Реферат: Парашюты, родившиеся как аттракцион, со вре­менем стали средством спасения летчиков и сегодня получили достаточно широкое распространение


Псурцев, П.А.

Прыжки с парашютом


ВВЕДЕНИЕ

Парашюты, родившиеся как аттракцион, со вре­менем стали средством спасения летчиков и сегодня получили достаточно широкое распространение. Это и спасательное средство, и, если так можно выразить­ся, вид военной техники; парашютом увлекаются лю­бители пощекотать свои нервы, парашютный спорт весьма популярен и имеет множество направлений.

Некоторые черты объединяют парашюты всех поко­лений, хотя многие образцы современной парашютной техники совершенно не похожи на их прародителей. Совершенствование парашюта послужило причиной возникновения новых самостоятельных занятий. Так, работы по улучшению аэродинамики планирующих парашютов привели к появлению парапланеризма, а благодаря «скрещиванию» современного парашюта-«крыло» с воздушным змеем (и отчасти — парусом) воз­ник кайтинг.

Сейчас парашютные прыжки — очень доступное занятие. По всему миру расположено множество аэро­клубов, где практически любой желающий может совершить ознакомительные прыжки — как с небольшой высоты (самостоятельно, с десантным или тренировочным парашютом), так и со значительной (в сопровождении инструкторов), испытав ни с чем не сравнимые ощущения свободного падения. Пройдя курсы обучения, можно заняться парашютным спортом.

Для тех, кто задумывается о совершении первого прыжка, книга расскажет о том, как устроен парашют, чем занимаются спортсмены-парашютисты в небе и опасно ли прыгать.

Прошедшим обучение данное издание может по­мочь с выбором пути дальнейшего совершенствования, сориентироваться в парашютном снаряжении, углу­бить знания парашютной техники и правил безопас­ности.

Данную книгу нельзя рассматривать как самоучитель по применению парашюта. Все виды парашютных прыжков совершаются только под руководством опытных инструкторов в спортивных или военных организациях. Освоение методов управления парашютом необходимо вы­полнять только под контролем штатных инструкторов авиационных организаций.

Автор благодарит ^ Татьяну Бондарь за подготовку исторического обзора, Егора Токунова, Александра Чузо, Дмитрия Губанова за предоставленные фотографии.

С автором книги можно связаться по е-mail: jump@parashut.соm или www.parashut.com


^ УСТРОЙСТВО ПАРАШЮТА

Все парашюты (за исключением вытяжных и стаби­лизирующих) имеют общие элементы: купол, стропы, подвесную систему, ранец (контейнер). Эти элементы могут достаточно сильно отличаться в разных моделях, но все равно они имеют общие черты и сходные принципы конструкции и исполнения. В этом разделе мы рассмотрим общие принципы устройства ранцевого парашюта и его частей.


КУПОЛ

Все купола сшиты из ткани и имеют стропы, связы­вающие их с подвесной системой. Конфигурация на­полненного воздухом купола зависит от расположения мест крепления строп, их длины, а также от того, как он скроен и сшит.

Ткань, из которой шьется купол парашюта, должна быть тонкой, легкой и прочной, иметь определенные характеристики воздухопроницаемости. Первые пара­шюты шили из парашютного шелка, хлопчатобумаж­ного перкаля. Ткань современных куполов — синтети­ческая. Это различные виды капрона — каркасный, каландрированный (со специальной пропиткой). Тех­нологии изготовления качественной парашютной тка­ни (например, американские ткани Р-111 и 2Р-0) за­патентованы, такие материалы достаточно дороги. В местах, где купол испытывает наибольшие нагрузки, его усиливают силовыми лентами, имеющими проч­ность на порядок выше, чем остальная ткань. Для при­вязывания строп на купол пришивают петли из тех же силовых лент (рис. 1).

Современные скоростные «крылья» делают из тка­ни с нулевой воздухопроницаемостью (ZP), купола круглых парашютов всегда пропускают воздух. Это свя­зано с особенностями наполнения купола. Например, Д-1-5У с 82-метровым перкалевым куполом, хорошо пропускающим воздух, нормально работает на прину­дительное раскрытие. А более плотный капроновый купол Т-4 в тех же условиях выворачивается, для нор­мальной работы ему необходима минимум пятисекунд-ная задержка раскрытия.




Рис. 1. Крепление стропы к куполу


На вершине однооболочкового купола обычно нахо­дится полюсное отверстие, пересекаемое крестовиной из силовых лент (либо «лучами» строп) для крепления стренги вытяжного парашюта. Полюсное отверстие по­могает устранить раскачивание парашюта при сниже­нии. Более подробно эта тема рассматривается в главе «Принципы работы парашюта».

СТРОПЫ

Стропы современных парашютов изготавливают из синтетики: капрона (dacron), CBM (сверхвысокомо-дульного материала), microline (spectra), vectran, HMA (High Modulus Aramid). Стропы отличаются прочностью, толщиной, стабильностью длины, эксплуатационны­ми свойствами, ценой (рис. 2). Для десантных куполов наибольшее значение имеет эксплуатационная сторо­на, цена. На них устанавливаются дешевые капроно­вые стропы с большим ресурсом прыжков.

Для современных скоростных куполов решающую роль играет аэродинамика, а следовательно, толщина строп, их стабильная длина, влияющая на профиль крыла.

Прочность строп из различных материалов можно примерно охарактеризовать так: при равной толщине стропа из СВМ в три раза прочнее капроновой, а мик-ролайн, вектран и НМА — в четыре.

Хлопчатобумажные стропы устанавливались на не­которые старые модели парашютов, например Д-1-5У (которые, правда, эксплуатируются и сейчас). Их проч­ность — 125 кгс. Состоят из оболочки и внутренних нитей, имеют круглое сечение. Достоинства: не боятся ожогов. Недостатки: боятся влаги (плесени), имеют большой объем и массу при относительно невысокой прочности.

Капроновые стропы прочностью 150 кгс стоят на круг­лых куполах, таких, как Д-6, 3-5, Т-4, УТ-15, ПТЛ-72. Они имеют такую же структуру, как хлопчатобумажные (оболочка, внутренние нити, круглое сечение), но бо­лее тонкие и прочные, боятся высоких температур, сол­нечного света.

^ Лавсановые стропы — плоские, относительно тол­стые синтетические стропы белого цвета, применявшиеся на парашютах ПО-9. В настоящее время не ис­пользуются.

СВМ (на западе называют кевларом) — стропы цве­та хаки, при равной прочности гораздо тоньше хлоп­чатобумажных и капроновых. Устанавливаются на спортивные парашюты-«крыло» Ивановского завода «Полет». СВМ имеют достаточно высокий коэффици­ент трения, поэтому на куполах с такими стропами слайдер очень часто не может опуститься до конца и необходимо помогать ему вручную. Стандартные зна­чения прочности: 250 и 450 кгс. Отличаются стабиль­ностью размеров. Имеют плоское сечение.

Dacron — капроновые стропы, имеющие ресурс 1000 и более прыжков, в сечении круглые. Некоторая упру­гость таких строп в определенной степени смягчает рас­крытие купола. Из-за большой толщины не пригодны для скоростных куполов, так как создают значительное воздушное сопротивление, имеют большой укладочный объем. Применяются в основном на классических и ку­польных парашютах: для классических важен их высо­кий ресурс прочности, для купольных толстые стропы предпочтительнее, так как меньше «перепиливают» спортсменам ноги. Замену дакроновых строп можно производить по визуально определяемому износу.

Spectra — высокопрочные волокна на основе поли­этилена. На вид отличаются небольшой толщиной, плоским сечением, на ощупь — скользкие, достаточно жесткие. По аэродинамическим характеристикам хо­рошо подходят для высокоскоростных парашютов. Не­достатком является то, что из-за нагрева вследствие трения о кольца слайдера в процессе эксплуатации уменьшаются в длине, в результате меняется геомет­рия купола, ухудшается аэродинамика. Ресурс данных строп — около 800 прыжков, после чего износ стано­вится хорошо заметным и стропы необходимо менять.



Рис. 2. Синтетические стропы (слева направо):

капрон, лавсан, Dacron, CBM, Spectra; для сравнения показана стропа параплана (справа)

Но для сохранения летных характеристик на скорост­ных куполах рекомендуется менять стропы Spectra уже через 400 прыжков. Стандартные размеры (прочность): 550, 725, 825, 1000 lbs (фунтов).

Vectran имеет ресурс 600 прыжков. Стропы из этого материала тонкие, круглого сечения, светло-коричне­вого цвета. Со временем они не изменяют длины, бла­годаря чему используются на куполах класса High и Ultra High Performance (PD Velocity, почти все купола Icarus Canopies). Недостаток вектрана по сравнению с микролайном — меньшая механическая стойкость, внутреннее разрушение, что означает возможность раз­рыва строп, которые внешне выглядят еще неплохо. Во избежание подобных случаев необходимо более строго следить за количеством прыжков на куполе с вектрановыми стропами и своевременно заменять их.

^ HMA (Technor) — материал, продвигаемый амери­канской фирмой Precision Aerodynamics. По характери­стикам близок к вектрану, но тоньше, декларируется более длительный ресурс — 800 прыжков. Так же, как вектран, со временем не меняет длины. Поскольку НМА пока еще недостаточно долго эксплуатируется, его эксплуатационные свойства вызывают споры.

^ ПОДВЕСНАЯ СИСТЕМА

Подвесная система — очень важная часть парашю­та, даже более важная, чем основной купол (рис. 3). В случае отказа основного парашюта можно восполь­зоваться запасным, если же порвется подвесная систе­ма, то парашютиста может спасти только чудо. Поэтому к надежности подвесной системы подходят очень ответственно. Например, лента подвесной системы Д-1-5У имеет прочность на разрыв 1600 кгс. Следует крайне внимательно относиться к эксплуатации под­весной системы: не допускать, чтобы ее ленты пере­тирались обо что-либо, оберегать их от воздействия агрессивных химических веществ, высокой темпера­туры, прямых солнечных лучей.

К конструкции подвесной системы предъявляются следующие требования. Она должна надежно удержи­вать тело парашютиста, чтобы он ни при каких обсто­ятельствах не смог выпасть из правильно подогнанной по размеру и полностью застегнутой подвесной систе­мы. В то же время она не должна создавать неудобств, сковывать движения при управлении телом в свобод­ном падении или раскрытым куполом,

Для увеличения надежности при конструировании подвесных систем стараются избегать лишних разры­вов ленты. На некоторых парашютных системах (напри­мер, Д-1-5У, Д-6) грудная перемычка является одним целым с плечевыми обхватами, круговая лямка и свободные концы основного парашюта — тоже одно целое. На спортивных ранцах круговая лямка и свободные кон­цы запасного парашюта также представляют собой одну неразрывную ленту.

Типичная подвесная система состоит из следующих частей:

круговая лямка;

грудная перемычка;

плечевые обхваты;

ножные обхваты;

свободные концы.

Круговая лямка — основная несущая часть подвес­ной системы. Круговая лямка несет на себе вес пара­шютиста после раскрытия парашюта. К ней пришива­ются все остальные детали подвесной системы.

^ Грудная перемычка не позволяет парашютисту вы­пасть из подвесной системы вперед.



Рис. 3. Подвесные системы парашютов Д-6 (слева) и ПО-17 (справа)




Плечевые обхваты не позволяют парашютисту вы­валиться из подвесной системы вверх, например, при раскрытии парашюта из положения вниз головой. Кро­ме того, на плечевых обхватах уложенный парашют держится на спине парашютиста.

^ Ножные обхваты необходимы, чтобы парашютист не выскользнул из подвесной системы вниз.

Свободные концы являются связующим звеном меж­ду подвесной системой и стропами парашюта. К верх­ней стороне свободных концов пришиваются кольца, D-образные пряжки, либо на ней устанавливаются разъемные кольца рапид-линк (молье) или софт-линки, к которым, в свою очередь, привязываются стропы (рис. 4).

Рапид-линк (Rapid-link), молье — разъемное металли­ческое звено, служащее для соединения строп парашюта со свободными концами. Используется вместо применяв­шихся ранее неразъемных колец, на которые стропы при­вязывались узлами. Разъемное звено позволяет отделять стропы от свободных концов, не развязывая их, что силь­но упрощает процедуру замены купола. В зависимости от количества и толщины строп, а также предполагаемых нагрузок существует несколько размеров рапид-линков прочностью от 220 до 3300 фунтов (100—1500 ктс).




Рис. 4. Рапид-линк (вверху), софт-линк (внизу)


Софт-линк (Soft-link) — разъемное звено для соеди­нения строп парашюта со свободными концами. Изго­тавливается обычно из стропы Spectra. Его прочности достаточно для выполняемой задачи; в отличие от ме­таллического кольца избавляет от необходимости уста­новки бамперов, при этом значительно легче. Софт-линк позволяет быстро соединять и разъединять стропы и сво­бодные концы.

Нижняя сторона свободных концов крепится к пле­чевым обхватам подвесной системы. На парашютах без замков отцепки свободные концы, как правило, не при­шиты, а являются продолжением круговой лямки, то есть сделаны из той же ленты.

На современных парашютах, в случае отказа требую­щих отсоединения основного купола перед введением в действие запасного, свободные концы подсоединяют­ся к подвесной системе с помощью замков отцепки. Первые версии замков отцепки (ОСК, ОСК-Д) бьщи очень капризными и ненадежными. Сегодня на всех спортивных парашютах применяется кольцевое замко­вое устройство (КЗУ) (рис. 5). Действие КЗУ основано на последовательном (в несколько этапов) уменьшении нагрузки на трос, которым зачекован замок.







Рис. 5. Кольцевое замковое устройство (КЗУ):

свободный конец отсоединен (слева);

КЗУ в собранном виде (справа)


Устройство КЗУ простое и надежное. Тросы от обо­их замков проходят по подвесной системе в гибких шлангах (боуденах) и подсоединены к подушке отцеп­ки. Таким образом, парашютист, выдернув подушку отцепки, может одним движением отсоединить оба свободных конца. Гибкие шланги предохраняют трос отцепки от защемлений и чрезмерных перегибов. Со­временные парашютные системы часто имеют со­вместимые свободные концы, благодаря чему, когда возникает необходимость, тот или иной основной ку­пол можно переставить в другой ранец буквально за пару минут. Правда, это не совсем правильно,так как свободные концы все-таки являются частью конкрет­ного ранца и для замены купола следует отсоединять стропы от свободных концов.

^ Подушка отцепки обычно делается красного цвета, чтобы парашютист при отказе основного купола мог быстро найти ее взглядом. В любом случае подушка от­цепки должна иметь цвет, контрастный по отношению к цвету остального снаряжения, то есть если у пара­шютиста красный комбинезон, для подушки отцепки целесообразно выбрать другой цвет, например желтый. Подушка отцепки размещается на подвесной системе с правой стороны и держится с помощью текстильной застежки — липучки. На некоторых отечественных пара­шютных системах подушки отцепки имеют своеобраз­ный карман для удобного захвата пальцами левой руки.

^ Звено раскрытия. На подвесной системе также есть кольцо открытия основного или запасного парашюта которое вместе с тросом и шпильками называется зве­ном раскрытия. Оно служит для ручного раскрытия ранца парашюта. Кольцо может быть различной фор­мы (круглой, квадратной, треугольной, трапециевид­ной и др.) и обычно изготовлено из металлической трубки или прутка. На некоторых системах (ПО-17) и основной, и запасной купола имеют жесткие вы­тяжные парашюты^ а также есть два кольца и одна по­душка отцепки. На некоторых спортивных системах вместо кольца используется подушка. Она должна отличаться по цвету от подушки отцепки. Кольцо за­пасного парашюта держится в специальном кармане с помощью резинки либо липучки. К кольцу присо­единен трос, второй конец которого заканчивается од­ной или несколькими шпильками, зачековывающими ранец (рис. 6).




Рис. 6. Зачековка ранца

Вытяжной трос не крепится к кольцу жестко, а про­девается в отверстие и может скользить. На конце тро­са устанавливается ограничитель. Длина троса такова, что рука парашютиста, выдергивающая кольцо, сна­чала преодолевает усилие резинки (липучки), фикси­рующей кольцо на подвесной системе, затем проходит некоторое расстояние, выбирая слабину троса и разго­няясь, и лишь затем кольцо упирается в ограничитель и тянет за трос, вытаскивая шпильки. В результате шпильки выдергиваются из петель (или конусов) рыв­ком. Резкое выдергивание шпилек позволяет, во-пер­вых, преодолеть усилие, с которым петля (или конус) притягивают шпильку к люверсам; во-вторых, мини­мизирует вероятность того, что конец шпильки прова­лится в люверс (рис. 7). Шпильку, провалившуюся в люверс, обычно необходимо выдергивать с большим усилием. Трос проходит по подвесной системе в гиб­ком металлическом шланге, предотвращающем силь­ные перегибы и защемление троса.

«Транзит». На некоторые парашютные системы (студенческие, тандемы) устанавливается система транзитного раскрытия. Упрощенная схема ее рабо­ты выглядит следующим образом: парашютист выдер­гивает подушку отцепки, основной парашют уходит. К свободным концам основного парашюта приделан трос, выдергивающий шпильку запасного парашюта. Таким образом, одно движение парашютиста (вы­дергивание подушки отцепки) приводит к после­довательному отстегиванию основного парашюта и раскрытию запасного. В результате процесс «отцеп­ка — запаска» занимает минимум времени и при этом происходит в нужной последовательности. Есть у такой системы и минусы, из-за которых она не при­меняется на всех парашютах. Например, если проис­ходит отцепка основного парашюта, вращающегося с большой угловой скоростью, то сразу после отцепки тело парашютиста, естественно, будет также быстро вращаться. Перед введением в действие запаски (если позволяет высота) целесообразно остановить враще­ние тела, иначе неизбежно возникнет закрутка строп запасного парашюта, что, мягко выражаясь, не же­лательно. «Транзит», раскрывая запасной парашют сразу после отцепки, не оставляет возможности оста­новить вращение. Из-за этого опытные парашютисты, способные быстро и грамотно действовать в крити­ческих ситуациях, не устанавливают «транзит» на свои парашютные системы. Для студентов, которые не все­гда могут быстро действовать в опасной ситуации, а также на тандемных системах применение «транзи­та» оправдано.








Рис. 7. Шпилька, провалившаяся в люверс


РАНЕЦ

Ранец парашюта представляет собой контейнер для основного (или два контейнера — для основного и запас­ного) парашюта с системой клапанов, удерживающих парашют в уложенном состоянии. Он пришивается или привязывается к подвесной системе и не испытывает больших нагрузок при раскрытии парашюта и дальней­шем снижении парашютиста под куполом. На пара­шютных системах с круглыми основными куполами (например, Д-1-5У, Т-4, Д-6) подвесная система при­вязана к ранцу капроновым шнуром и при необхо­димости ее несложно отделить и привязать обратно. В современных спортивных системах подвесная сис­тема как бы интегрирована в ранец, и для их отделения друг от друга понадобится распарывать полранца.




Рис. 8. Современные ранцы (слева направо): Javelin, Racer, тандемная система Арбалет-3


Основные задачи ранца: до поры до времени удер­живать парашют в уложенном виде и предотвращать непреднамеренное раскрытие, а затем обеспечивать надежное раскрытие клапанов и не препятствовать раскрытию парашюта.

К современным ранцам, кроме стандартных требо­ваний надежной работы, предъявляются еще и эсте­тические (рис. 8).

Стандартная сегодня система для удержания клапа­нов ранца в закрытом состоянии — зачековка шпилькой мягкой петли или металлического конуса. Например, на нижнем клапане ранца запасного парашюта 3-5 серии 4 установлены два металлических конуса с отверстием для шпильки. На эти конусы надеваются люверсы, установ­ленные на верхнем и боковых клапанах ранца. Поверх всех люверсов в отверстие каждого конуса вставляется шпилька, которая не дает люверсам слезать с конуса. Таким образом, ранец оказывается зафиксированным (зачекованным) в уложенном состоянии. Шпильки за­креплены на вытяжном тросе, второй конец которого присоединен к вытяжному кольцу. Кольцо находится в специально для него сделанном кармане.

Дергая за кольцо, парашютист тем самым выдерги­вает шпильки из конусов, после чего люверсы клапа­нов уже ничто не сдерживает и клапаны при помощи ранцевых резин распахиваются, подставляя парашют воздушному потоку.

В большинстве современных типов ранцев, напри­мер очень популярном Javelin американской фирмы Sun Path (рис. 9), люверсы клапанов надеваются на мягкую петлю, идущую от дна ранца.




Рис. 9. Ранец Javelin: контейнер основного парашюта


Под клапанами ранца может быть уложен жесткий вытяжной парашют.

На нижней стороне современных спортивных ран­цев обычно пришит эластичный карман для мягкого пытяжного парашюта.

^ Вытяжной парашют (обычно парашютисты называ­ют его медузой) предназначен для вытаскивания ос­новного или запасного парашюта из ранца. Есть два типа вытяжного парашюта — жесткий и мягкий. Вытяжной парашют соединяется с вершиной основного парашюта с помощью специальной ленты — стренги. При этом если разделить парашютную систему на со­ставляющие (ранец, основной и запасной парашюты, подвесная система), то вытяжной парашют будет от­носиться к ранцу, так как его конструкция и размеры зависят от устройства ранца, а куполу в значительной степени безразлично, чем его будут вытаскивать из ран­ца и чехла.

На некоторых типах парашютов (например, за­пасных 3-5, 3-6П) вытяжной парашют как таковой от­сутствует, его роль выполняют карманы, нашитые на вершину купола поверх полюсного отверстия (рис. 10). Такая схема исключает возможность наматывания стренги вытяжного парашюта запаски на частично ра­ботающий основной купол.




Рис 10. Вершина запасного парашюта 3-5: карманы выполняют функции вытяжного парашюта

Внутри жесткого вытяжного парашюта имеется ме­таллическая пружина, за счет которой он может вы­прыгивать из ранца и уходить из зоны затенения (см. раздел «Свободное падение»), чтобы, попав в воздуш­ный поток, начать раскрывать основной или запасной парашют. Жесткий вытяжник устанавливается на все чапасные парашюты типа «крыло», некоторые круглые чапаски (LoPo), основные парашюты современных сту­денческих систем, некоторые ранние модели основных парашютов типа «крыло» (ПО-9, -16, -17), на круглые основные парашюты (Д-1-5У, Т-4, УТ-15) (рис. 11).



Рис. 11. Шаровой вытяжной парашют системы Т-4


Жесткая медуза в уложенном ранце сдерживается в сжатом состоянии зачекованными клапанами. Когда парашютист (или страхующий прибор) выдергивает шпильку (либо страхующий прибор перерубает петлю), клапаны ранца перестают быть зафиксированны­ми, пружина разжимается, и медуза выпрыгивает из-под клапанов, вытягивая за собой часть стренги. Затем медузу подхватывает воздушный поток и вытаскивает из ранца основной (или запасной) парашют. Мощнос­ти пружины должно хватить, чтобы медуза вышла из зоны затенения, это означает, что она должна отпрыг­нуть от ранца на полтора-два метра (см. раздел «Безо­пасность»).

К недостаткам жесткой медузы можно отнести на­личие тяжелой пружины, возможность попадания в зону затенения (если пружина недостаточно жест­кая), необходимое наличие вытяжного кольца (кото­рое можно потерять). Но при этом без жесткой медузы нельзя обойтись, если необходимо раскрывать пара­шют типа «крыло» с помощью страхующего прибора, так как страхующие приборы пока не умеют выбрасы­вать мягкую медузу.

Мягкий вытяжной парашют используется для рас­крытия современных основных парашютов типа «кры­ло». Его бросают рукой в поток в стороне от тела, то есть при правильном использовании попадание в зону затенения исключено. К достоинствам мягкой медузы можно отнести также отсутствие каких-либо крупных жестких деталей (таких, как пружина в жесткой меду­зе), а значит, компактность в уложенном виде, легкость, возможность установки коллапса.

По мере совершенствования аэродинамики, умень­шения площадей и соответственно увеличения скорос­тей планирования куполов типа «крыло» парашютисты столкнулись с тем, что вытяжной парашют на большой скорости создает заметное сопротивление движению. Для решения проблемы была придумана коллапсирующая медуза (collapsible pilot chute), которая склады­вается после выполнения своей функции. Существует две разновидности коллапсирующих медуз — вершина купола медузы притягивается к ее основанию с помо­щью резинки либо с помощью стропы (kill-line), про­детой внутрь стренги и присоединенной к вершине купола. Коллапс, сделанный из резинки от трусов, можно увидеть, например, на парашютах Ивановско­го завода «Полет». Медуза с резинкой работает только при скорости выше некоторого критического зна­чения. Жесткость резинки подбирается так, чтобы ме­дуза наполнялась при свободном падении (скорость порядка 50 м/с) и не наполнялась при планировании под наполненным куполом (скорость порядка 15 м/с). Недостаток такой медузы — неспособность раскрывать парашют при небольших задержках после отделения от летательного аппарата, так как чтобы поток смог растянуть резинку, надо сначала разогнаться в течение нескольких секунд. С другой стороны, при выполне­нии разгонных маневров из-за увеличения скорости такая медуза может некстати надуваться и мешать раз­гону. Коллапс медузы с помощью kill-line лишен таких недостатков, но требует особого внимания на укладке, поскольку его необходимо «расколлапсировать» вруч­ную. Если этого не сделать, медуза останется сложен­ной и не обязана будет раскрыть основной парашют.

^ Чехол (камера). Эта деталь имеет несколько назна­чений:

сохранение более правильной структуры купола и строп в уложенном виде;

упорядочивание процесса раскрытия: кромка ку­пола выходит наружу только тогда, когда чехол (камера) удалились от парашютиста и стропы вытянуты на всю длину;

чехол является устройством рифления: так как чехол не может сползти с купола моментально, наполнение купола немного замедляется, уменьшая перегрузки.

На чехле (камере) обычно размещают резиновые соты или газыри для укладки в них строп.

Сота — резиновая петля, предназначенная для ук­ладки в нее пучка строп. Обычно на камерах или чехлах парашютов имеется два ряда сот для укладки строп.

Газырь — текстильный карман цилиндрической формы, предназначенный для укладки в него пучка строп. Нашивается на камеру парашюта (Д-5, Д-6, К-15) (рис. 12).



Рис. 12. Газыри, расположенные на камере парашюта Д-6


Шпильки. Как уже говорилось, клапаны ранца пара­шюта зачековываются одной или несколькими шпиль­ками. Шпильки закреплены на тросе, который, в свою очередь, присоединяется к кольцу или вытяжной верев­ке (фалу). На парашютах с мягкой медузой шпилька обычно крепится к стренге вытяжного парашюта.

^ Вытяжная веревка (вытяжной фал) предназначена для расчековки ранца и стягивания чехла с купола при прыжках на принудительное раскрытие парашюта. На вытяжной веревке имеется три петли — две на кон­цах и одна посередине. На одном конце петля продета в карабин, который зацепляется за трос в летательном аппарате. К петле с противоположной стороны верев­ки может быть привязан вытяжной трос со шпилька­ми, в этом случае ранец будет расчекован с помощью веревки после отделения от летательного аппарата. К этой же петле может быть привязан чехол купола; в этом случае вытяжной трос привязывается к цент­ральной петле веревки. При таком варианте после от­деления парашютиста веревка сначала расчековывает ранец, а затем вытаскивает из ранца основной пара­шют и стягивает с него чехол.

^ Стабилизирующий парашют служит для стабилизации падения парашютиста, а после раскрытия специального замка выполняет функцию парашюта вытяжного. Ис­пользуется на десантных парашютах, на тандемах (дрог).

Дрог — в тандем-системе — стабилизирующий пара­шют, выполняющий также функцию парашюта вытяж­ного. Представляет собой мягкую медузу увеличенной площади на длинной стренге.




^ Двухконусный замок (рис. 13) используется в пара­шютных системах, предусматривающих укладку на ста­билизацию падения. Этот замок держит клапаны ранцаи закрытом состоянии в процессе снижения парашю­тиста под стабилизирующим парашютом. Выдернув кольцо, парашютист раскрывает двухконусный замок, клапаны освобождаются, и стабилизирующий парашют иытаскивает из ранца камеру основного парашюта. Если парашютист вовремя не выдергивает кольцо, двухконус­ный замок раскрывается страхующим прибором.


Рис. 13. Двухконусный замок: — затвор; 2 — конус затвора; 3 — конус замка

^ УСТРОЙСТВО ПАРАШЮТА ТИПА «КРЫЛО»

В отличие от круглых куполов, «крыло» имеет вы­тянутую форму — прямоугольную или эллиптическую, которая по конструкции принципиально мало отли­чается от жесткого крыла самолета. Обычно крыло не

Рис. 14. Конструкция крыла: 1— верхняя оболочка; ^ 2 — нижняя оболочка; 3 — нервюра; 4 — лонже­роны, стрингеры: h — высота профиля; l'— размах, d — хорда





является монолитным, а состоит из двух оболочек, не­рвюр (вертикальных силовых элементов) и лонжеро­нов (продольных силовых элементов). Роль оболочек очевидна. Форма нервюр определяет профиль крыла, лонжероны (или стрингеры) обеспечивают продоль­ную прочность (рис. 14).

Составные части купола-«крыло»: две оболочки, нервюры, «уши», стропы, слайдер.

Оболочки — основные несущие поверхности купо­ла. Они изготавливаются из ткани с низкой или нуле­вой воздухопроницаемостью. В качестве лонжеронов выступают силовые ленты. Материал оболочки влияет на некоторые характеристики купола: ткань с нулевой воздухопроницаемостью (ZP-0) позволяет достигать максимально возможных летных характеристик (ско­рость, аэродинамическое качество), ткань с низкой воз­духопроницаемостью типа F-111 дает более стабильное и предсказуемое раскрытие парашюта, позволяет ис­пользовать купол большой площади при небольшой массе парашютиста и лучше подходит для планирова­ния на низких скоростях (например, при работе на точ­ность приземления). В задней части купола оболочки сшиты друг с другом, в передней части между ними есть промежуток (сопло), через который при планировании внутрь купола поступает воздух. На основных куполах-«крыло» посередине верхней оболочки имеется креп­ление для стренги вытяжного парашюта.

Нервюры — это вертикальные (иногда — наклон­ные) перемычки между оболочками. От формы нер­вюр зависит профиль крыла и его форма (рис. 15). На прямоугольных куполах все нервюры одинаковые, на эллиптических — одна или несколько нервюр по краям имеют меньшие размеры, чем центральная. Нервюры делятся на силовые и промежуточные. К си­ловым нервюрам крепятся стропы,




Рис. 15. Нервюра парашюта типа «крыло»


промежуточные всего лишь поддерживают форму профиля. Силовые нервюры делят купол на секции. При некоторых ре­жимах в разные секции купола поступает разное ко­личество воздуха, и, чтобы обеспечить равномерное распределение давления воздуха внутри купола, нервю­ры шьют из менее плотной, чем на оболочках, ткани' либо в них делают конструктивные отверстия.

Так как купол изготовлен из мягкого материала, в наполненном состоянии под напором воздуха его форма не может строго соответствовать чертежам, ис­кажения неизбежны. Можно только попытаться сде­лать их не очень значительными. Для того чтобы купол сохранял более правильный профиль, на тонкопро­фильных скоростных моделях парашютов используют косые (диагональные) нервюры. Чаще всего они пред­ставляют собой треугольные косынки, соединяющие верхнюю оболочку с нижней частью силовых нервюр, в местах крепления строп. Дополнительные косые нер­вюры, а также большее количество промежуточных нервюр, как несложно догадаться, увеличивают укла­дочный объем купола, то есть его размеры в уложен­ном виде.

Секция — части купола между двумя силовыми нер­вюрами. На большинстве куполов секция имеет одну промежуточную нервюру. На куполах с косыми нервю­рами структура секции чаще всего содержит две про­межуточные и две косые нервюры. Количество секцийзависит от удлинения купола. Современные парашю­ты с относительно небольшим удлинением делают семисекционными, с большим — девятисекционными. Существуют отдельные экземпляры, имеющие один­надцать секций. Некоторые старые образцы куполов имели 5 секций, из-за низкого аэродинамического ка­чества в настоящее время такие модели не изготавлива­ются. Косонервюрники, секции которых отличаются от обычных, называют 21- или 27-секционными, в таком обозначении секцией считают часть купола между дву­мя соседними вертикальными нервюрами, не разли­чая силовые и промежуточные.

На рис. 16 показаны варианты структуры секций. В левом столбце изображена общая схема данного клас­са куполов, в среднем — поперечный разрез, показы­вающий расположение нервюр, в правом — вид купола спереди с учетом формы сопел, частично прикрытых тканью верхней оболочки. Классический семисекци-онный купол имеет толстый профиль и большие, от­крытые сопла (рис. 16, схема а). У скоростного купола Icarus Safire (рис. 16, схема б) более тонкий профиль, его сопла частично прикрыты для улучшения аэроди­намики, оставшейся площади отверстий достаточно для забора необходимого количества воздуха. У эллип­тических скоростных куполов высшего класса Icarus Crossfire и Atair Competition Cobalt (рис. 16, схемы в, г, рис. 17) та же структура секций, но их сопла сильно закрыты для уменьшения лобового сопротивления. Еще более тонкий профиль и особую структуру сек­ций имеют косонервюрники. В традиционном опре­делении Icarus Extreme FX (рис. 16, схема д) можно назвать семисекционным, но, так как каждая секция его делится на три части, его принято называть 21-сек­ционным. Аналогично 9-секционный Atair Onyx (рис. 16, схема ё) называют 36-секционным. Купола с косыми нервюрами имеют самую совершенную аэро­динамику, тонкий и правильный профиль, очень не­большие сопла.

Сопло — отверстие в передней части секции для по-ступания воздуха внутрь купола (рис. 18). На низких скоростях планирования при небольшом встречном на­поре в купол поступает относительно немного воздуха, и парашюты, предназначенные для работы в таких ре­жимах (например, классические), имеют большие от­крытые сопла. На больших скоростях для поддержания высокого давления вполне достаточно небольших от­верстий, при этом желательно улучшить обтекаемость передней части купола, поэтому на скоростных купо­лах сопла, как правило, частично закрывают тканью верхней оболочки или дополнительными косынками из того же материала, что и оболочки (рис. 16, схемы в—е)



Рис. 16. Структура секций различных куполов: и — Parafoil (классический); б — Safire (скоростной); в — Crossfire (эллипс пысшсго класса); г — Competition Cobalt (свуперский эллипс); д — Extreme FX (21-секционный косонервюрник); е — Опух (36-секционный косонервюрник)



Рис. 17. Competition Cobalt




Рис. 18. Нервюры разных куполов:

и — классический (точностной) купол; б — скоростной тонкопрофильный купол; в — параплан (приведен для сравнения). Размерными линиями показаны размеры и расположение сопел

Для поддержания давления в скоростном куполе на низких скоростях были придуманы воздушные клапа­ны: (airlocks) (рис. 19). Они впускают воздух внутрь и ограничивают его выход наружу. Купол с клапанами труднее ввести в свал, он сохраняет устойчивость на низких скоростях и менее восприимчив к турбулент­ности встречного воздуха. Правда, такой купол слож­нее укладывать и он не сдувается после приземления, что может вызвать проблемы при сильном ветре. К тому же если купол отцепили в воздухе, он не складывается, как другие купола, и может улететь далеко. Наличие клапанов несколько увеличивает укладочный объем. И настоящее время отношение к такой доработке не­однозначно и существует лишь несколько моделей ку­полов с клапанами.




Рис. 19. Схема купола с клапанами (airlocks)

Стропы. Для поддержания нео
еще рефераты
Еще работы по разное