Реферат: Протоколы сети Интернет


Глава 4 Протоколы сети Интернет


4.1 Интернет аb ovo

Общеизвестна дата начала знаменитого проекта сети пакетной коммутации ARPA - прототипа сегодняшней сети Интернет. Это 1971 год. Однако сама идея сети Интернет имеет гораздо более давнюю историю. Чего стоит одно только определение сетевой структуры, данное Буддой: «Как сеть состоит из множества узлов, так и всё на этом свете связано узлами. Если кто-то полагает, что ячейка сети является чем-то независимым, изолированным, то он ошибается. Она называется сетью, поскольку состоит из множества взаимосвязанных ячеек, и у каждой ячейки своё место и свои обязательства по отношению к другим ячейкам».

Реальная история Интернет началась, разумеется, спустя много веков после того, как появилось это определение. Авторы данной книги датируют ее начало 1957 годом - датой запуска первого советского искусственного спутника Земли. Именно в ответ на этот запуск США сформировали в составе Минобороны (Department of Defense - DoD) специальное агентство - Advanced Research Projects Agency (ARPA), создавшее сеть ARPANET - прообраз Интернет - и собравшее вокруг себя коллектив исследователей и ученых, заложивших основы сегодняшней сети Интернет. Таким образом, именно события, связанные с запуском первого советского спутника, стимулировали интеллектуальные усилия тысяч разработчиков и саму Интернет-революцию, которая сейчас сотрясает мир. Уже в июле 1961 года Леонард Клейнрок опубликовал первую статью по теории пакетной коммутации «Information Flow in Large Communication Nets».

В 1964 году последовала работа Пола Барана (Paul Baran, RAND) «On Distributed Communications Networks»

В 1965 году, под эгидой ARPA, компьютеры двух организаций -ТХ-2 в MIT Lincoln Lab и AN/FSQ-32 в System Development Corporation (Santa Monica, CA) - были связаны выделенной телефонной линией на скорости 1200 бит/с. В октябре 1967 года в Гатлинбурге, штат Теннесси, на симпозиуме АСМ собрались представители трех независимых команд-ARPA, RAND è NPL. Последняя из них, Национальная физическая лаборатория (National Physical Laboratory- NPL), построившая экспериментальную сеть пакетной коммутации на скорости 768 Кбит/с, более известна тем, что руководитель разработки Дональд Дэвис является автором термина «пакет».

В 1969 году на основе мини-компьютера DDP-516 фирмы Honey-well с памятью объемом 12К были созданы четыре первых узла сети ARPANET: Калифорнийский университет в Лос-Анжелесе (University of California Los Angeles - UCLA), Стэнфордский НИИ (Stanford Research Institute - SRI), университет Санта-Барбары и университет штата Юта. Компания AT&T предоставила для этой сети линии со скоростью передачи 50 Кбит/с. Первые пакеты данных были переданы Чарли Клайном (Charley Kline) из UCLA, когда он пытался связаться с компьютером SRI. Первая попытка 29 октября 1969 г. закончилась аварийным отказом системы во время ввода буквы G из слова LOGIN. Пикантность ситуации заключалась в том, что ARPANET определялась как полностью отказоустойчивая компьютерная сеть с распределением вычислительной мощности и резервированием устройств коммутации данных и компьютерных линий связи, способная выдержать ядерный удар. Тогда же первым проектом документа RFC (Request for Comments) «Программное обеспечение рабочих станций (hosts)» было положено начало стандартам Интернет.

Первая публикация, относящаяся к сети Интернет, появилась в 1970 году и была посвящена протоколу взаимодействия рабочих станций в составе сети ARPANET: Ч.Кар, С.Крокер, В.Серф. «Протокол связи рабочих станций в сети ARPA».

В 1971 году уже имеется 15 узлов (23 рабочие станции), и Рей Момлинсон изобретает программу электронной почты для передачи сообщений по распределенной сети. Оригинальная программа была создана на базе двух программ: программы внутримашинной электронной почты (SENDMSG) и экспериментальной программы пересылки файлов (CPYNET). Из клавиш пунктуации на телетайпе Model 33 производства Tomlinson в марте 1972 г. выбран знак @ в его значении «в».

Докторская диссертация Боба Меткафа из Гарварда наметила идею сети Ethernet. Эта идея была проверена на компьютерах Alto производства Xerox PARC, и первая сеть Ethernet получила в мае 1973 г. название Alto Aloha System. А число пользователей ARPANET к марту 1973 достигло 2000. Тогда же в Мичиганском университете создается сеть Merit на базе протокола Х.25, а в Стэнфордском университете начинается разработка набора протоколов, которые должны обеспечивать взаимодействие компьютеров, включённых в сеть ARPANET.

В мае 1974 года Винт Серф из Стэнфорда и Боб Кан (Vint Cerf, Bob Kahn) из агентства перспективных научных проектов Министерства обороны США опубликовали в журнале «IEEE Transactions on Communications» статью «A Protocol for Packet Network Intercommunication» со спецификацией протокола TCP, ставшей вскоре основой Интернет. Об истории этой публикации рассказывается в колонке редактора журнала «Сети и системы связи» (№11, 1999). Серф и Кан решали, чье имя поставить первым в спецификации протокола TCP, и бросили монетку. Первым оказался Винсент Серф, и именно он, со временем, стал известен широкой публике, занял должность вице-президента MCI и получил признание как один из основателей сети Интернет.

Тогда же появляется первый список адресов электронной почты - MsgGroup. Самым популярным неофициальным списком становится список любителей научной фантастики - SF-Lovers. Спустя полтора года разрабатывается спецификация электронной почты (RFC 733). В 1976 году в лаборатории Александра Белла (Bell Laboratories) корпорации AT&T разрабатывается протокол UUCP (Копирование Unix-Unix), который начинает распространяться год спустя вместе с операционной системой UNIX.

В 1978 году протокол TCP разделяется на протоколы TCP и IP, а изложенная в статье Серфа и Кана концепция получает название TCP/IP. Работа над концепцией была завершена в 1980 году, а в 1983 году управление Минобороны США утвердило новый набор компьютерных протоколов в качестве стандарта для ARPANET, вместо протокола NCP (Network Control Protocol), использовавшегося с 1970 года. Чтобы поощрить переход колледжей и университетов на технологию TCP/IP, силами ARPA был облегчен процесс внедрения операционной системы Berkeley UNIX, реализующей протоколы TCP/IP. Этот шаг привел к формированию одного из первых определений понятия «Интернет» как совокупности соединенных между собой сетей, в частности, сетей с использованием стека протоколов TCP/IP, а понятия «Интернет» как совокупности сетей, реализованных на базе технологии TCP/IP.

Сама же ARPANET в конце 1983 года разделилась на две сети:

DARPANET (оборонная сеть) и MILNET (военная сеть). Несмотря на то, что ARPANET официально прекратила своё существование в июне 1990 года, сеть Интернет уцелела. Более того, протокол TCP/IP был усовершенствован и стал чрезвычайно популярен в сферах образования, научно-исследовательских разработок, в коммерции и во многих, многих других, порой неожиданных применениях, примером чему является эта книга. В 1984 году вводится система доменных имен (DNS). Она увязывает IP-адреса с именами компьютеров в Интернет. И в том же 1984 году Уильям Гибсон, в романе «Necromancer», вводит термин «гиперпространство». Количество рабочих станций, подключенных к сети, достигает 1000, а к 1987 году их становится уже 10000.

Национальный фонд Науки США, с целью обеспечить взаимодействие своих суперкомпьютерных центров и доступ к Интернет, создает в 1985 году сеть NSFNET (Сеть Национального фонда науки). NSFNET - это высокоскоростная магистральная сеть, состоящая из двухточечных линий связи в узловой конфигурации. Сеть была полностью развёрнута в 1988 году и первоначально работала на скорости 56 Кбит/с. В 1986 году NSFNET организовала ряд региональных сетей, объединённых в магистральную сеть. Позже основные части сети NSFNET были модернизированы для работы на скоростях до ОС-3 (155 Мбит/с) и выше. NSFNET официально прекратила своё существование в 1995 году, и на смену ей пришла сеть MERIT. Первоначально, MERIT была сетью масштаба штата, эксплуатируемой Университетом Мичигана, и региональным компонентом как сети NSFNET, так и Интернет.

В 1988 году Ажако Ойкаринен (Jarkko Oikari-nen) разрабатывает технологию Internet Relay Chat (IRC). Тогда же появился новый термин «хакер», а 1 ноября 1988 года вирусная программа «Internet Worm» сумела повредить более 6000 рабочих станций.

В 1989 году количество рабочих станций достигает 100000 штук, а в 1990 году - 300000. Появляется первый коммерческий поставщик услуг сети Интернет, а год спустя Тим Бернерс-Ли (Tim Ber-ners-Lee) из организации CERN, Швейцария, выпускает свою разработку Всемирной Паутины - World Wide Web (WWW). Вскоре программы просмотра WWW стали неотъемлемой частью повседневной жизни, и началась эра бизнеса в сети Интернет. В 1992 году количество рабочих станций превысило 1 миллион, а в 1993 году в Интернет появился адрес www.whitehouse.gov и электронная почта president@whitehouse.gov Б. Клинтона. Понадобилось менее 2 лет, чтобы в Интернет появились адреса правительств большинства других стран, включая, например, адрес Ватикана - www.vatican.va. В том же 1995 году коллектив программистов Sun Microsystems под руководством Джеймса Гозлинга (James Gosling) создали язык программирования Java, радикально изменивший сам смысл программирования Интернет-приложений.

В 1996 году сети Интернет исполнилось 25 лет, а число рабочих станций, подключенных к Интернет, составило 10 миллионов.

К концу 2000 года насчитывалось около 300 миллионов пользователей Интернет. Количество рабочих станций сейчас возрастает примерно на 80 процентов за год. В первой главе приведен рисунок, на котором авторы взяли на себя смелость показать, что приблизительно к 2004 году Интернет разрастется до размеров современной телефонной сети.


^ 4.2 Стандарты в сфере Интернет

Из материала предыдущего параграфа видно, что Интернет - самая необычная из всех сетей. Практически любой объект может подключиться к Интернет, чтобы предложить ресурсы, или для доступа к ним. По Интернет может гулять практически любой вид информации без каких-либо ограничений. Отсутствует центральный орган, который регулировал бы работу сети Интернет, хотя существуют организации, устанавливающие определённые фундаментальные принципы и руководящие работой сети. Сеть Интернет по своей философии является автономной и даже анархической; в конечном счёте, в этом и её сила, и её слабость.

Существует ряд организаций, которые участвуют в различных мероприятиях по администрированию и поддержке Интернет. В контексте данной книги среди этих организаций следует упомянуть CERT, IАВ, IETF, IESG, IRTF, ICANN и The Internet Society (Общество Интернет, известное также как ISOC).

^ Группа реагирования на нарушения компьютерной защиты (CERT) - группа экспертов Университета Карнеги-Меллона, которая отвечает за вопросы, связанные с нарушением компьютерной защиты в сети Интернет. CERT была образована ARPA в ноябре 1998 года как реакция на ряд инцидентов, связанных с появлением вирусных программ самотиражирования.

^ Совет по архитектуре Интернет (IAB), первоначально - Координационный совет сети Интернет - добровольный орган, имеющий в своем составе 12 экспертов, которые используют ресурсы своих компаний-спонсоров для того, чтобы способствовать интересам Интернет. IAB контролирует и координирует деятельность двух проблемных (рабочих) групп: IETF и IRTF. В совокупности, эти организации вырабатывают техническую политику и направления работы.

^ Инженерная проблемная группа Интернет (IETF) определяет, устанавливает приоритеты и вырабатывает решения по краткосрочным вопросам и проблемам, включая протоколы, архитектуру и эксплуатацию. Предложенные стандарты публикуются в Интернет в виде Запросов комментариев и предложений (RFC). После выработки окончательной версии стандарта, он поступает на утверждение в группу управления инженеров Интернет (IESG).

Научно-исследовательская проблемная группа Интернет (IRTF) занимается долгосрочными вопросами, включая схемы адресации и технологии.

^ Корпорация Интернет по присвоению имен и номеров (ICANN) -некоммерческая организация, образованная в 1999 году. ICANN была создана для того, чтобы взять на себя полномочия федерального органа IANA по распределению общеизвестных номеров портов, управлению IP-адресами и присвоению имён доменов. Номера портов представляют собой 16-битовые величины в диапазоне от 0 до 65 536. Общеизвестные порты нумеруются числами из диапазона от О до 1 023 и используются системными процессами или прикладными программами. Примерами общеизвестных портов являются: порт 25 для протокола SMTP (Простого протокола пересылки почты), порт 80 для протокола HTTP (Гипертекстового транспортного протокола) и порт 107 для Дистанционной службы Telnet. В среде клиент/сервер Интернет на базе протокола TCP/IP, сервер назначает порты с учётом протокола прикладного уровня, который выполняется на клиентском уровне. ICANN также присваивает IP-адреса организациям, желающим поместить компьютеры в Интернет; количество адресов зависит от размера организации.

^ Общество Интернет (ISOC) -добровольная организация, которая представляет собой некоторую формальную структуру для администрирования Интернет. Общество Интернет предоставило официальные полномочия IESG принимать решения по стандартам.


4.3 Адресация

Интернет- это совокупность тысяч компьютеров, объединенных в сети, которые, в свою очередь, соединены между собой посредством маршрутизаторов. Для организации линий связи используются практически все возможные технологии - от коммутируемых телефонных соединений до самых современных оптических систем передачи. Активно используются и спутниковые линии связи.

Сеть Интернет имеет иерархическую структуру. Этот подход является эффективным потому, что позволяет идентифицировать компоненты Интернет посредством адресов, также имеющих иерархическую структуру. Например, в телефонной сети полный номер абонента содержит такие составляющие как код страны, код зоны, номер АТС, номер абонента в АТС. Аналогичная концепция была принята и в сети Интернет: старшие биты адреса идентифицируют сеть, в которой находится рабочая станция, а младшие - расположение рабочей станции в этой сети.

Подавляющее большинство сетей сейчас использует протокол ^ IPv4 (Интернет - протокол версии 4), хотя уже разработана шестая версия протокола IP, которая применяется в некоторых недавно созданных крупных сетях. Схема адресации протокола IPv4, который был определён в RFC 791, предусматривает размер адресного поля 32 бита, что даёт 232 (или 4 294 967 296) потенциальных адресов.

IP-адрес любой рабочей станции состоит из адреса сети и адреса компьютера в этой сети. В архитектуре адресации предусмотрено пять форматов адреса, каждый из которых начинается с одного, двух, трёх или четырёх битов, идентифицирующих класс сети (класс А, В, С, D или Е). Область сетевого идентификатора (Network ID) определяет конкретную сеть в классе, а область Host ID идентифицирует конкретный компьютер в сети1.

• Адреса класса А идентифицируются начальным битом 0. Следующие семь битов определяют конкретную сеть (число возможных значений - 128 или 27). Остальные 24 бита определяют конкретный компьютер в сети, при возможном количестве компьютеров -1 б 777 216 (224). Адреса класса А предназначены для очень крупных сетей с большим количеством рабочих станций. Первые адреса класса А были присвоены таким компаниям как IBM Corporation, Hewlett-Packard Company, Ford Motor Company и др.

• Адреса класса В идентифицируются начальной двухбитовой двоичной последовательностью 10. Следующие 14 битов определяют сеть, при возможном количестве сетей 16 384 (214). Остальные 16 битов определяют конкретный компьютер, с возможным количеством компьютеров - 65 536 (216).

• Адреса класса С идентифицируются начальной трёхбитовой последовательностью 110. Следующие 21 бит определяют сеть, с возможным количеством сетей - 2 б97 152. Остальные 8 битов определяют конкретный компьютер в сети, с возможным количеством компьютеров - 256 (28). Большинство организаций имеют адреса класса С.

• Адреса класса D идентифицируются начальной четырёхбитовой последовательностью 1110. Адреса этого класса предназначены для групповой передачи, и оставшиеся 28 битов определяют групповой адрес.

• Адреса класса Е идентифицируются начальной четырёхбитовой двоичной последовательностью 1111. Адреса этого класса зарезервированы для будущего использования.

Способ, при помощи которого записываются все IP-адреса, называется пунктирной десятичной системой обозначений. Каждое 32-битовое адресное поле разделено на четыре поля в виде ххх.ххх.ххх.ххх, и каждому полю даётся десятичное числовое значение от 0 до 255, выраженное в виде одного октета (28 = 256 или 0-255). Адреса класса А начинаются с 1-127, адреса класса В - с 128-191, и адреса класса С - с 192-223.

1 Строго говоря, адрес идентифицирует только сетевой интерфейс рабочей станции, т.е. точку подключения к сети.


Как отмечалось выше, корпорация Интернет по присвоению имен и номеров (ICANN) присваивает IP-адреса организациям, желающим подключить компьютеры к сети Интернет. Класс IP-адреса и, следовательно, количество возможных адресов компьютеров зависит от размеров организации. Организация, которой присвоены номера, может затем переназначить их на основе либо статической, либо динамической адресации. Статическая адресация означает жесткую привязку IP-адреса к конкретному компьютеру. При динамической адресации компьютеру присваивается доступный IP-адрес всякий раз при установлении соединения. Например, поставщик услуг Интернет может иметь один или несколько адресных блоков класса С. При ограниченном количестве доступных IP-адресов поставщик присваивает IP-адрес компьютеру пользователя всякий раз, когда пользователь коммутируемой линии получает к нему доступ, чтобы установить соединение с Интернет. После завершения соединения этот IP-адрес может присваиваться другим пользователям. Динамическое присвоение IP-адресов обычно осуществляется через маршрутизатор, работающий по протоколу DHCP( Протокол динамической конфигурации рабочей станции). Наоборот, если доступ к поставщику осуществляется по xDSL, поставщик услуг Интернет обычно присваивает пользователю один или более статических IP-адресов. Так как соединение по xDSL всегда активизировано, динамическая адресация для этой категории пользователей неприменима.

Как уже отмечалось, протокол IP версии 4 предусматривает размер адресного поля 32 бита, что даёт 232 (или 4 294 967 296) потенциальных адресов. Однако возрастающая популярность технологии TCP/IP привела к истощению плана нумерации протокола IPv4 аналогично тому, как популярность подключённых к телефонной сети факсимильных аппаратов, сотовых телефонов, пейджеров, компьютерных модемов и даже копировальных машин привела к истощению плана нумерации ТфОП. Дополнительной проблемой является тот факт, что очень большое количество адресов класса А и класса В было выделено крупным организациям, которые в них на самом деле не нуждались. В связи с тем, что фактически использовался только небольшой процент адресов, огромное количество доступных адресов было потеряно. Это напоминает расточительность, с которой выделялись телефонные номера в городских телефонных сетях (за исключением МГТС) блоками по 10 000 номеров, зачастую вне зависимости оттого, сколько их требовалось реально - 100 или 1000.

Чтобы смягчить, по крайней мере - частично, эту проблему, комитет IETF в начале 90-х годов опубликовал в документах RFC 1518 и RFC 1519 положение о бесклассовой междоменной маршрутизации (CfDR). Технология CIDR построена на концепции суперсети (supernetting), состоящей из группы подсетей, каждой из которых присваивается адрес подсети. Но в целом совокупность подсетей выглядит, как единая сеть с одним префиксом (например, для Европы выделены префиксы 194 и 195). Благодаря технологии CIDR, сокращается число маршрутов и, следовательно, размер и сложность таблиц маршрутизации, которые должны поддерживать коммутаторы и маршрутизаторы. Несмотря на то, что CIDR привносит известную гибкость в схему IP-адресации, она, тем не менее, не решает главной проблемы - недостатка IP-адресов в обозримом будущем.

Протокол IPv6 решает этот вопрос путём расширения адресного поля до 128 битов, обеспечивая тем самым 2128 потенциальных адресов, ЧТО Составляет величину 340.282.366.920.938.463.463.374.607.431.768.211.456.

По расчётам Кристиана Хюйтема, такого адресного пространства достаточно, чтобы присвоить по 32 адреса каждому квадратному дюйму суши на Земле - что, в принципе, должно решить проблему. С учётом предложений о присвоении IP-адресов сетевым кофеваркам, холодильникам, системам обогрева и кондиционирования, автомобилям и вообще всем мыслимым устройствам, ценность и рентабельность протокола IPv6 возрастёт ещё больше. Протокол IPv6 обладает также дополнительными функциональными возможностями, хотя для их реализации потребуется модернизация существующего сетевого программного обеспечения.

Но вернемся к протоколу IPv4. Компьютер, подключенный к сети Интернет, кроме IP-адреса может идентифицироваться доменным именем. Сеть Интернет разделена на логические области (домены). Адреса в системе имён доменов (DNS), администрирование которых лежит на ICANN, имеют стандартный вид, представляющий собой последовательность имен, разделенных точками, например:

компьютер, организация, домен. Подавляющее большинство из 45 миллионов (или около того) зарегистрированных доменов верхнего уровня (TLD) является коммерческими. Домены TLD, которые идентифицируются как суффикс доменного имени, бывают двух типов: обобщённые домены верхнего уровня (net, corn, org) и коды стран (ru, fi, ua).

Сам же ICANN получил от IANA полномочия по администрированию Интернет-адресов. При администрировании со стороны IANA, ответственность за присвоение TLD возлагалась на центр сетевой информации Интернет(InterNIC) компании Network Solutions Inc. В течение первых десятков лет существования Интернет, присвоение доменов было бесплатным. Позже, InterNIC начал брать плату за домены .сот в размере $70 за первые два года и $35 за каждый следующий год. В 1999 году InterNIC потерял монопольное право на присвоение доменов, так как в апреле 1999 года были утверждены четыре конкурентные организации на испытательный срок до 25 июня 1999 года. ICANN также объявил, что ряд других заявителей удовлетворяют его критериям аккредитации, и они будут аккредитованы по окончании испытательного срока.

Имена доменов гораздо легче запомнить и ввести, но необходимо преобразование для перевода имён доменов в IP-адреса; это необходимо для того, чтобы разные маршрутизаторы и коммутаторы могли направить информацию в нужный пункт назначения.


^ 4.4 Уровни архитектуры Интернет

Функционирование сети Интернет основано на сложном комплексе протоколов, обеспечивающих выполнение различных функций - от непосредственно передачи данных до управления конфигурацией оборудования сети.

Для того, чтобы классифицировать различные протоколы и понять их место в общей структуре технологии межсетевого взаимодействия, удобно воспользоваться так называемым «многоуровневым представлением сетевых протоколов». В рамках такого представления подразумевается, что протоколы более высокого уровня используют функции протоколов более низкого уровня. Классической, хотя и представляющей сейчас, скорее, академический интерес, моделью такого рода является семиуровневая модель взаимодействия открытых систем (Open Systems Interconnection - OSI), разработанная ITU-T в рамках неудавшейся попытки создать международный стандарт семейства сетевых протоколов. Вместе с тем, некоторые результаты данного проекта являются хорошим материалом для учебников, чем мы и воспользуемся.

Рис. 4.1 иллюстрирует взаимоотношения архитектуры Интернет, определенной ARPA, с моделью OSI, а также поясняет функции каждого из уровней.

Архитектура Интернет была разработана агентством ARPA для соединения компьютеров в государственных, военных, академических и других организациях, в основном, на территории США, что обусловило ее практический характер. С другой стороны, модель OSI охватывала более широкий круг вопросов передачи информации, и в ее рамках не был конкретизирован тип взаимодействующих систем, что породило более «дробное» разбиение на уровни. Однако между той и другой архитектурой имеется очевидное соответствие.

Первый уровень модели ARPA - уровень сетевого интерфейса -поддерживает физический перенос информации между устройствами в сети, т.е. объединяет функции двух уровней OSI - физического и звена данных. Уровень сетевого интерфейса обеспечивает физическое соединение со средой передачи, обеспечивает, если это необходимо, разрешение конфликтов, возникающих в процессе организации доступа к среде (например, используя технологию CSMA/CD в сети Ethernet), упаковывает данные в пакеты. Пакет2 -это протокольная единица, которая содержит информацию верхних уровней, и служебные поля (аппаратные адреса, порядковые номера, подтверждения и т.д.), необходимые для функционирования протоколов этого уровня.



Рис. 4.1 Уровни модели OSI и архитектуры Интернет


Сетевой уровень отвечает за передачу информации, упакованной в дейтаграммы (datagram), от одного компьютера к другому. Дейтаграмма - это протокольная единица, которой оперируют протоколы семейства TCP/IP. Она содержит адресную информацию, необходимую для переноса дейтаграммы через сеть, а не только в рамках одного звена данных. Понятие дейтаграммы никак не связано с физическими характеристиками сетей и каналов связи, что подчеркивает независимость протоколов TCP/IP от аппаратуры. Основным протоколом, реализующим функции сетевого уровня, является протокол IP. Этот протокол отвечает за маршрутизацию, фрагментацию и сборку дейтаграмм в рабочей станции.

Обмен между сетевыми узлами информацией о состоянии сети, необходимой для формирования оптимальных маршрутов следования дейтаграмм, обеспечивают протоколы маршрутизации - RIP, EGP, BGP, OSPF и др.

2 Иногда при рассмотрении протоколов этого уровня (Ethernet, HDLC) употребляется также термин кадр (frame).


Протокол преобразования адресов (Address Resolution Protocol -ARP) преобразует IP-адреса в адреса, использующиеся в локальных сетях (например, Ethernet). На некоторых рисунках, изображающих архитектуру и взаимосвязь протоколов, ARP размещают ниже IP, чтобы показать его тесную взаимосвязь с Уровнем Сетевого Интерфейса.

Протокол контрольных сообщений - Internet Control Message Protocol (ICMP) предоставляет возможность программному обеспечению рабочей станции или маршрутизатора обмениваться информацией о проблемах маршрутизации пакетов с другими устройствами в сети. Протокол ICMP - необходимая часть реализации стека протоколов TCP/IP.

Когда дейтаграмма проходит по сети, она может быть потеряна или искажена. Транспортный уровень решает эту проблему и обеспечивает надежную передачу информации от источника к приемнику. Кроме того, реализации протоколов этого уровня образуют универсальный интерфейс для приложений, обеспечивающий доступ к услугам сетевого уровня. Наиболее важными протоколами транспортного уровня являются TCP и UDP.

Конечные пользователи взаимодействуют с компьютером на уровне приложений. Разработано множество протоколов, используемых соответствующими приложениями. Например, приложения передачи файлов используют протокол FTP. Web-приложения используют протокол HTTP. Оба протокола FTP и HTTP базируются на протоколе TCP. Приложение Telnet обеспечивает подключение удаленных терминалов. Протокол эксплуатационного управления сетью SNMP позволяет управлять конфигурацией оборудования в сети и собирать информацию об его функционировании, в том числе, и о аварийных ситуациях. Приложения, созданные для организации речевой связи и видеосвязи, используют протокол RТР для передачи информации, чувствительной к задержкам. Х Window - популярный протокол для подключения к интеллектуальному графическому терминалу. Этот список можно продолжать практически бесконечно.

Таким образом, IP-сети используют для передачи информации разнообразные протоколы, причем функции протоколов не зависят оттого, какие данные передаются. Иными словами, IP, ARP, ICMP, TCP, UDP и другие элементы стека протоколов TCP/IP предоставляют универсальные средства передачи информации, какой бы она ни была природы (файл по FTP, Web - страница или аудиоданные).


^ 4.5 Протокол IP версии 4

В качестве основного протокола сетевого уровня в стеке протоколов TCP/IP используется протокол IP, который изначально проектировался как протокол передачи пакетов в сетях, состоящих из большого количества локальных сетей. Поэтому протокол IP хорошо работает в сетях со сложной топологией, рационально используя наличие в них подсистем и экономно расходуя пропускную способность низкоскоростных линий связи. Протокол IP организует пакетную передачу информации от узла к узлу IP-сети, не используя процедур установления соединения между источником и приемником информации. Кроме того, Internet Protocol является дейтаграммным протоколом: при передаче информации по протоколу IP каждый пакет передается от узла к узлу и обрабатывается в узлах независимо от других пакетов.

Протокол IP не обеспечивает надежность доставки информации, так как он не имеет механизмов повторной передачи. Он не имеет также и механизмов управления потоком данных (flow-control). Дейтаграммы могут быть потеряны, размножены, или получены не в том порядке, в каком были переданы.

Протокол IP базируется на протоколе уровня звена данных, который обеспечивает передачу данных по физической среде. Программный модуль, реализующий протокол IP, определяет маршрут переноса данных по сети до точки назначения, или до промежуточного маршрутизатора, где дейтаграмма извлекается из кадра локальной сети и направляется в канал, который соответствует выбранному маршруту. Дейтаграммы могут разбиваться на более мелкие фрагменты, или, наоборот, несколько дейтаграмм могут объединяться в одну на стыке разных сетей, если эти сети поддерживают передачу дейтаграмм разной длины.

В каждой рабочей станции, подключенной к IP-сети, обработка IP-дейтаграмм, производится по одним и тем же правилам адресации, фрагментации и маршрутизации. Рабочие станции рассматривают каждую дейтаграмму как независимую протокольную единицу, так как протокол IP не использует логических соединений или каких-либо других средств идентификации виртуальных каналов3.

На рис. 4.2 показана структура протокольной единицы протокола IP-дейтаграммы.

Поле версия (version) идентифицирует используемую версию протокола IP, в рассматриваемом случае указывается версия 4. Необходимость этого поля объясняется тем, что в переходный период в сети могут использоваться протоколы разных версий.

^ Поле длина заголовка (header length), состоящее из 4 битов, определяет длину заголовка, причем длина указывается как количество блоков размером 32 бита. В типичном случае значение этого поля равно 5.

3 При рассмотрении протокола IP версии 6 и вопросов обеспечения качества обслуживания, мы увидим некоторые отклонения от этого принципа.


Версия (Version)




Длина заголовка

Тип обслуживания

Общая длина

Идентификатор фрагмента

Флаги




Смещение фрагмента

Время жизни

Протокол

Контрольная сумма заголовка

Адрес отправителя

Адрес получателя

Опциональные поля и заполнение

Данные


Рис. 4.2 IP-дейтаграмма


Поле тип обслуживания (Type of Service) содержит информацию, которая бывает нужна при поддержке сетью разных классов обслуживания. Использование этого поля в Интернет будет возрастать по мере роста в IP-сетях возможностей передачи мультимедийного трафика с задаваемыми параметрами качества обслуживания. Более подробную информацию на эту тему можно найти в главе 10.

Поле общая длина (Total Length) определяет общую длину дейтаграммы в октетах (байтах), включая заголовок и полезную нагрузку. Максимальная длина дейтаграммы составляет 65535 октетов, однако, на практике, все рабочие станции и маршрутизаторы работают с длинами, не превышающими 576 байтов. Это объясняется тем, что при превышении указанной длины, снижается эффективность работы сети.

Протокол IP использует 3 поля заголовка для управления фрагментацией/сборкой дейтаграмм. Как уже упоминалось, фрагментация необходима потому, что разные сети, по которым передаются дейтаграммы, имеют разные максимальные размеры кадра.

^ Идентификатор фрагмента (Identifier) обозначает все фрагменты одной дейтаграммы, что необходимо для ее успешной сборки на приемной стороне.

Поле флагов (Flags) обеспечивает возможность фрагментации дейтаграмм и, при использовании фрагментации, позволяет идентифицировать последний фрагмент дейтаграммы.

Поле смещение фрагмента (Fragment Offset) определяет положение фрагмента относительно исходной дейтаграммы в единицах, равных 8 октетам.

Поле время жизни (TTL - Time To Live) используется для ограничения времени, в течение которого дейтаграмма находится в сети. Каждый маршрутизатор сети должен уменьшать значение этого поля на единицу, и отбрасывать дейтаграмму, если поле TTL приняло нулевое значение. Наличие поля TTL ограничивает возможность бесконечной циркуляции дейтаграммы по сети, например, в случае, если по какой-либо причине маршрут, по которому она следует, оказался «закольцованным».

Поле протокол (Protocol) идентифицирует протокол верхнего уровня (TCP, UDP и т.д.).

Поле контрольная сумма заголовка (Header Checksum) обеспечивает возможность контроля ошибок в заголовке. Алгоритм подсчета контрольной суммы весьма прост, поскольку обычно протоколы нижнего уровня имеют более развитые средства контроля ошибок.

IP-дейтаграммы содержат в заголовке два адреса - отправителя (Source) и получателя (Destination), которые не меняются на протяжении всей жизни дейтаграммы.

Подробнее структура и функции протокола IPv4 описаны в RFC-791.


^ 4.6 Протокол IP версии 6

В начале 90-х годов интенсивное коммерческое использование Интернет привело к резкому росту количества узлов сети, изменению характеристик трафика и ужесточению требований к качеству обслуживания. Сообщество Интернети весь телекоммуникационный мир начали решать новые задачи путем внедрения новых протоколов в рамках стека протоколов TCP/IP, таких как протокол резервирования ресурсов RSVP, MPLS и т.д. Однако стало ясно, что только таким путем развивать технологию нельзя - нужно идти на модернизацию святая святых стека - протокола IP, так как некоторые проблемы нельзя решить без изменения формата заголовка дейтаграмм и логики его обработки.

Как уже отмечалось выше, самой насущной проблемой становится нехватка адресного пространства, что требует изменения формата адреса.

Другой проблемой является недостаточная масштабируемость процедуры маршрутизации - основы IP-сетей. Быстрый рост сети вызывает перегрузку маршрутизаторов, которые уже сегодня вынуждены поддерживать таблицы маршрутизации с десятками и сотнями тысяч записей, а также решать проблемы фрагментации пакетов. Облегчить работу маршрутизаторов можно, в частности, путем модернизации протокола IP.

Комитет IETF намеревается решить существующие проблемы с помощью межсетевого протокола нового поколения - IPng, известного также как IPv6.

Наряду с вводом новых функций непосредственно в протокол IP, целесообразно обеспечить более тесное взаимодействие его с новыми протоколами, путем введения в заголовок пакета новых полей. Например, работу механизмов обеспечения гарантированного качества обслуживания облегчает внесение в заголовок метки потока, а работу IPSec - внесение в заголовок поля аутентификации.

В результате было решено подвергнуть протокол IP модернизации, преследуя следующие основные цели:

• создание новой расширенной схемы адресации;

• улучшение масштабируемости сетей за счет сокращения функций магистральных маршрутизаторов;

• обеспечение защиты данных.

Работы по модернизации протокола IP начались в 1992 году, когда было предложено несколько альтернативных вариантов спецификаций. С тех пор в рамках IETF была проделана огромная работа, в результате которой в августе 1998 года были приняты окончательные версии стандартов, определяющих как общую архитектуру IPv6 (RFC 2460 «Internet Protocol, Version 6 (IPv6) Specification»), так и отдельные компоненты данной технологии (RFC 2373 «IP Version 6 Addressing Architecture»).

Итак, рассмотрим более подробно особенности IPv6.

Расширение адресного пространства. Протокол IP решает потенциальную проблему нехватки адресов за счет расширения адреса до 128 битов. Однако такое существенное увеличение длины адреса было сделано, в значительной ст
еще рефераты
Еще работы по разное