобретают устойчивость даже к очень вы­соким концентрациям этого металла.

Медь не­обходима для жизнедеятельности растительных организ­мов. Почти вся медь листьев сосредоточена в хлоропластах и тесно связана с процессами фотосинтеза; она участвует в синтезе таких сложных органических соеди­нений, как антоциан, железопорфирины и хлорофилл; медь стабилизирует хлорофилл, предохраняет его от разрушения.

Медь входит в качестве структурного компонента в состав соединения с белком (медьпротеида, содержаще­го 0,3% меди), образуя окислительный фермент полифенолоксидазу. Этот фермент впервые был обнаружен в клубнях картофеля, шампиньонах, а в дальнейшем в составе большинства распространенных растений.

Хотя этот фермент может окислять лишь определен­ные фенольные соединения, однако присутствие в растительных тканях наряду с оксидазой пирокатехина или ортохинона позволяет полифенолоксидазе участвовать в окислении большого количества органических соединений.

Медь способствует синтезу в растениях железосодержащих ферментов, в частности пероксидазы.

Установлено положительное влияние меди на син­тез белков в растениях и благодаря этому — на водоудерживающую способность растительны
еще рефераты
Еще работы по разное