Реферат: Инфраструктуры открытых ключей


Инфраструктуры открытых ключей
Автор: О.Ю. Полянская

1.

Доверие в сфере электронных коммуникаций

Рассматривается понятие доверия в контексте электронных коммуникаций, приводится характеристика ключевых элементов и механизмов доверия, обсуждаются политики доверия и примеры ассоциаций доверия, вводится понятие инфраструктуры безопасности, описываются сервисы инфраструктуры безопасности.

2.

Механизмы аутентификации

Рассматривается аутентификация на основе паролей, механизмы одноразовой аутентификации, описывается механизм аутентификации Kerberos, обсуждается аутентификация при помощи сертификатов открытых ключей, анализируются возможности инфраструктуры открытых ключей PKI как технологии аутентификации.

^ 3.

Основные компоненты и сервисы PKI

Рассматриваются основные компоненты PKI, описываются функции удостоверяющего и регистрационного центров, репозитория, архива сертификатов, серверных компонентов PKI, приводится краткая характеристика сервисов PKI и сервисов, базирующихся на PKI, обсуждаются криптографические и вспомогательные сервисы, сервисы управления сертификатами.

^ 4.

Сервисы безопасности PKI и базовые криптографические механизмы

Описываются сервисы идентификации и аутентификации, целостности и конфиденциальности, рассматриваются и сравниваются между собой три класса криптографических механизмов: симметричные и асимметричные алгоритмы и алгоритмы хэширования.

^ 5.

Модели и механизмы доверия

Рассматриваются модели строгой и нестрогой иерархии удостоверяющих центров, иерархии на базе политик, модель распределенного доверия, четырехсторонняя модель доверия, web-модель доверия, модель доверия, сконцентрированного вокруг пользователя; объясняются принципы именования субъектов PKI и понятие идентичности субъекта, описываются сетевая и мостовая конфигурации PKI, обсуждается механизм кросс-сертификации и виды кросс-сертификатов.

^ 6.

Сертификаты открытых ключей

Описывается формат сертификата открытого ключа, дается краткая характеристика обязательных и опциональных полей сертификата, подробно рассматриваются ограничивающие и информационные дополнения сертификата, обсуждаются альтернативные форматы сертификатов, объясняются принципы функционирования простой инфраструктуры открытых ключей, систем PGP и SET, дается представление об атрибутных сертификатах.

^ 7.

Классификация сертификатов и управление ими

Приводится классификация сертификатов открытых ключей, дается краткая характеристика классов и видов сертификатов, подробно рассматривается содержание полей сертификата каждого вида, обсуждается использование субъектом нескольких сертификатов, дается представление о жизненном цикле сертификатов и ключей, приводятся примерные сценарии управления жизненным циклом сертификатов и ключей.

^ 8.

Формат списков аннулированных сертификатов

Описываются способы проверки статуса сертификата, дается краткая характеристика механизмам периодической публикации информации об аннулированных сертификатах, вводится определение списка аннулированных сертификатов (САС), подробно рассматривается структура САС, обсуждаются стандартные дополнения САС и дополнения точек входа в САС, дается представление о дельта-списках САС, приводятся коды причин аннулирования сертификатов.

^ 9.

Типы списков аннулированных сертификатов и схемы аннулирования

Описываются основные типы списков аннулированных сертификатов, обсуждаются особенности разных схем аннулирования сертификатов, рассматриваются механизмы онлайновых запросов для поиска информации об аннулировании, дается представление о деревьях аннулирования сертификатов, выполняется сравнительный анализ разных схем аннулирования сертификатов.

^ 10.

Основные понятия и типы архитектуры PKI

Рассматриваются такие понятия архитектуры PKI, как путь сертификации, пункты доверия PKI, доверенный ключ. Описываются простая, иерархическая, сетевая и гибридная архитектура PKI, обсуждаются способы построения пути сертификации для каждого типа архитектуры.

^ 11.

Валидация пути сертификации

Дается определение валидного пути сертификации, описывается процедура проверки валидности пути; рассматриваются входные параметры и переменные состояния, необходимые для валидации пути сертификации; объясняются принципы обработки каждого сертификата и механизм выявления в пути сертификации аннулированных сертификатов, обсуждаются подходы к выбору архитектуры PKI.

^ 12.

Механизмы распространения информации PKI

Подробно рассматриваются механизмы распространения сертификатов и списков САС, обсуждается организация репозитория, дается характеристика каталога X.500, описывается упрощенный протокол доступа к каталогу LDAP, сопоставляются разные варианты развертывания репозитория, дается представление о способах распространения PKI-информации при помощи электронной почты, сетевых протоколов и системы доменных имен.

^ 13.

Политики, регламент и процедуры PKI

Дается определение политики безопасности, рассматриваются способы реализации политики безопасности, приводится список основных требований к политике PKI, дается характеристика политике применения сертификатов и регламента удостоверяющего центра, обсуждаются отличия политики применения сертификатов, регламента и организационных процедур удостоверяющего центра, дается представление об идентификаторах объектов и краткой характеристике политики PKI, подробно рассматриваются способы отображения политики в сертификатах.

^ 14.

Описание политики PKI

Рассматривается структура набора положений политики PKI, дается краткая характеристика общих положений политики, подробно описываются все специальные разделы набора положений политики PKI, обсуждаются трудности разработки политики и регламента, дается представление об этапах разработки политики применения сертификатов.

^ 15.

Стандарты и спецификации PKI

Приводится классификация стандартов в области PKI, дается краткая характеристика каждой группы стандартов, подробно рассматриваются стандарты Internet X.509 PKI (PKIX), обсуждается терминология и концепции PKIX, дается представление о направлениях стандартизации в области PKI, приводятся примеры национальных и международных инициатив по обеспечению функциональной совместимости PKI-продуктов.

^ 16.

Сервисы, базирующиеся на PKI

Рассматриваются дополнительные сервисы PKI, приводится характеристика сервисов защищенной связи, защищенного датирования нотаризации, неотказуемости, защищенного архива данных, управления полномочиями, приватности; обсуждаются механизмы, необходимые для сервисов, которые базируются на PKI, и условия функционирования этих сервисов.

^ 17.

Приложения, базирующиеся на PKI

Рассматриваются защищенная электронная почта, средства безопасности транспортного уровня и IP-уровня, дается краткая характеристика протоколов SSL и TLS, описываются протоколы установления соединений, передачи записей, протоколы IPsec, обсуждаются типовые сценарии использования PKI.

^ 18.

Подготовка к развертыванию PKI

Приводится перечень этапов развертывания PKI, подробно рассматривается процесс подготовки решения о развертывании инфраструктуры, дается краткая характеристика инсорсинга и аутсорсинга, обсуждаются стандартность и комплексность решения, стоимость и время развертывания PKI, дается представление о средах развертывания, режимах оперирования и приоритетных сервисах безопасности PKI.

^ 19.

Проблемы выбора поставщика технологии или сервисов PKI

Подробно рассматриваются проблемы выбора поставщика технологии или сервисов PKI, формулируются основные критерии выбора, обсуждаются проблемы масштабируемости и безопасности PKI-решения, приводятся рекомендации по составлению запроса на предложения по реализации PKI, дается краткая характеристика каждого раздела запроса на предложения.

^ 20.

Проектирование и внедрение PKI

Подробно рассматривается процесс проектирования PKI, приводится краткая характеристика основных правовых документов PKI, описываются соглашения между участниками PKI, даются рекомендации по выбору основных средств и оборудования, приводятся примерные требования к персоналу, обслуживающему PKI, обсуждается создание прототипа, пилотный проект и внедрение PKI.

^ 21.

Проблемы реализации PKI

Описывается процесс подготовки PKI к работе, подробно рассматривается управление сертификатами и ключами, обсуждаются способы реагирования на инциденты во время функционирования PKI, описываются подходы к решению проблем интеграции и обеспечения работы приложений, дается представление о проблемах предоставления услуг репозитория, выполняется сравнительный анализ структуры стоимости установки и поддержки типичной системы PKI для вариантов инсорсинга и аутсорсинга.



^ Лекция: Доверие в сфере электронных коммуникаций



^ Понятие доверия
Новым популярным словом двадцать первого века стало слово "доверие". Доверие затрагивает многие стороны жизни людей, начиная от экономической, финансовой, деловой сфер и заканчивая принятием политических решений. Доверие требуется при приобретении товаров и услуг, открытии счетов в банках, заключении сделок, участии в выборах президента. Поскольку "электронные" отношения становятся все более привычными для миллионов людей - появляются возможности совершать покупки в магазинах электронной торговли, пользоваться системами электронных банковских расчетов, заключать электронные договора и даже участвовать в электронном голосовании при проведении социологических опросов и выборов в органы государственной власти, - значение доверия в сфере электронных коммуникаций неуклонно возрастает.

Очевидно, что невозможно избежать проблем безопасности в сфере электронных коммуникаций, но, в дополнение к технологиям защиты, можно выработать решение, способное уменьшить риск. Это решение также известно как доверие. Доверие в сфере электронных коммуникаций не ограничивается доверием к защищенным компьютерным системам - ведь безопасность компьютерной системы зависит не только от надежной операционной системы, но и от физических средств защиты, от квалификации и надежности персонала и многого другого. Доверие между партнерами напрямую зависит от специфики сферы реализации их деловых отношений. Например, в финансовых приложениях, применяемых для межбанковских расчетов, последствия выхода из строя системы могут быть чрезвычайно серьезны, поэтому степень доверия друг к другу участников электронного взаимодействия должна быть намного выше, чем в приложениях корпоративной электронной почты, где индивидуальный ущерб относительно невелик. Критериями оценки степени доверия к любым компаниям-производителям товаров и услуг одного уровня выступают ключевые элементы доверия: предсказуемость, ресурсы и неопределенность [105].

Предсказуемость, то есть способность поставщика услуг постоянно производить ожидаемый (позитивный) результат, позволяет покупателю услуг не поддерживать все время высокий уровень бдительности. Чем более предсказуем уровень безопасности, сервиса и качества услуг онлайнового поставщика, тем легче покупателю их приобрести.

Вообще говоря, обычно никто не заботится о доверии, пока не подвергаются риску ущерба или потери значительные ресурсы (физические или информационные). Чем больше риск, тем выше требования к доверию. Доверие требуется, когда имеется большая неопределенность в возможности проверить операцию или результат. Если вся информация о сторонах и сделках известна, то необходимость в доверии существенно уменьшается, однако для большинства сделок характерна некоторая доля неопределенности, включая неизвестную историю покупателя или продавца, неизвестное качество товаров или услуг и т.п.

Пример 1.1.

Проиллюстрируем концепцию доверия на примере web-сайта электронной торговли. Обычно продавец заботится о двух главных целях бизнеса: новых продажах (продажах новым покупателям) и повторных продажах (продажах тем, кто купил раньше). Один из способов повысить повторные продажи - это создать для покупателей высокий уровень предсказуемости и безопасности сервиса через опыт начальной сделки. Аргументами в пользу предсказуемости и безопасности сервиса могут быть размещенный на странице сайта электронной торговли логотип авторитетной доверенной третьей стороны или, например, символ "замок", который продуцируют системы безопасности, обеспечивающие защищенную связь по протоколу SSL. Логотип доверенной третьей стороны на странице web-сайта может свидетельствовать о том, что сайт прошел объективную проверку и сертифицирован компанией, которой доверяет сообщество производителей и потребителей товаров и услуг в Интернете.

В приведенном примере ресурсы торгового web-сайта складываются из твердых активов (покупаемых товаров и услуг) и деловой репутации (торговой марки и финансового положения продавца и/или качества продаваемых товаров). Для большинства компаний товары и деловая репутация равно важны. Фальсификация товаров приводит к прямым материальным потерям. Компрометация торговой марки и репутации может повлиять на снижение будущих продаж. Наконец, покупатель должен быть уверен, что его персональные данные, в частности, информация кредитной карты, будут обрабатываться с соблюдением правил безопасности. Невозможность визуально следить за совершением сделки, к чему покупатель привык в обычном магазине, означает, что покупатель должен доверять продавцу. Необходимость приобрести товар у неизвестного продавца, то есть проявить слишком большое доверие, может заставить покупателя отказаться от сделки.

Характерной чертой доверия является то, что на его приобретение требуется много времени, а исчезнуть оно может очень быстро. Известно немало примеров, когда из-за причастности к скандалам происходило падение крупных компаний за один день. С другой стороны, если покупатель доверяет, он склонен быть лояльным. Чем ниже степень доверия покупателя, тем ему легче обратиться к другому продавцу. По сути, чтобы сохранить покупателей и увеличить повторные продажи, продавцу важно обеспечить степень доверия к своему бизнесу выше, чем у конкурентов.

Для поддержки концепций доверия в сфере электронных коммуникаций были разработаны специальные технологии (см. табл. 1.1).

^ Таблица 1.1. Примеры технологий, поддерживающих концепции доверия

Технология

Поддержка ключевых элементов

Анализ уязвимости

Снижение количества атак на ресурсы, повышение предсказуемости и уменьшение неопределенности качества услуг

Онлайновые услуги депонирования

Обеспечение защиты ресурсов в условиях неопределенности взаимодействия с неизвестной стороной. Достижение предсказуемости на основе истории транзакций депонирования

Контрольные журналы

Анализ и фильтрация проблем, снижающих предсказуемость услуг

Межсетевые экраны

Зашита ресурсов от онлайновых атак

Реализовать доверие намного сложнее, чем просто понять, на чем оно строится. Формирование доверительных отношений в реальной жизни может занимать месяцы, годы и даже десятилетия.
^ Политики доверия
Один из простейших, но не самых эффективных методов установления доверия в сфере электронных транзакций заключается в использовании прозрачных политик доверия. Политики доверия должны обеспечивать:

конфиденциальность;

корректное использование информации;

реагирование в случае нарушения доверия;

внутренние механизмы гарантирования непрерывности доверия;

согласие пользователей.
Конфиденциальность
Политики конфиденциальности разрабатываются для того, чтобы пользователи правильно понимали, как данная компания будет обращаться с той персональной и деловой информацией, которую они ей предоставляют. Опубликованная на web-сайте компании политика конфиденциальности объясняет правила использования персональных данных и способствует установлению контакта с пользователями. Пользователи должны ознакомиться с этой политикой и подтвердить свое согласие с указанными правилами. Примером политики конфиденциальности может служить политика, опубликованная на сайте Yahoo [207].
^ Корректное использование информации
Другой аспект политик доверия - корректное использование информации. Это касается ситуаций, когда персональная информация может использоваться не в интересах человека, а, например, для оценки его финансовых возможностей (доходов, суммы медицинской страховки) как потенциального покупателя. В настоящее время некоторые компании практикуют отбор и классификацию потребителей определенных товаров и услуг, а затем продают эту информацию другим компаниям. Подобная практика приводит к тому, что люди начинают получать по почте нежелательные сообщения рекламного характера, спам, их вынуждают отвечать на телефонные звонки, пытаются привлечь в качестве потенциальных клиентов кредитных карточных систем и т.п.
^ Реагирование в случае нарушения доверия
Политика доверия должна предлагать некоторые финансовые гарантии, то есть страховать пользователя, на тот случай, когда невозможно обеспечить полную защиту его ресурсов. Достаточно часто в политиках содержится утверждение о том, что споры о нарушении конфиденциальности рассматриваются в арбитражном суде. Следует учитывать, что арбитражное разбирательство имеет гораздо менее серьезные последствия для стороны, нарушившей политику доверия, чем судебное. Очевидно, что в штате крупных компаний, заинтересованных в поддержке отношений доверия, должен присутствовать администратор информационной безопасности или ответственный за конфиденциальность персональных данных. К сожалению, на практике чаще всего единственным выходом для клиентов при нарушении конфиденциальности является прекращение использования сервисов данного web-сайта.
^ Непрерывность доверия
Политика доверия должна раскрывать внутренние механизмы доверия и демонстрировать, что доверие базируется не просто на обещаниях, а является важной составной частью деловых операций. Примерами внутренних механизмов доверия могут служить строгий контроль за уровнем подготовки и соблюдением служащими политики конфиденциальности, защищенность компьютерных систем и оборудования, а также аудит бизнес-процессов.
^ Согласие пользователей
Наконец, политика доверия должна предусматривать механизм получения согласия пользователей. Он обычно называется участием. Многие организации либо не дают возможности пользователям выражать согласие на участие, либо не обладают системами, позволяющими отслеживать и исполнять предпочтения пользователей. Часто компании автоматически предполагают согласие пользователя на участие, тем самым перекладывая на него ответственность за возможные последствия нарушения конфиденциальности.
^ Ассоциации доверия
В повседневной жизни люди часто допускают транзитивные отношения доверия. Например, если наш друг дает хорошую рекомендацию человеку, которого мы не знаем, то мы обычно склонны относится к этому незнакомцу с большим доверием, чем если бы познакомились с ним сами. В этом случае, поскольку мы доверяем своему другу, то полагаемся на правильность его мнения.

Точно так же в сфере электронных коммуникаций и Интернета появился ряд ассоциаций доверия, которые являются аффилиированными компаниями организаций, web-сайтов и кадровых агентств и в зависимости от направления деятельности осуществляют контроль соблюдения политики конфиденциальности, оценку безопасности и надежности программного и аппаратного обеспечения, занимаются аудитом систем и сертификацией специалистов и продуктов в сфере информационных технологий. Некоторые примеры таких ассоциаций приведены в табл. 1.2 [105].

Так, например, известные ассоциации доверия Better Business Bureau и TrustE знакомят другие компании с законами в области обеспечения конфиденциальности и помогают им разрабатывать собственные политики и правила [39]. Если компания выполняет все рекомендации ассоциации доверия, то получает ее "печать одобрения" (некоторый символ или логотип ассоциации) для размещения на своем web-сайте.

^ Таблица 1.2. Примеры ассоциаций доверия

Общепринятое название

Тип

^ Формальное название

Описание

BBB

Web-сайт

Better Business Bureau

Выдача компаниям свидетельств о соблюдении ими правил конфиденциальности

CCSA

Кадры

Certification in Control Self-Assessments

Сертификация специалистов по аудиту информационных систем

CISA

Кадры

Certified Information Systems Auditor

Сертификация специалистов по аудиту информационных систем

CISSP

Кадры

Certified Information Systems Security Professional

Сертификация специалистов по безопасности информационных систем

Common Criteria

Системы

Common Criteria

Оценка и сертификация безопасности и надеж-ности ИТ-продуктов

CPP

Кадры

Certified Protection Professional

Сертификация специалистов в сфере безопасности

GIAC

Кадры

Global Information Assurance Certification

Сертификация специалистов

Good Housekeeping

Web-сайт

Good Housekeeping Web Certification

Контроль соблюдения конфиденциальности и сертификация

SAS70

Системы

Statement on Auditing Standards ¹ 70

Аудит систем

Trust E

Web-сайт

Trust E

Контроль соблюдения конфиденциальности, выдача компаниям свидетельств

По существу эта печать идентифицирует доверие, связанное с рекомендациями авторитетных ассоциаций, и подтверждает обязательства владельцев сайта в отношении предоставленных посетителями сведений. Когда пользователь сталкивается с неизвестным сайтом и видит "печать одобрения" авторитетной ассоциации, то относится с большим доверием к компании-владельцу сайта. Ассоциации доверия берут на себя функции контроля за соблюдением политики конфиденциальности. Если проверка выявляет нарушение, то ассоциация уведомляет об этом компанию и рекомендует ей пересмотреть принятые правила - с тем чтобы либо правила отражали изменения в ее коммерческой деятельности, либо компания отказалась от подобной практики.
^ Концепция инфраструктуры безопасности
Важным фундаментом доверия в сфере электронных коммуникаций является поддержка инфраструктуры безопасности. Инфраструктура может рассматриваться как базис некоторой масштабной среды. Всем известны такие инфраструктуры, как компьютерные сети, позволяющие выполнять обмен данными между различными компьютерами, и электросети, обеспечивающие работу разнообразного электрооборудования. Несмотря на различия, их объединяет один и тот же принцип: инфраструктура существует для того, чтобы совершенно разные субъекты могли подключиться к ней и использовать ее в своих целях [44].

Инфраструктура, отвечающая целям безопасности, должна строиться на тех же принципах и предоставлять те же преимущества. Инфраструктура безопасности обеспечивает защищенность целой организации и должна быть доступна для всех приложений и объектов организации, которым необходима безопасность. "Точки входа" в инфраструктуру безопасности должны быть удобны и унифицированы, как электрические розетки в стене, - ничто не должно мешать объектам, желающим использовать инфраструктуру.

^ Инфраструктура безопасности, по сути, является рациональной архитектурой для многих сред. Понятие инфраструктуры безопасности - достаточно широкое, включающее в себя многие аспекты, в том числе совместимость имен, политики авторизации, мониторинг, аудит, управление ресурсами, контроль доступа и т.п.

Большинство технических специалистов связывают доверие в сфере электронных коммуникаций с надежной инфраструктурой, к которой относятся системы, приложения и процессы, обеспечивающие надежную, защищенную обработку транзакций. Важными компонентами этой инфраструктуры являются межсетевые экраны, маршрутизаторы, сканеры вирусов, средства оценки уязвимости и защищенные серверы. Большая доля ИТ-затрат приходится на них, поскольку они образуют наиболее осязаемую материальную базу защиты доверия.
^ Уровни инфраструктуры
Рассмотрим уровни инфраструктуры безопасности (рис. 1.1). Простейший уровень, находящийся внизу, - это физический уровень. Принимая во внимание ограниченное число рисков, связанных с физическими атаками, этот уровень защищать проще, чем другие. Чтобы гарантировать трудность физического доступа к центру хранения и обработки данных или аналогичным ресурсам, используют одновременно средства сигнализации, охрану и замки. Интересно отметить, что бывает проще физически разрушить хорошо защищенный сайт, чем взломать его. Следовательно, организации важно иметь хорошо проработанный план восстановления после аварии, включая организацию центров "горячего" и "теплого" резервирования данных.
^ Физический уровень
Хотя физический доступ и не рассматривается как реальная угроза сегодняшнего дня, очевидно, что нарушение физической безопасности может привести к нарушению информационной безопасности. Для обеспечения высокой степени доверия к защите физического уровня необходимы следующие меры:

Ограниченный доступ с использованием нескольких механизмов аутентификации (например, применение биометрического устройства и считывателя карт).

Постоянный мониторинг безопасности с использованием видео- и аудиоаппаратуры, сенсорный мониторинг внешней и внутренней среды.

Обученный персонал, отвечающий за безопасность.

Журналы, регистрирующие доступ по ID-картам, проверку документов службой охраны и т.п.
^ Системный уровень
Следующий уровень, системный, включает совокупность взаимодействующих друг с другом систем. Поддержку доверия на этом уровне реализовать сложнее, потому что может быть обеспечена безопасность систем в комплексе, а может быть защищена отдельно каждая система.

На системном уровне должна быть обеспечена безопасность двух ключевых компонентов - операционной системы (ОС) и сети. Бреши в ОС являются базисом многих атак на инфраструктуру. Уязвимость ОС связана с их постоянным обновлением: системные администраторы иногда забывают устанавливать "заплаты" (файлы с исправлениями), чтобы своевременно защищать уязвимые места. Кроме того, модификация разработчиком ОС функций безопасности способна иногда влиять на базовую функциональность, вынуждая системных администраторов откладывать обновление системы.


Рис. 1.1.  Уровни инфраструктуры безопасности

Сетевые компоненты еще более уязвимы, чем ОС. Современная сеть подвергается и внутренним, и внешним атакам, для защиты от них требуется сложный набор технологий. Многие исследования показали, что организации часто бывают более уязвимы для внутренних атак, чем для прямых атак из Интернета. Защита сети изнутри немного более сложна и требует строгого контроля доступа, использования межсетевых экранов, контрольных журналов и т.д. Строгий контроль доступа позволяет повысить степень доверия пользователей при доступе к частной сети. В настоящее время угрозу представляет использование карманных персональных компьютеров (Personal Digital Assistants). Эти устройства могут подсоединяться непосредственно к узлу сети и обходить защиту межсетевых экранов, маршрутизаторов и антивирусных средств. Таким образом, вирус или другой злонамеренный код может быть занесен непосредственно в сеть. Для фиксации подозрительной активности и событий после инцидента необходимы контрольные журналы. Важно, чтобы файлы регистрации хранились отдельно, вне функционирующих систем, причем таким способом, который делает их неизменяемыми (во избежание мошенничества системных администраторов).
^ Уровень приложений
Уровень приложений, вероятно, наиболее сложен для защиты и обеспечения доверия, так как частота использования программных утилит здесь намного выше, чем на любом другом уровне, и, следовательно, потенциально выше риск безопасности. Компрометация уровня приложений чаще всего связана с нехваткой ресурсов памяти и невозможностью управлять данными пользователей, а также с избыточностью функций приложений. Ограниченность ресурсов памяти приводит к переполнению буфера или непреднамеренному принятию фальсифицированных данных, что обычно происходит в результате неадекватной фильтрации пользовательских данных при вводе или попытке получить доступ к большему объему памяти, чем имеется фактически. Для защиты уровня приложений используются:

программные средства (например, сканирование или блокирование вирусов);

программное обеспечение превентивного действия (обнаружение уязвимостей или тестирование);

просмотр кодов приложений вручную с целью выявления возможных проблем безопасности.

Уровень приложений является наиболее сложным для защиты еще и потому, что наиболее доступен. Например, любой, кто может получить доступ к web-сайту компании, занимающейся электронной торговлей, немедленно получает доступ к приложению (Active X), которое позволяет выполнить транзакцию [105]. Получить доступ на физическом или системном уровне труднее. Важно понимать, что компрометация одного уровня ведет к компрометации другого. Часто системный уровень атакуется, а затем используется для доступа к данным приложения. Например, злоумышленник может атаковать ОС и использовать бреши в ней для атаки на размещаемые в уровне приложений данные клиентов с целью получения информации о номерах кредитных карт.
^ Цель и сервисы инфраструктуры безопасности
Главная цель инфраструктуры безопасности состоит в обеспечении безопасной работы приложений. Если проводить аналогию с функционированием инфраструктуры электросетей, то можно сказать, что электросеть обеспечивает правильную работу таких "приложений", как электроприборы. Более того, универсальность инфраструктуры электросетей такова, что она способна поддерживать "приложения", которые были неизвестны в то время, когда она проектировалась (к ним относится практически вся современная бытовая техника, компьютеры и многое другое). Под приложением в контексте инфраструктуры безопасности понимается любой модуль, использующий инфраструктуру в целях безопасности, такой как web-браузер, клиентское приложение электронной почты, устройство, поддерживающее протокол IPsec, и т.п.

^ Инфраструктура безопасности дает возможность приложениям защищать их собственные данные или ресурсы и придавать безопасность их взаимодействию с другими данными или ресурсами. Доступ к инфраструктуре должен быть простым и быстрым - подобно включению электроприбора в розетку. Инфраструктура безопасности должна обладать знакомым и удобным интерфейсом, пригодностью и предсказуемостью сервисов. Кроме того, устройствам, использующим инфраструктуру, нет необходимости знать, каким образом достигается результат. Так, например, для работы любого электроприбора не имеет значения, каким образом происходит передача электроэнергии, а важно лишь то, что при его включении в электрическую розетку предсказуемый "сервис" обеспечивает прибор электроэнергией, необходимой для его правильной работы. То есть инфраструктура безопасности должна иметь хорошо известные точки входа, которые могут доставить сервис безопасности нуждающемуся в нем устройству. Причем для устройства неважно, как это делается, но существенно, что это делается удобно и корректно.

Рассмотрим наиболее важные аспекты сервисов, предоставляемых инфраструктурой безопасности.
^ Защищенная регистрация
Концепция регистрации пользователя для доступа к приложению широко известна. Обычно этот процесс заключается в том, что пользователь вводит информацию, которая его идентифицирует (имя или ID пользователя) и аутентифицирует (пароль или другая секретная информация). Процесс регистрации предполагает, что никто, кроме законного пользователя, не знает аутентифицирующую его информацию, и обеспечивает защищенный доступ пользователя к определенному приложению.

Проблемы безопасности, возникающие при регистрации, также хорошо известны. Если приложение, требующее регистрации, удалено от пользователя (находится, например, на другом компьютере), то пароли, передаваемые по незащищенной сети, становятся объектом перехвата. Даже зашифрованные пароли не защищены от атак воспроизведения (replay attacks), когда они могут быть скопированы и использованы позднее для имитации аутентичности. Более того, общеизвестно, что пользователи редко выбирают "хорошие" пароли (достаточной длины и непредсказуемости), как правило, не запоминают их без записывания и не меняют своевременно, когда этого требует локальная политика безопасности.

^ Инфраструктура безопасности может решить некоторые из этих проблем. Поддержка безопасности подразумевает, что событие регистрации для инфраструктуры происходит локально (на устройстве, посредством которого пользователь физически осуществляет взаимодействие) и что корректный результат регистрации, когда необходимо, защищенно распространяется на удаленное приложение. Рис. 1.2 иллюстрирует этот процесс [44].


Рис. 1.2.  защищенная регистрация

Таким образом, для удаленной регистрации пользователей могут использоваться механизмы сильной аутентификации, при этом отпадает необходимость в передаче паролей по сети. Развертывание инфраструктуры безопасности полностью не исключает применение паролей, но решает серьезную проблему передачи паролей по ненадежным и незащищенным сетям.
^ Защищенная однократная регистрация
Проблемы безопасности при регистрации многократно возрастают, когда пользователю необходим доступ ко многим приложениям. Практика показывает, что если пользователю нужно множество паролей, он просто принимает решение сделать все свои пароли одинаковыми. Это ведет к эффекту "самого слабого звена": при взломе слабейшей из систем (например, при помощи программы-сниффера) злоумышленник получает доступ ко всем системам одновременно. Применение одного и того же пароля для доступа ко всем приложениям снижает общую безопасность, а запоминание множества паролей и трата времени на доступ ко многим системам существенно затрудняют работу пользователя и вынуждают его искать пути обхода этих процедур, что также небезопасно.

Преимущества системы SSO заметны пользователям с первого взгляда: отпадает необходимость запоминать множество паролей и тратить время на аутентификацию при входе в каждую конкретную систему ( см. рис. 1.3). Этим, однако, достоинства системы SSO не ограничиваются. Во-первых, правильно внедренная система SSO оказывает положительное влияние на безопасность: пользователи регистрируются на своих локальных компьютерах, пароли реже "путешествуют" по сети, и выше вероятность, что единственный пароль, выбранный пользователем, будет "хорошим". Во-вторых, однократная регистрация не просто удобна для пользователей, но также снижает нагрузку на централизованную службу поддержки информации о регистрации и обслуживания паролей (плановая или внеплановая смена паролей, работа с забытыми паролями и пр.), которая уязвима к атакам.


Рис. 1.3.  Защищенная однократная регистрация

Естественно, определенная доля риска имеется и при внедрении системы SSO (одна процедура обеспечивает доступ ко всем системам), поскольку создается единая точка отказа в защите сети. Однако системы SSO, как правило, хорошо защищены от несанкционированного доступа; к тому же дополнительную защиту создают средства физической аутентификации [42].
^ Прозрачность для конечных пользователей
Жизненно важным свойством всеобъемлющей инфраструктуры является ее почти полная прозрачность для пользователей. Такой прозрачностью обладает, например, инфраструктура сетевых коммуникаций, большинству пользователей которой необязательно знать о тонкостях сетевых техн
еще рефераты
Еще работы по разное