Реферат: Теоретические основы радиотехники












УТВЕРЖДЕНА
Министерством образования

Республики Беларусь

16.01.2006.
Регистрационный № ТД-I.008/тип.
ТЕОРЕТИЧЕСКИЕ ОСНОВЫ РАДИОТЕХНИКИ


Учебная программа для высших учебных заведений

по специальностям 1-39 01 03 Радиоинформатика,

1- 39 01 04 Радиоэлектронная защита информации


СОСТАВИТЕЛЬ:

А.Н. Надольский, доцент кафедры радиотехнических устройств Учреждения образования «Белорусский государственный университет информатики и радиоэлектроники», кандидат технических наук, доцент


РЕЦЕНЗЕНТЫ:

Н.И. Шатило, заведующий кафедрой телекоммуникационных систем Учреждения образования «Высший государственный колледж связи», кандидат технических наук, доцент;

А.А. Арчаков, главный метролог Белорусского государственного института метрологии, кандидат технических наук, старший научный сотрудник


^ РЕКОМЕНДОВАНО К УТВЕРЖДЕНИЮ В КАЧЕСТВЕ ТИПОВОЙ:

Кафедрой радиотехнических устройств Учреждения образования «Белорусский государственный университет информатики и радиоэлектроники» (протокол № 7 от 24.01.2005.);

Кафедрой радиотехнических систем Учреждения образования «Белорусский государственный университет информатики и радиоэлектроники» (протокол № 3 от 21.10. 2005.);

Научно-методическим советом Учреждения образования «Белорусский государственный университет информатики и радиоэлектроники» (протокол № 2 от 23.11.2005.)


СОГЛАСОВАНА:

Председателем Учебно-методическим объединением вузов Республики Беларусь по образованию в области информатики и радиоэлектроники;

Начальником Управлением высшего и среднего специального образования Министерства образования Республики Беларусь;

Первым проректором Государственным учреждением образования «Республиканский институт высшей школы»


^ ПОЯСНИТЕЛЬНАЯ ЗАПИСКА


«Теоретические основы радиотехники» - это одна из дисциплин, определяющая своим содержанием профессиональную подготовку инженеров по специальностям 1-39 01 03 Радиоинформатика, 1- 39 01 04 Радиоэлектронная защита информации. Цель дисциплины состоит в изучении теоретических основ современной радиотехники, связанных с анализом радиотехнических сигналов и устройств, использовании полученных знаний в качестве основы при изучении последующих радиотехнических дисциплин.

Дисциплина «Теоретические основы радиотехники» предусматривает изучение теории детерминированных и случайных радиосигналов, принципов их получения и преобразования в радиотехнических устройствах, методов анализа линейных, нелинейных и параметрических цепей, схемного построения типовых устройств канала связи и других информационных систем, вопросов оптимальной и цифровой обработки сигналов. В дисциплине используются современные математические методы решения задач анализа радиотехнических сигналов и цепей. Задача дисциплины - сформировать такой объем теоретических и физических знаний, которые обеспечат понимание и последующее изучение основных проблем синтеза и анализа сложных радиотехнических систем, оценки их качества по различным критериям.

Типовая программа по дисциплине «Теоретические основы радиотехники» рассчитана на объем 170 учебных часов. Примерное распределение учебных часов по видам занятий: лекций - 102 часа, лабораторных и практических занятий - 68 часов.
^ В результате изучения дисциплины студенты должны
знать:

- математические модели сигналов, методы описания и анализа их свойств;

- методы анализа линейных, нелинейных и параметрических цепей;

- схемное построение и принципы работы типовых устройств радиотехнического канала связи;

- основные положения статистического анализа случайных сигналов;

- методы анализа процессов линейного и нелинейного преобразований случайных сигналов;

- элементы теории оптимальной линейной фильтрации;

- основы теории цифровой обработки сигналов;

уметь:

- классифицировать радиотехнические сигналы и устройства в системе различных показателей;

- решать задачи анализа сигналов и их преобразований с применением современного математического аппарата и ЭВМ;

- анализировать процесс функционирования радиотехнических устройств в различных режимах;

- синтезировать схемы оптимальных и цифровых фильтров;

- проводить экспериментальный анализ сигналов и процессов их обработки с использованием натурного моделирования и моделирования на ЭВМ, оформлять результаты экспериментов и формулировать соответствующие выводы;

приобрести навыки:

- решения задач спектрального и корреляционного анализа радиотехнических сигналов;

- применения ЭВМ для расчета спектральных и временных характеристик сигналов и основных параметров процесса их преобразований;

- проведения экспериментальных исследований радиотехнических сигналов и цепей.

Перечень дисциплин, на которых базируется дисциплина «Теоретические основы радиотехники»: высшая математика, теория вероятностей, физика, основы электротехники, электронные приборы, основы теории цепей.


^ СОДЕРЖАНИЕ ДИСЦИПЛИНЫ


ВВЕДЕНИЕ


Тематика дисциплины «Теоретические основы радиотехники», необходимость и особенности ее изучения, место в системе подготовки специалистов по радиоинформатике. Основные задачи радиотехники и области ее применения, тенденции развития. Назначение радиотехнических информационных систем, их структура, классификация, принципы функционирования. Классификация сигналов. Проблема помехоустойчивости. Развитие радиоэлектронной промышленности в Республике Беларусь.


Раздел 1. РАДИОТЕХНИЧЕСКИЕ СИГНАЛЫ


Тема 1.1. АНАЛИЗ ДЕТЕРМИНИРОВАННЫХ СИГНАЛОВ

Математические модели и основные характеристики детерминированных сигналов. Векторное представление сигналов. Ортогональные сигналы и обобщенный ряд Фурье. Погрешность аппроксимации рядом Фурье.

Понятие спектра сигнала, необходимость его использования. Гармонический спектральный анализ и синтез периодических сигналов. Тригонометрическое и комплексное представление спектра периодического сигнала. Распределение мощности в спектре периодического сигнала.

Спектральный анализ непериодических сигналов. Основные свойства преобразования Фурье. Распределение энергии в спектре непериодического сигнала. Соотношение между длительностью сигнала и шириной его спектра. Связь между спектрами периодического и непериодического сигналов. Спектры испытательных сигналов: сигналов, описываемых дельта функцией и единичной функцией, гармонического сигнала.

Корреляционный анализ детерминированных сигналов. Связь между корреляционной и спектральной характеристиками сигнала. Дискретизация и восстановление сигналов по теореме отсчетов (теореме Котельникова). Ряд Котельникова. Принципы временного уплотнения каналов связи.


^ Тема 1.2. МОДУЛИРОВАННЫЕ СИГНАЛЫ

Необходимость применения модулированных колебаний. Виды модуляции. Сигналы с амплитудной модуляцией. Векторное представление и спектры сигналов с амплитудной модуляцией. Энергетические соотношения. Балансная и однополосная амплитудные модуляции.

Угловая модуляция. Сигналы с частотной (ЧМ) и фазовой (ФМ) модуляциями. Векторное представление и спектры сигналов с ЧМ и ФМ. Энергетические соотношения. Сравнительный анализ амплитудной, частотной и фазовой модуляций. Радиоимпульс с частотной модуляцией, его свойства и основные характеристики.

Сигналы с импульсной, амплитудно-импульсной и импульсно-кодовой (цифровой) модуляциями. Методы модуляции, используемые для передачи дискретных данных по каналам связи вычислительных сетей.

Обобщенное представление модулированных колебаний в виде узкополосных сигналов. Огибающая, частота и фаза узкополосного сигнала. Аналитический сигнал и его свойства.


Раздел 2. ПРЕОБРАЗОВАНИЯ СИГНАЛОВ В ЛИНЕЙНЫХ РАДИОТЕХНИЧЕСКИХ ЦЕПЯХ


Тема 2.1. ЛИНЕЙНЫЕ РАДИОТЕХНИЧЕСКИЕ ЦЕПИ С ПОСТОЯННЫМИ ПАРАМЕТРАМИ

Классификация линейных цепей. Основные свойства и характеристики линейных цепей, методы их расчета и способы экспериментального определения. Устройства дифференцирования и интегрирования сигналов, их характеристики. Фильтры. Активные линейные цепи. Усилительные устройства, классификация и принцип работы.

Линейные радиотехнические цепи с обратной связью. Влияние обратной связи на характеристики устройств. Устойчивость линейных цепей с обратной связью. Критерии устойчивости Гурвица, Найквиста, Михайлова.


^ Тема 2.2. ПРОХОЖДЕНИЕ ДЕТЕРМИНИРОВАННЫХ СИГНАЛОВ ЧЕРЕЗ ЛИНЕЙНЫЕ ЦЕПИ

Постановка задачи и методы анализа линейных цепей. Временной и спектральный методы анализа, их сравнительная характеристика. Прохождение сигналов через дифференцирующую и интегрирующую цепи.

Особенности анализа прохождения широкополосных и узкополосных сигналов через узкополосные цепи. Упрощенный спектральный метод. Упрощенный временной метод (метод огибающей). Анализ прохождения сигналов с амплитудной и частотной модуляциями через резонансный усилитель.


Раздел 3. ПРЕОБРАЗОВАНИЯ СИГНАЛОВ В НЕЛИНЕЙНЫХ И ПАРАМЕТРИЧЕСКИХ РАДИОТЕХНИЧЕСКИХ ЦЕПЯХ


Тема 3.1. НЕЛИНЕЙНЫЕ РАДИОТЕХНИЧЕСКИЕ ЦЕПИ И МЕТОДЫ ИХ АНАЛИЗА

Нелинейные радиотехнические цепи, их свойства и основные характеристики. Методы аппроксимации характеристик нелинейных элементов. Преобразование спектра сигнала в цепи с нелинейным элементом при степенной и кусочно-линейной аппроксимации характеристик. Метод угла отсечки.

Метод фазовой плоскости. Фазовые траектории, особые точки, изоклины, предельные циклы. Анализ нелинейных устройств методом фазовой плоскости.


^ Тема 3.2. НЕЛИНЕЙНЫЕ ПРЕОБРАЗОВАНИЯ СИГНАЛОВ

Нелинейное резонансное усиление сигналов, режимы работы и параметры усилителей. Умножение частоты. Синтез идеального умножителя частоты. Резонансные и параметрические умножители частоты.

Получение амплитудно-модулированных колебаний. Амплитудные модуляторы на основе резонансных усилителей и аналоговых перемножителях напряжений. Балансный модулятор. Выпрямление колебаний. Принципы построения и функционирования выпрямителей. Детектирование сигналов с амплитудной модуляцией. Линейный и квадратичный детекторы. Синхронное детектирование.

Получение сигналов с угловой модуляцией. Частотные и фазовые модуляторы. Принцип работы цифрового частотного модулятора. Детектирование сигналов с угловой модуляцией. Частотное и фазовое детектирование.

Преобразование частоты. Балансные преобразователи частоты.

Принципы построения модуляторов и демодуляторов (модемов), используемых в каналах связи вычислительных сетей.


^ Тема 3.3. АВТОКОЛЕБАТЕЛЬНЫЕ СИСТЕМЫ

Структурная схема автогенератора. Необходимость положительной обратной связи. Возникновение колебаний и стационарный режим работы автогенератора. Баланс амплитуд и баланс фаз. "Мягкий" и "жесткий" режимы самовозбуждения. Квазилинейный метод анализа стационарного режима. Определение амплитуды и частоты генерируемых колебаний в стационарном режиме.

Нелинейное дифференциальное уравнение автогенератора. Решение уравнения в линейном приближении. Уравнение Ван-дер-Поля и метод его решения.

Схемы автогенераторов. LC и RC автогенераторы. Трехточечные автогенераторы с индуктивной и емкостной связями. Автогенераторы на приборах с отрицательным дифференциальным сопротивлением. Стабилизация частоты в автогенераторах.

Релаксационные автогенераторы. Мультивибраторы, одновибраторы.


^ Тема 3.4. ПАРАМЕТРИЧЕСКИЕ УСТРОЙСТВА

Особенности и разновидности параметрических цепей. Энергетические соотношения в цепи с нелинейной емкостью. Уравнения Мэнли-Роу.

Дифференциальное уравнение цепи с переменной емкостью. Уравнение Матье. Усиление сигналов в параметрических цепях. Одноконтурный и двухконтурный параметрические усилители. Параметрическое возбуждение колебаний. Емкостной и индуктивный параметроны.


Раздел 4. ПРЕОБРАЗОВАНИЯ СЛУЧАЙНЫХ СИГНАЛОВ


Тема 4.1. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ СИГНАЛОВ

Случайные сигналы и помехи в системах связи и управления. Вероятностно-статистический подход к описанию физических явлений в радиотехнике. Случайный процесс как модель случайного сигнала. Одномерные и многомерные законы распределения вероятностей случайных процессов. Числовые характеристики. Корреляционная функция как мера статистических связей. Понятие статистической зависимости случайных процессов.

Стационарные и нестационарные случайные процессы. Эргодические случайные процессы. Статистические характеристики стационарных и эргодических случайных процессов.

Спектральная плотность мощности случайного сигнала. Теорема Винера-Хинчина. Соотношение между шириной спектра и интервалом корреляции. Некоторые модели случайных сигналов: нормальный (гауссовский) шум, белый шум, узкополосный случайный процесс, их вероятностные характеристики.


^ Тема 4.2. ЛИНЕЙНЫЕ ПРЕОБРАЗОВАНИЯ СЛУЧАЙНЫХ СИГНАЛОВ

Постановка задачи анализа линейных цепей при воздействии случайных сигналов. Спектральная плотность мощности и корреляционная функция случайного сигнала на выходе линейной цепи. Числовые характеристики. Определение законов распределения случайных сигналов на выходе линейной цепи. Эффект нормализации случайных сигналов в узкополосных цепях.

Характеристики собственных шумов линейных цепей. Дифференцирование и интегрирование случайных процессов.


^ Тема 4.3. НЕЛИНЕЙНЫЕ ПРЕОБРАЗОВАНИЯ СЛУЧАЙНЫХ СИГНАЛОВ

Постановка задачи анализа нелинейных цепей при воздействии случайных сигналов. Методы определения законов распределения вероятностей случайных сигналов на выходе нелинейной безынерционной цепи. Спектральная плотность мощности и корреляционная функция выходного сигнала. Определение числовых характеристик.

Преобразование сигнала и шума в приемном тракте. Характеристики огибающей и фазы узкополосного случайного процесса. Воздействие узкополосного нормального шума на линейный и квадратичный амплитудные детекторы. Совместное воздействие гармонического колебания и нормального шума на амплитудный детектор. Помехоустойчивость амплитудных детекторов. Воздействие сигнала и нормального шума на частотный детектор.


^ Тема 4.4. ПРИНЦИПЫ ОПТИМАЛЬНОЙ ЛИНЕЙНОЙ ФИЛЬТРАЦИИ

Постановка задачи оптимальной линейной фильтрации сигналов на фоне помех. Коэффициент передачи согласованного фильтра и отношение сигнала к шуму на его выходе. Импульсная характеристика согласованного фильтра. Физическая осуществимость. Сигнал и помеха на выходе согласованного фильтра. Синтез согласованных фильтров для некоторых типовых сигналов. Формирование сигнала, сопряженного с заданным фильтром. Согласованная фильтрация заданного сигнала при "небелом" шуме.

Сущность корреляционного приема. Структурная схема корреляционного приемника. Квазиоптимальные фильтры.


Раздел 5. ЦИФРОВАЯ ОБРАБОТКА СИГНАЛОВ


Тема 5.1. ПРИНЦИПЫ ДИСКРЕТНОЙ ФИЛЬТРАЦИИ

Проблемы цифровой обработки сигналов. Общая структура цифрового фильтра. Спектр дискретизированного сигнала. Дискретное преобразование Фурье. Быстрое преобразование Фурье. Общие сведения о дискретном z - преобразовании. Дискретная свертка сигналов.


^ Тема 5.2. ЦИФРОВЫЕ ФИЛЬТРЫ

Принцип действия цифрового фильтра. Передаточная функция цифрового фильтра. Нерекурсивные и рекурсивные цифровые фильтры. Канонические схемы рекурсивных фильтров. Методы синтез цифровых фильтров.


^ ПРИМЕРНЫЙ ПЕРЕЧЕНЬ ТЕМ ПРАКТИЧЕСКИХ ЗАНЯТИЙ


1. Спектральный анализ периодических сигналов.

2. Спектральный анализ непериодических сигналов.

3. Корреляционный анализ сигналов.

4. Дискретизация и восстановление сигналов по теореме отсчетов (теореме Котельникова).

5. Прохождение сигналов через линейные устройства.

6. Нелинейные преобразования сигналов.

7. Расчет параметров амплитудно-модулированных колебаний.

8. Расчет параметров сигналов с частотной и фазовой модуляциями.

9. Расчет амплитуды и частоты колебаний, формируемых автогенераторами.

10. Расчет характеристик параметрических усилителей.

11. Расчет числовых характеристик стационарных и эргодических случайных сигналов.

12. Линейные преобразования случайных сигналов.

13. Нелинейные преобразования случайных сигналов.

14. Синтез согласованных фильтров для различных сигналов.

15. Синтез цифровых фильтров.


^ ПРИМЕРНЫЙ ПЕРЕЧЕНЬ ТЕМ ЛАБОРАТОРНЫХ РАБОТ


1. Исследование спектров периодических и непериодических сигналов.

2. Исследование спектров сигналов с амплитудной, частотной и фазовой модуляциями.

3. Корреляционный анализ детерминированных сигналов.

4. Исследование процессов дискретизации сигналов по теореме отсчетов.

5. Исследование прохождения сигналов через линейные устройства.

6. Исследование прохождения сигналов через нелинейные устройства.

7. Исследование процессов амплитудной модуляции.

8. Исследование процессов выпрямления и детектирования АМ колебаний.

9. Исследование генераторов гармонических колебаний.

10. Исследование законов распределения случайных сигналов.

11. Исследование прохождения случайных сигналов через линейные устройства.

12. Исследование прохождения случайных сигналов через нелинейные устройства.

13. Корреляционный анализ случайных сигналов.

14. Синтез и исследование цифровых фильтров.


^ ПРИМЕРНЫЙ ПЕРЕЧЕНЬ ТЕМ КУРСОВЫХ РАБОТ


1. Расчет прохождения сигналов сложной формы через линейные цепи спектральным методом.

2. Расчет прохождения сигналов сложной формы через линейные цепи временным методом.

3. Расчет временных и спектральных характеристик сигналов на выходе нелинейных устройств.

4. Расчет статистических характеристик случайных сигналов на выходе линейного устройства.

5. Расчет статистических характеристик случайных сигналов на выходе нелинейного устройства.


ЛИТЕРАТУРА


ОСНОВНАЯ

1. Нефедов В.И. Основы радиоэлектроники и связи: Учебник для вузов. - М.: Высшая школа, 2002.

2. Гоноровский И.С. Радиотехнические цепи и сигналы: Учебник для вузов. - М.: Радио и связь, 1986.

3. Иванов М.Т., Сергиенко А.Б., Ушаков В.Н. Теоретические основы радиотехники: Учебное пособие для вузов. - М.: Высшая школа, 2002.

4. Баскаков С.И. Радиотехнические цепи и сигналы: Учебник для вузов. - М.: Высшая школа, 2000.

5. Радиотехнические цепи и сигналы. Васильев Д.В., Витоль М.Р., Горшенков Ю.Н. и др./Под ред. Самойло А.К. - Радио и связь, 1990.


ДОПОЛНИТЕЛЬНАЯ

1. Манаев Е.И. Основы радиоэлектроники. - М.: Радио и связь, 1990.

2. Хемминг Р.В. Цифровые фильтры: Пер. с англ. М:. Сов. радио. 1980.

3. Каяцкас А.А. Основы радиоэлектроники. - М:. Высшая школа, 1988.

4. Куртев Н.Д., Нефедов В.И. Радиотехника. - М.:МИРЭА, 1997.

5. Левин Б.Р. Теоретические основы статистической радиотехники. - М.: Радио и связь, 1989.

6. Прокинс Дж. Цифровая связь. - М.: Радио и связь, 1999.

7. Битус А.К. Радиотехнические цепи и сигналы. Часть 1 и 3. -Мн.: БГУИР, 1999 .

8. Радиотехнические цепи и сигналы. Примеры и задачи: Учебное пособие для вузов. / Под ред. И.С. Гоноровского -М: Радио и связь, 1989 .

9. Баскаков С.И. Радиотехнические цепи и сигналы: Руководство к решению задач: Учебное пособие для вузов. - М: Высшая школа, 2002.

При проведении лекций в аудиториях, оборудованных системой учебного ТВ, обеспечивается их компьютерное сопровождение. Лабораторные и практические занятия проводятся в компьютерных классах с использованием персональных ЭВМ. Для этого имеются соответствующее программное обеспечение, созданное сотрудниками БГУИР, и пакеты прикладных программ типа Mathcad, Matlab и др.


УТВЕРЖДЕНА

Министерством образования

Республики Беларусь
^ 16.01.2006 Регистрационный № ТД-I.009/тип.


ЭЛЕКТРОННЫЕ, СВЕРХВЫСОКОЧАСТОТНЫЕ И КВАНТОВЫЕ ПРИБОРЫ

Учебная программа для высших учебных заведений

по специальностям 1 – 39 01 01 Радиотехника, 1 – 39 01 02 Радиоэлектронные системы, 1 – 39 01 03 Радиоинформатика, 1 – 39 01 04 Радиоэлектронная защита информации


СОСТАВИТЕЛИ:

С.В. Дробот, заведующий кафедрой электроники Учреждения образования «Белорусский государственный университет информатики и радиоэлектроники», кандидат технических наук;

^ В.Н. Путилин, доцент кафедры электроники Учреждения образования «Белорусский государственный университет информатики и радиоэлектроники», кандидат технических наук;

^ В.Б. Рожанский, старший преподаватель кафедры электроники Учреждения образования «Белорусский государственный университет информатики и радиоэлектроники»;

^ Ф.А. Ткаченко, доцент кафедры электроники Учреждения образования «Белорусский государственный университет информатики и радиоэлектроники», кандидат технических наук;

^ М.С. Хандогин, доцент кафедры электроники Учреждения образования «Белорусский государственный университет информатики и радиоэлектроники», кандидат технических наук;

Под общей редакцией: С.В. Дробота


РЕЦЕНЗЕНТЫ:

Кафедра электроники Военной Академии Республики Беларусь (протокол № 3 от 14.11.2005.);

В.Н. Копусов, начальник отдела ОАО «Минский научно-исследовательский приборостроительный институт», кандидат технических наук


^ РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ В КАЧЕСТВЕ ТИПОВОЙ:

Кафедрой электроники Учреждения образования «Белорусский государственный университет информатики и радиоэлектроники» (протокол № 4 от 21.11.2005.);

Научно-методическим советом Учреждения образования «Белорусский государственный университет информатики и радиоэлектроники» (протокол № 2 от 23.11.2005.)


СОГЛАСОВАНА:

Председателем Учебно-методическим объединением вузов Республики Беларусь по образованию в области информатики и радиоэлектроники;

Начальником Управлением высшего и среднего специального образования Министерства образования Республики Беларусь;

Первым проректором Государственным учреждением образования «Республиканский институт высшей школы»


^ ПОЯСНИТЕЛЬНАЯ ЗАПИСКА


Типовая программа «Электронные, сверхвысокочастотные и квантовые приборы» разработана для специальностей 1 – 39 01 01 Радиотехника, 1 – 39 01 02 Радиоэлектронные системы, 1 – 39 01 03 Радиоинформатика, 1 – 39 01 04 Радиоэлектронная защита информации высших учебных заведений и обеспечивает базовую подготовку студентов, необходимую для успешного изучения специальных дисциплин и последующего решения производственных и исследовательских задач в соответствии с образовательными стандартами. Целью изучения дисциплины является подготовка студентов к решению задач, связанных с рациональным выбором электронных приборов, их режимов работы и схем включения в различных устройствах.

Изучение дисциплины «Электронные, сверхвысокочастотные и квантовые приборы» должно опираться на содержание следующих дисциплин: «Высшая математика» (дифференциальное и интегральное исчисление, дифференциальные уравнения, функции комплексной переменной); «Физика» (электричество, магнетизм, электромагнитные волны, квантовая физика, физика твердого тела), «Электротехника» (теория линейных и нелинейных электрических цепей).

Программа составлена в соответствии с требованиями образовательных стандартов и рассчитана на объем 86 учебных часов. Примерное распределение учебных часов по видам занятий: лекций – 52 часа, лабораторных занятий – 34 часа.

В результате изучения курса «Электронные, сверхвысокочастотные и квантовые приборы» студент должен:

знать:

– физические основы явлений, принципы действия, устройство, параметры, характеристики электронных, сверхвысокочастотных и квантовых приборов и элементов микроэлектроники и их различных моделей, используемых при анализе и синтезе радиоэлектронных устройств;

– современное состояние и перспективы развития электронных, сверхвысокочастотных и квантовых приборов;

уметь:

– использовать полученные знания для правильного выбора электронного прибора и задания его рабочего режима по постоянному току;

– находить параметры приборов по их характеристикам;

– определять влияние режимов и условий эксплуатации на параметры приборов;

приобрести навыки работы:

– с электронными приборами и аппаратурой, используемой для исследования характеристик и измерения параметров приборов;

– с технической литературой, справочниками, стандартами, технической документацией по электронным приборам.


^ СОДЕРЖАНИЕ ДИСЦИПЛИНЫ


Раздел 1. ЭЛЕКТРОННЫЕ ПРИБОРЫ


ВВЕДЕНИЕ

Определение термина «Электронные приборы». Классификация электронных приборов по характеру рабочей среды (вакуум, разреженный газ, твердое тело), принципу действия и диапазону рабочих частот. Основные свойства и особенности электронных приборов.

Краткий исторический очерк развития отечественной и зарубежной электронной техники. Роль электронных приборов в радиоэлектронике, телекоммуникационных системах, вычислительных комплексах и других областях науки и техники. Значение курса как одной из базовых дисциплин по радиотехническим специальностям.


^ Тема 1. ФИЗИЧЕСКИЕ ОСНОВЫ ПОЛУПРОВОДНИКОВОЙ ЭЛЕКТРОНИКИ

Свойства полупроводников. Основные материалы полупроводниковой электроники (кремний, германий, арсенид галлия, нитрид галлия), их основные электрофизические параметры. Процессы образования свободных носителей заряда.

Концентрация свободных носителей в собственном и примесном полупроводниках, ее зависимость от температуры. Время жизни и диффузионная длина носителей. Уровень Ферми, его зависимость от температуры и концентрации примесей.

Кинетические процессы в полупроводниках. Тепловое движение и его средняя скорость. Дрейфовое движение, подвижность носителей заряда и ее зависимость от температуры и концентрации примесей. Плотность дрейфового тока, удельная проводимость полупроводников и ее зависимость от температуры и концентрации примесей. Движение носителей в сильных электрических полях, зависимость дрейфовой скорости от напряженности электрического поля. Диффузионное движение носителей, коэффициент диффузии, плотность диффузионного тока. Соотношение Эйнштейна. Появление электрического поля в полупроводнике при неравномерном распределении примесей.

Физические процессы у поверхности полупроводника. Поверхностные энергетические состояния, особенности движения носителей вблизи поверхности, поверхностная рекомбинация. Полупроводник во внешнем электрическом поле, длина экранирования. Обедненный, обогащенный и инверсионный слои.

Контактные явления в полупроводниках. Физические процессы в электронно-дырочном переходе. Образование обедненного слоя, условие равновесия. Уравнение Пуассона. Энергетическая диаграмма, распределение потенциала, напряженности электрического поля и объемного заряда в переходе. Высота потенциального барьера и ширина перехода.

Электронно-дырочный переход при подаче внешнего напряжения. Инжекция и экстракция носителей заряда. Особенности несимметричного перехода.

Вольт-амперная характеристика (ВАХ) идеализированного электронно-дырочного перехода. Распределение неравновесных носителей. Тепловой ток, его зависимость от ширины запрещенной зоны, концентрации примесей и температуры. Математическая модель и параметры идеализированного p-n-перехода: статическое и дифференциальное сопротивление, барьерная и диффузионная емкости перехода, их зависимость от приложенного напряжения. Пробой p-n-перехода. Виды пробоя.

Контакт металл-полупроводник. Выпрямляющий и невыпрямляющий (омический) контакты.

Гетеропереходы. Энергетические диаграммы. Особенности физических процессов. Особенности ВАХ.


^ Тема 2. ПОЛУПРОВОДНИКОВЫЕ ДИОДЫ

Классификация полупроводниковых диодов по технологии изготовления, мощности, частоте и функциональному применению: выпрямительные, стабилитроны, варикапы, импульсные диоды, диоды с накоплением заряда, диоды Шотки, туннельные и обращенные диоды. Принцип работы, характеристики, параметры, схемы включения. Система обозначения полупроводниковых диодов. Влияние температуры на ВАХ.


^ Тема 3. БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ

Устройство биполярного транзистора (БТ). Схемы включения. Основные режимы: активный, отсечки, насыщения, инверсный. Принцип действия транзистора: физические процессы в эмиттерном переходе, базе и коллекторном переходе; распределение неосновных носителей в базе при различных режимах. Эффект модуляции ширины базы. Токи в транзисторе; коэффициенты передачи тока в схемах с общей базой (ОБ) и общим эмиттером (ОЭ).

Физические параметры транзистора: коэффициент передачи тока, дифференциальные сопротивления и емкости переходов, объемные сопротивления областей.

Статические характеристики транзистора. Модель идеализированного транзистора (модель Эберса-Молла). Характеристики реального транзистора в схемах с ОБ и ОЭ. Влияние температуры на характеристики транзистора.

Транзистор как линейный четырехполюсник. Понятие малого сигнала. Системы Z-, Y-, H- параметров и схемы замещения транзистора. Связь H-параметров с физическими параметрами транзистора. Определение H-параметров по статическим характеристикам. Зависимость H-параметров от режима работы и температуры. Т- и П-образные эквивалентные схемы транзисторов.

Работа транзистора с нагрузкой. Построение нагрузочной прямой. Принцип усиления.

Особенности работы транзистора на высоких частотах. Физические процессы, определяющие частотные параметры транзистора. Предельная и граничная частоты, эквивалентная схема транзистора на высоких частотах. Способы повышения рабочей частоты БТ.

Работа транзистора в импульсном режиме. Физические процессы накопления и рассасывания носителей заряда. Импульсные параметры транзистора.

Разновидности и перспективы развития БТ.


^ Тема 4. ПОЛЕВЫЕ ТРАНЗИСТОРЫ

Полевой транзистор (ПТ) с управляющим p-n-переходом. Устройство, схемы включения. Принцип действия, физические процессы, влияние напряжений электродов на ширину p-n-перехода и форму канала. Статические характеристики, области отсечки, насыщения и пробоя p-n-перехода.

ПТ с барьером Шотки. Устройство, принцип действия. Характеристики и параметры.

ПТ с изолированным затвором. МДП-транзисторы со встроенным и индуцированным каналами. Устройство, схемы включения. Режимы обеднения и обогащения в транзисторе со встроенным каналом и его статические характеристики.

ПТ как линейный четырехполюсник. Система у-параметров полевых транзисторов и их связь с физическими параметрами. Влияние температуры на характеристики и параметры ПТ.

Работа ПТ на высоких частотах и в импульсном режиме. Факторы, определяющие частотные свойства. Предельная частота. Эквивалентная схема на высоких частотах. Области применения ПТ. Сравнение полевых и биполярных транзисторов. Перспективы развития и применения ПТ.


^ Тема 5. ПЕРЕКЛЮЧАЮЩИЕ ПРИБОРЫ

Устройство, принцип действия, ВАХ, разновидности тиристоров, диодные тиристоры, триодные тиристоры, симисторы, области применения. Параметры и система обозначения переключающих приборов.

^ Тема 6. ЭЛЕМЕНТЫ ИНТЕГРАЛЬНЫХ МИКРОСХЕМ
Общие сведения о микроэлектронике. Классификация компонентов электронной аппаратуры и элементов гибридных микросхем. Пассивные дискретные компоненты электронных устройств (резисторы, конденсаторы, индуктивности). Назначение, физические основы работы, параметры, системы обозначения. Пассивные элементы интегральных микросхем: резисторы, конденсаторы. Биполярные транзисторы в интегральном исполнении, транзисторы с барьером Шотки, многоэмиттерные транзисторы. Диоды полупроводниковых ИМС. Биполярные транзисторы с инжекционным питанием. Полупроводниковые приборы с зарядовой связью (ПЗС). Применение ПЗС. Параметры элементов ПЗС.
^ Тема 7. КОМПОНЕНТЫ ОПТОЭЛЕКТРОНИКИ
Определение оптического диапазона электромагнитных колебаний. Классификация оптоэлектронных полупроводниковых приборов. Электролюминесценция. Основные типы полупроводниковых излучателей: некогерентные и когерентные полупроводниковые излучатели. Светодиоды, устройство, принцип действия, характеристики, параметры. Основные материалы, применяемые для изготовления светодиодов. Достижения в разработке светодиодов.

Полупроводниковые приемники излучения: фоторезисторы, фотодиоды, фототранзисторы, фототиристоры. Принцип работы, характеристики, параметры.

Устройство оптронов, основные типы оптронов: резисторные, диодные, транзисторные и тиристорные. Классификация, принцип действия, входные и выходные параметры оптронов.

^ Тема 10. ЭЛЕКТРОННО-УПРАВЛЯЕМЫЕ ЛАМПЫ
Электронная эмиссия. Виды эмиссии. Катоды электровакуумных приборов, основные типы катодов. Прохождение тока в вакууме, ток переноса, ток смещения, полный ток. Понятие о наведенном токе.

Вакуумный диод. Принцип действия. Понятие об объемном заряде. Режим насыщения и режим ограничения тока объемным зарядом. Идеализированная и реальная анодные характеристики диода. Статические параметры. Основные типы диодов, области применения.

Трехэлектродная лампа. Устройство, роль сетки в триоде. Понятие о действующем напряжении и проницаемости сетки. Токораспределение в триоде. Статические характеристики триода. Статические параметры и определение их по характеристикам. Междуэлектродные емкости. Режим работы триода с нагрузкой, нагрузочные характеристики, параметры режима работы с нагрузкой.

Тетроды и пентоды. Роль сеток. Действующее напряжение. Токораспределение. Статические характеристики и параметры многоэлектродных ламп; междуэлектродные емкости. Эквивалентные схемы электронных ламп на низких и высоких частотах.

Мощные генераторные и модуляторные лампы.

Особенности работы электронных ламп со статическим управлением электронным потоком в диапазоне сверхвысоких частот (СВЧ). Понятие о полном токе. Влияние инерционных свойств электронного потока на работу электронных ламп. Влияние на параметры ламп диапазона СВЧ междуэлектродных емкостей и индуктивностей выводов. Особенности конструкции электронных ламп диапазона СВЧ. Мощные электронные лампы СВЧ диапазона. Области применения электронных ламп диапазона СВЧ.

^ Тема 11. ПРИБОРЫ ОТОБРАЖЕНИЯ ИНФОРМАЦИИ

Классификация приборов для отображения информации.

Типы электронно-лучевых приборов. Устройство и принцип действия электронно-лучевых приборов. Элементы электронной оптики. Системы фокусировки и отклонения в электронно-лучевых трубках. Типы экранов электронно-лучевых трубок. Параметры экранов.

Типы электронно-лучевых трубок: осциллографические, трубки индикаторных устройств, кинескопы, трубки дисплеев, запоминающие трубки.

Полупроводниковые индикаторы.

Жидкокристаллические индикаторы. Основные параметры, характеризующие жидкие кристаллы. Устройство ЖКИ в проходящем и отраженном свете. Возможность отображения цвета в ЖКИ. ЖК мониторы, устройство и их основные параметры.

Вакуумные накаливаемые индикаторы (ВНИ), вакуумные люминесцентные индикаторы (ВЛИ): одноразрядные, многоразрядные, сегментные ВЛИ, электролюминесцентные индикаторы (ЭЛИ): устройство и принцип действия.

Газоразрядные индикаторы (ГРИ). Основные положения теории тлеющего разряда с холодным катодом. Дискретные газоразрядные индикаторы. Типы и основные параметры ГРИ. Устройство и принцип действия газоразрядных индикаторных панелей.

Современное состояние в области разработки приборов отображени
еще рефераты
Еще работы по разное