Реферат: Поле аэродинамического давления, возникающее на поверхности летательного аппарата (ЛА) в процессе полета, подлежит контролю и управлению


Введение

(к книге Живетина В.Б. «Системы аэромеханического контроля
критических состояний»)

Поле аэродинамического давления, возникающее на поверхности летательного аппарата (ЛА) в процессе полета, подлежит контролю и управлению. Это необходимо в первую очередь для обеспечения безопасности полетов, снижения эксплуатационного риска, обусловленного возникновением критических ситуаций, таких как сваливание. Кроме того, в процессе контроля и управления полем аэродинамического давления осуществляются экономичные режимы полета, обеспечивается заданная точность выполнения боевых заданий. Пространственные режимы полета (маневры) создают нестандартные условия обтекания, контроль которых с целью идентификации области опасных или безопасных состояний с помощью существующих систем (приборов) невозможен.

Особую сложность представляют полеты на динамическом потолке [9], в турбулентной среде, имеющей резко разделенные, встречные и попутные потоки. Программы вывода из области критических состояний, а также предотвращения входа в критическую область являются сегодня актуальными. Наиболее реальный путь решения указанной проблемы связан с контролем, прогнозированием, анализом и управлением полем аэродинамических сил, базовой основой которого является поле аэроди­намического давления на несущих поверхностях. Обеспечение безопасности полета реализуется путем ограничения некоторого набора параметров фазовой траектории. Этот на­бор параметров зависит от режима полета: стацио­нарного, квазистационарного, динамического.

Все авиационное оборудование создано для стационарного режима полета. Исторически развитие авиационного оборудования неразрывно связано с эволюцией самолета. Начало этого процесса было положено тогда, когда ЛА мог рассматриваться как материальная точка. Для этих ЛА был характерен стационарный режим состояния поля сил аэродинамического давления, его структуры по поверхности ЛА.

В «классической» теории движения самолетов рассматриваются линеаризованные уравнения движения относительно центра

масс. При этом, как правило, выделяются продольное и боковое движения и анализируется устойчивость движения «в малом» и, в некоторых случаях, переходные процессы при действии малых возмущений и при малых отклонениях рулей.

Однако рост скоростей и высот полета, послуживший причиной суще­ственных изменений геометрических и инерционных характери­стик, обусловил нелинейные зависимости при маневрах с кренами характеристик устойчивости и управляемости от параметров его движения. При этом теоретически и экспериментально были обна­ружены такие режимы неустойчивости, которые при упрощенном (независимом продольном и боковом) анализе не определились. Эти особенности динамики маневренных самолетов связаны с на­личием перекрестных связей между параметрами, характерными для продольного и бокового движений, что обусловило совместное рассмотрение уравнений, а также необходимость анализа нелиней­ных дифференциальных уравнений. Необходимость такого подхода была осмыслена после ряда авиационных катастроф американских истребителей (моделей Нард Америкэн «Супер Сейбр» F-100 и Белл Х-2).

Одним из возможных направлений применения поля сил аэродинамического давления является использование системы обратной связи по пере­паду давления в системах автоматического управления полетом [20]. Почти на всех самолетах, оборудованных системами автома­тического управления, положение рулей управления осуществляет­ся через обратную связь по углу отклонения управляющего руля. Поскольку управляющая сила часто линейно зависит от положения руля, этот тип обратной связи работает хорошо. Однако во многих случаях необходимо вводить переменный коэффициент усиления обратной связи, соответствующий пространственному положению самолета в полете, динамическим изменениям давления, числу Маха или их комбинациям. Особенно это важно в нештатных режимах, в том числе для гражданской авиации. При этом отмечаются следующие возможности применения обратной связи по перепаду давления:

управление углом атаки;

парирование нагрузки от порыва ветра;

предотвращение срыва потока на несущих поверхностях ЛА.

В работе [31] предлагается контролировать угол атаки на поверхности датчиками давления, расположенными приблизительно на расстоянии (10÷15)% хорды от ее начала. Перепад давления, как отмечает автор, здесь пропорционален углу атаки или углу скольжения на вертикальном оперении. Таким образом, выдерживание постоянного перепада давления будет эквивалентно выдерживанию постоянного угла атаки для данных полетных условий. При этом датчик перепада давления, расположенный на несущем крыле, будет контролировать (управлять) отклонение руля высоты.

Парирование порывов ветра в данной системе осуществляется не за счет сигналов отклонения от траектории, а за счет сигналов об изменении сил давления, когда еще нет отклонений ЛА. При этом датчики перепадов давления размещаются на крыле и хвостовом оперении на одном и том же расстоянии по хорде. В результате датчик на правом крыле будет контролировать положение правого элерона, в то время как датчик на левом крыле будет контролировать положение левого элерона. Элеронам будут предписываться отклонения независимо друг от друга, поэтому для того, чтобы компенсировать несимметричный порыв ветра, изменятся величина давления, результирующая подъемная сила и момент крена. Руль высоты и руль направления будут сохранять моменты тангажа и рыс­кания в равновесии.

Предупреждение срыва достигается применением датчиков перепада давления, подобным датчикам, рассмотренным для угла атаки  Ограничивая перепад давления, мы воздействуем на и пре­дотвращаем срыв при любом весе самолета, а также срыв в динамическом режиме полета.

Следующим потребителем информации о поле аэродинамических сил является вертолет. Рассмотрим это направление на примере активной системы устранения срывного флаттера лопасти [31]. Предотвращение срыва потока, имеющего место на лопастях вертолета, является актуальной задачей. Это обусловлено требованиями маневренности и желанием эксплуатирующих организаций перевозить грузы максимально допустимого веса. В ходе исследований, начатых в 1970 году и осуществляемых в течение нескольких лет в рамках контрактов французского правительства, основной упор делается на активную систему устранения срывного флаттера лопастей [31]. В этих работах для активного управления срывом лопастей используется информация о поле сил аэродинамического давления для формирования сигнала управления углом тангажа таким образом, чтобы не происходил срыв потока. С этой целью строится следящая система для управления распределением давления на лопастях.

Как показывают эксперименты, комбинация срывного и вихревого противодействий, приводящая к внезапному повышению давления подсасывания на передней кромке, имеет место, когда лопасть находится в четвертом квадранте, т. е. при =270o360o. При этом давление на передней кромке особенно чувствительно к срыву, следовательно подходит для распознавания условий, близких к срывным. Чтобы исследовать проблему количественно, предпочтительнее иметь дело с коэффициентом давления Cp, чем с абсолютным давлением. В таком подходе предотвращение срыва решается путем ограничения величины Cp. Когда величина Cpmax начала срыва известна, тогда ее можно использовать в качестве сигнала рассогласования для того, чтобы избежать отрыв потока на аэродинамической поверхности. При этом необходимо вводить цепь с обратной связью, в которой используется информация о величине Cp, а также силовой привод для обеспечения условия Cppmax.

Таким образом, использование информации о перепаде давления, измеренного в характерных точках на поверхности ЛА, является перспективным. Такая информация в измерительных системах используется давно [3, 8]. Однако в известных системах она применяется для измерения невозмущенного потока, в том числе с помощью приемников воздушного давления (давления торможения и ста­тического давления), что не полностью характеризует состояние конкретного ЛА, а определяет лишь собственно движение его как материальной точки. Исследование таких систем проведено в мо­нографии [30], в которых указывается на недостаточную точность функционирования таких измерительных систем при больших значениях углов атаки и скольжения, что приводит к нарушению адекватности между состоянием ЛА и его информационной моделью. Перспективные измерительные системы, как отмечено в работах [3, 8], должны включать в себя вычислители воздушных параметров, работающие с более высокой точностью.

К настоящему времени проведен определенный объем исследований по разработке компенсационного алгоритма измерения статического давления Pст, динамического давления Pдин, угла атаки . При этом строилась модель погрешностей, обусловленных влиянием возмущений, вносимых ЛА. Работы проводились в Летно-иссле­до­вательском институте.

В представленной монографии решается задача построения алгоритмов обработки первичной информации, которая представлена в виде дискретных значений поля сил аэродинамического давления на несущих поверхностях ЛА, с целью определения значений его воздушно-скоростных параметров состояния. Поскольку техническая реализация съема давлений возможна только в дискретных точках поверхности ЛА, то возникает задача об установлении адекватной связи между значениями давлений в этих точках и интегральными аэродинамическими характеристиками ЛА в целом и его частей. В связи с этим, опираясь на экспериментальные данные, полученные в аэродинамической трубе Казанского авиационного института, и расчетно-экспериментальные работы Центрального аэрогидродинамического института 1972–1976 годов, автор выдвинул гипотезу о линейной зависимости между коэффициентом подъемной силы Cy и коэффициентом перепада давления в отдельной точке или нескольких точках по хорде сечения крыла. Позднее в монографии [9] был представлен график линейной зависимости между Cy и полученный экспериментальным путем при исследовании вертолетных винтов.

Доказанная в монографии теорема о линейной зависимости между коэффициентами подъемной силы и перепада давления на профиле, получившая у специалистов высокую оценку в следующем виде: «Доказательство очень красивое и вносит вклад в теорию профиля. Здорово!» (доктор физико-математических наук, профессор Казанского государственного университета Маклаков Д.В.), применена в задачах построения алгоритмов обработки аэрометрической информации для вычисления параметров состояния ЛА в полете. На основе полученных алгоритмов разработаны способы и построены системы измерения параметров состояния ЛА, которые защищены авторскими свидетельствами.

Часть монографии посвящена анализу и структурному синтезу систем контроля и управления, на каждую из которых получено авторское свидетельство, в том числе — способам измерения и конт­ро­ля аэродинамических сил и моментов, а также угла атаки скоростного напора. В основу синтезированных устройств положены полученные в монографии функциональные свойства коэффициента перепада давления, измеренного на несущих аэродинамических поверхностях. Для разработанных устройств проведен анализ качества стабилизации летательного аппарата, определены условия автономности и инвариантности его параметров движения. Приведенные материалы летных испытаний аэромеханических устройств подтвердили целесообразность их использования при эксплуатации вертолетов и самолетов.

Таким образом, при устанавлении определенным образом датчиков перепада давления на несущих поверхностях ЛА, при использовании алгоритмов обработки информации представляется возможным синтез систем контроля, например, таких параметров траектории полета, как: угол атаки  относительно вектора воздушной скорости воздушная скорость полета масса m самолета в полете; положение центра тяжести самолета в полете; статическое давление Синтезированные таким образом системы контроля позволяют не только измерить эти параметры, но и строить области их критических (допустимых) значений.

Кроме систем контроля представляется возможность строить системы управления и предотвращения, например, таких режимов, как срывной флаттер, компенсация турбулентных нагрузок (повышая ресурс), компенсация резкой смены ветра со встречного на попутный (повышая безопасность полета на взлете и посадке).

Автор приносит благодарность к.ф.-м.н. М.А. Севодину за учас­тие в теоретических разработках, к.т.н. Л.Г. Цветкову за участие в проведении и обработке летных испытаний, д.т.н. Т.К. Сиразетдинову, А.Ю. Лиссу, высказавшему ряд критических замечаний в процессе испытаний устройств измерения тяги несущего винта и малых скоростей полета вертолета.

Искренне благодарен моему надежному помощнику на завершающем этапе работ Елене Борисовне Савва.

Велика роль бывшего начальника цеха Вертолетного завода Вильяма Валентиновича Платонова, бывшего начальника Казанского филиала ОКБ им. Миля Виктора Николаевича Першутова, без которых не состоялось бы подтверждение разработок автора в экспериментальных образцах систем аэромеханического контроля, проведение натурных испытаний, подтвердивших высокую точность их функционирования. Светлая память и нижайший поклон им.

Считаю необходимым отметить негативную роль д.ф.-м.н., профессора КГТУ (бывшего КАИ) Павлова В.Г., поставившего целью «задушить» работу автора по данному направлению, в том числе и прежде всего политическими методами.

Отмечаю позитивную роль к.ф.-м.н., доцента Сидорова О.П. при написании монографии, а также его отказ содействовать Павлову В.Г. в его лженаучном противостоянии.



еще рефераты
Еще работы по разное